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In the following series of papers we give a detailed study of the theory of Regge poles for 1/r?
potentials with the behavior r?> V(r) = —Vyatr = Oand r2 V(r) = —V,at r = «». We
give a complete description of the distribution of the Regge poles in the A plane, which is' cut from
— V" to V¥ and study the behavior of the pole trajectories. We find that the high energy limit of
the Regge poles is controlled by the parameter p = (A’—V)'/? while at low energies the relevant
parameter is ¢ = (A’—V,)"% This means that the point A = O for the case of Yukawa potentials
corresponds here to the point ¢ = 0. We also find that the Regge trajectories A(E) may have
branch points of the square root type at finite, in general complex, values of E at which points the
pole passes the origin A = 0. We further find that the kinematic singularity of the S matrix at k
= 0 is more complicated than it is for Yukawa potentials and is here characterized by the Floquet
parameter V(A,k) associated with the Schrodinger equation. We illustrate these and other results with

some new exact solutions of the Schrodinger equation.

1. INTRODUCTION

Recently, Cheng and Wu! have shown that in quantum
electrodynamics with massive photons the scattering
amplitude from one-tower diagrams is proportional to
B(f) s*'*'(Ins)"? at infinite energy s, with @(0)>1, and
that the leading singularity of the scattering amplitude
in the J plane is a fixed Regge branch point at J> 1.

A comparatively simple and relevant model with the
property that it introduces fixed branch points in the an-
gular momentum plane is provided by the nonrelativistic
scattering from 1/#2 potentials, It therefore seems de-
sirable to investigate in detail the theory of Regge poles
for such potentials.

The theory of Regge poles in potential scattering is
widely known and has been extensively studied by many
authors. ? However, in most cases the investigations are
based on the Schrédinger equation with a potential V(»)
that satisfies the regularity condition 72V(»)=0 at the
origin. In the following papers we give a detailed study
of the scattering and bound state properties of potentials
with the behavior: ¥*V(r)=-V,at r=0and rV(r)=-V,
at r=, with V,, V, arbitrary constants. We also allow
the possibility that V(#) may have singularities at nega-
tive or complex values of 7, In this paper we give the
general theory of Regge poles for such potentials, while
in the following papers we illustrate our results with
some new exact solutions of the Schrodinger equation,

Some particular cases of 1/72 potentials have been
considered in the literature. The pure 1/#2 potential
V(r) = - V,/7? has been investigated by several authors. 3
Cornille* discussed the determination of the S matrix
when V(7) is of the form exp(~ u7)/72. Barut and
Calogero® and Ferreira and Sesma® gave a detailed study
of potentials with 1/#2 tails (V,=0) including a numeri-
cal analysis of the pole trajectories in the A plane. Do
Amaral and Srivastava’ studied the Regge trajectories
for V(r)=—-V,/v> ~a/r. Cheng® considered a particular
1/72 potential with V,=V,=0, but such that V(7)== for
some complex values of v and studied its Regge pole
structure at zero energy. Lastly, Challifour and Eden?®
investigated some of the properties of the Regge trajec-
tories for attractive 1/72 potentials with V,=V,.

In Sec. 2 we define the S matrix and give its analytic
properties. We find that S is a meromorphic function of
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A in the whole A plane cut from -~ V}/2to V1/? and an an-
alytic function of % with a kinematic branch point at 2=0
and the usual Yukawa cuts along the imaginary axis, We
point out that the character of the branch point at =0
is different from that corresponding to Yukawa poten-
tials and in Sec. 5 we show that it depends on the
Floquet parameter v(\, k) associated with the Schrdding-
er equation, which is in general a very complicated
function of A, %, and the potential strength parameters.
In Secs. 3, 4, and 6 we investigate the general proper-
ties, distribution, number and threshold behavior of the
Regge poles. We find several interesting results, which
are fully summarized in Sec. 7.

In subsequent papers we study the particular potential

1(vEV, +7,V, v+ V, r2°
o= ()

where 7, and @ are any positive numbers and V,, V,,
and V, are arbitrary constants. We first give an exact
solution of the Schrddinger equation at zero energy for
this potential and study the properties of the correspond-
ing zero energy Regge poles. Next we give exact solu-
tions of the Schrddinger equation and derive the S matrix
for arbitrary angular momentum and energy for the po-
tential (1.1) in the special case & =2, We study the an-
alytic structure of the S matrix in this case and investi-
gate the properties and distribution of the Regge poles,
particularly at low energies.

(1.1)

2. DEFINITION OF THE S MATRIX

We will be concerned with the radial Schrddinger
equation

2 2 _ 1
3?“ <k2-" = —V('V))y:O,

where X =1+ 3 with ! the angular momentum and #*=E

is the energy. The potential V(7) is assumed to be of the
form

(2.1)

V(¥ ==V/r* = Ve(7), (2.2)
with lim»2V?(¥) =0 at =0 and
V(’V) = Vz//rz - Vb(y)’ ¥Y— ©, (2. 3)

with lim#?V?(#) =0 at ==, In general, we take V2(#)
and V*(7) to be Yukawa potentials of finite mass m, = 0.
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The 1/7° term in V() may be absorbed into the angular
momentum term in (2.1) by defining the “effective” an-
gular momentum

p=(2 =V )3, (2.4)

which we define as an analytic function of X in the A
plane cut from —Vi/2to V1/2, Similarly, (2.3) suggests
the definition of the additional parameter

a=(\2 =V )'/? (2.5)

which we take as an analytic function of A with a cut from
- V;/Z to V;/z-

Solutions of (2.1) satisfying the boundary conditions
¢(p’ k) 7')—- 71/2*99 (2°6)
2.7)

may be defined in terms of integral equations by the
well-known method of variation of parameters. These
will be identical to the integral equations found in the
case of Yukawa potentials? with the exception that X is
everywhere replaced by p in the case of (2.6) and ¢ in
the case of (2.7). The method of successive approxima-
tions may then be used to obtain the appropriate itera-
tion series.? We find the following results:

r— 0,

F(q’ +k, 7)— exp(;ik'r), Y- ®,

(1) When V¥(7) in (2.2) is a Yukawa potential of mass
my# 0 the iteration series for ¢(p, k, 7) converges abso-
lutely for finite 7, % when Rep>0 [or Rep> - 3a when
V(#) is given by (1. 1)I. ¢(p, &, 7) is analytic for all finite
kand p in Rep> 0 (or Rep> — $a); in the left-hand plane
of A it has simple poles at p==3(1+n), n=0, 1, 2...
[or p=—3a(1+n)]. The following identities hold:

4)(1), k, 7’):¢(p,—k,’}’):¢*(p*’k*,7). (2°8)
Furthermore, we find the symmetry property
(p(r), By V) = B (p(~ 1), &, 7), 2.9)

where X, is in the ith sheet of the A plane. Thus, we may
say that ¢(p, k, 7) is symmetric “across” the cut in the
A plane.

(2) The iteration series for F(q, +&,7) [F(q, - ¥, M]
converges absolutely for all k»> 0 provided that % is not
positive (negative) imaginary. F(q, + k, ¥) are analytic in
k in their domain of convergence except for a kinematic
branch point at 2=0. When V?(7) is a Yukawa potential
of mass m, the domain of convergence extends up to
Imk<m,. F(q,+k,7)are analytic functions of 1 in the
whole x plane. We note that the points A = V1/2 (where
q=0) are not branch points of F(q, %, 7). The following
identity holds:

F*(q*, - k*, ) =F(q, k, 7). (2.10
In order to define the S matrix we write
(;b([), ka ’V) :f(p’ q, k)F(qy = k, 7’) +f(p; q, — k)F(q, k’ 7)0
(2.11)

and define S in terms of the Jost functions f(p, ¢, + k) in
the usual manner:

S:eXp[l‘lT()\ + %)]U(P, q, k)/f(py q, - k)]'

When V,=V, (and therefore p=¢q) and V(r) has no fi-
nite singularities in 7 it is not difficult to determine the

(2.12)
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Jost functions explicitly. We simply calculate the
Wronskians of ¢(p, &, v) with exp(+ ikr) at ==, When
Vo#V,, however, the determination of the Jost functions
becomes an extremely difficult task. This is due to the
fact that in this case the branch point at £=0 is much
more complicated than the simple “Bessel function”
singularity of ¢(p, &k, v) and F(q,+ k, ¥). We discuss this
question in more detail in Sec. 5 and give an explicit
example in Paper HOI of this series.

The analytic properties of the Jost functions and the
S matrix follow immediately from the above results,
Thus, S is a meromorphic function of A in the A plane
cut from - Vi/2 to V}/? and an analytic function of % with
the usual Yukawa cuts and a kinematic branch point at
k=0, Note that S is analytic at ¢=0. We easily obtain
the identity

f*(p*’ q*) —k*) :f(p, q, k), (2.13)
and the extended unitarity relation
S*(p*, q*, k¥)S(p, g, k) = 1. (2.14)

Additionally, as a consequence of (2.9) we find the sym-
metry property

S(p(1y), g, k) =exp(2im\)S(p(-1,), 4, k).

Thus, the S matrix is symmetric “across” the cut in the
A plane. Equation (2.15) is the result analogous to the
well-known Mandelstam reflection property S(-1)=3S(\)
for A integer.!® We also note that S(—1)=S(\) identically
for potentials more singular than 1/7? at the origin.

(2.15)

Lastly, we state here the following useful identity
satisfied by the Jost functions:

f(p’ q, k)f(—p’ q, - k) _f(_'p’ q, k)f(py q, = k): _41pk- (2- 16)
3. GENERAL PROPERTIES OF THE REGGE POLES

The Regge poles are defined as the zeroes of the Jost
function f(p, g, — k). A very general symmetry in the dis-
tribution of the Regge poles follows from the observation
that the S matrix and the Jost functions are symmetric
“across” the cut in the A plane {see (2.15)]. It follows
that a pole at A(%) in the first sheet must also appear at
—~ (k) in the second sheet. Other results may be obtained
by means of well-known methods directly from equation
(2.1).2

When A (%) is a Regge pole with Rep>0 and Imk> 0 it
follows from (2.1) and (2. 11) that
RekImkfowIqb]zd'r—RexImxfow(]¢|2/r2)dr=0, (3.1)
and a similar equation may be written down with A re-
placed by p. We conclude from (3.1) that the S matrix
has no poles in the domains: RekZ 0, RexImx =0,
Imp=0,

If Rek=0in (3. 1) we see that A may be either real or
pure imaginary. Since we must have Rep> 0 the latter
possibility may only occur if V,<0and p=(1V,l
—(Imr)2)t/2 is greater than zero. This corresponds to a
potential V() repulsive near the origin. The possibility
of the existence of Regge poles with X pure imaginary
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and on the cut is quite interesting and is a unique prop-
erty of 1/7° potentials repulsive near =0,

If Imk =0 we find from (2.1) and (2.11) that

Rek|f(p, 4, k)|> = 2Rex Im [, (| 6 |%/7%) dr=0, (3.2)

and a similar equation with x replaced by p. These equa-
tions imply the existence of positive energy poles in the
domains: Rek= 0, RexImx = 0, Imp= 0. Consequently,

as E becomes positive a Regge pole A (E) must leave the
real axis with a positive imaginary part, as expected.
Similarly, if A{(E) is pure imaginary with Imx >0, the
pole must emerge from the cut and enter the first quad-
rant in the first sheet as E becomes positive with
Rek>0,

Additional information may be obtained by differentiat-
ing (2. 1) with respect to E. If Rep> 0 with A® real and
Imk>0, we find

ISV l12dr

&) (Fres
dE —\2x, 0'°(I¢I2/72)dr> :
and a similar equation with A replaced by p. Thus we
see that both ReX and Rep are increasing functions of E,
Similarly, when A is pure imaginary with Imx >0,
Im)(E) is a decreasing function of E, That is, as E—~ 0~
the pole Imx(E) moves along the cut toward the origin

A =0. Upon reaching the point » =0 the pole turns to the
right and moves along the positive real axis in the first
sheet.

(3.3)

We now derive some results on the behavior of Regge
poles when Rep=0, The Jost functions may be analyti-
cally continued into the region Rep <0 using standard
methods. 2 Thus, from the observation that ¢(p, &, 7) has
simple poles at p==3(1+n), n=0,1,2-.. we may ob-
tain the analytically continued Jost functions

f(p’ q, £ k) :f(p’ q,+ k)/r(zp + 1)-
Using (3.4) in (2.16), we find
T, 4, OF(=p, 4, ) ~F(= b, 4, KF(p, 4, = #) = - 2% 22210,

(3.4)

(3.5)
If kis real and p pure imaginary we find from (3.5) that
If(-psq,_k)I2_|f_(p,qy_k)|2:2kw- (3.6)

Since a Regge pole in this case satisfies f(p, q,-k)=0,
we conclude that there are no poles with %2 real and p
pure imaginary in the domains: Rek=0, Imp=0,

I %2 and p are both pure imaginary, it follows from
(2. 13) and (3. 5) that

1(Z(p, 0,k _ @, q,—k)>_ 3.7)
2\/X b, q, k) F*(p, q, - B)) " af¥p, a, RH D, q, = R) T

Taking the absolute value of (3.7), we find the result

i Imksinh[27(Imp)]

; = inh[2

(0, 0, B0, g, - 1] > | 1mp SIRRTAMAL
It follows from this that f*(p, q, - k) =f(~p, g, - k) cannot
vanish for p pure imaginary unless p=0. Consequently,
if V,> 0 there can be no Regge poles with A real and on
the cut for E<0. Similarly, if V,<0 there are no Regge
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‘poles with A pure imaginary and away from the cut for

E<O,

In order to find the locations of the Regge poles at
infinite energy we observe that if we set z="Fkr and let
| Bl— « while keeping z fixed, Eq. (2.1) reduces in this
limit to the Schrédinger equation with a Coulomb poten-
tial and angular momentum p. We conclude that as
| E| - = the Regge poles approach the locations p
==(3+n), =0, 1, 2... ! The same result follows
from known general results on the high energy scatter-
ing from Yukawa potentials,*? since we assumed at the
outset V%(7) was a superposition of Yukawa potentials.
Thus, as |E| — =, the trajectory A(E) tends to the values
=(V,+(2+n)?)/2 in the first sheet and (V,+ (z+n)?)/?
in the second sheet, with one exception. If V,<0 and we
further have that (n+ 3)? | V,| is negative then it follows
that for these values of # the trajectory A(E) tends to the
values +i(l V| =(z+n)?*/2 as | E|~ =, The meaning of
this is that some of the imaginary poles start from the
cut at E=~ o, while others terminate at the cut when
E =+,

Lastly, we note that the Regge trajectories A(E) may
be multivalued functions of E with branch points at vari-
ous, generally complex, values of E. This observation
follows simply by noting that the Jost function f(p, ¢, — )
depends on X only through p and g and the Regge poles
are in effect given by an equation of the form ¢{x(E))
=g(E) or p(A\(E))=h(E), where gand k are some func-
tions of E. Further, if A(E) does have a branch point,
it will be of the square root type, ME)=(E - E*/2f(E),
with f(E) analytic at E=E,. Clearly, at any such branch
point the Regge trajectory A(E) passes through the ori-
gin A =0. We see that these branch points are charac-
teristic of 1/72 potentials and are not related to the
square root type branch points associated with the cross-
ing of Regge trajectories found by Cheng, 2

4. THE NUMBER OF TRAJECTORIES

We now determine the number of Regge poles in the
right half-plane of the first sheet of A for E <0, These
include the physical bound states of the system.

In Sec. 3 we proved that when V,> 0 there are no neg-
ative energy Regge poles with A real and on the cut. In
this case p is pure imaginary and the solutions of (2. 1)
are of the form 7*/2*!»! near the origin for E <0. They
both vanish at » =0 while oscillating infinitely rapidly.
There are no bound states and a particle in this case
would “fall to the center” while seeking its ground state
at E= -, We therefore need only consider p real and
positive. Thus, we have either A > (V )!/2 or —iV1/2<
A <iVi/2, With no loss in generality in what follows we
also set E=0,

Given any “regular” potential V(7) the number of
bound states at zero energy may be estimated by means
of Bargmann’s inequality!?:

1 o«
N, € — U
A 2|>\|’/0‘ ¥ (’V)d’)’,

where N, is the number of bound states of angular mo-

(4.1)
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mentum A =1+ 3 and

lvin|, v(n<o,
U(r) = ¢ 4.2)

0 V(ry=0.

3

When V(7) is of the form of (2.2), (2.3) with V,=V,,
(4.1) may still be used to estimate N, provided that we
replace x» with p and V(») with V*(¥). Clearly, N, is fi-
nite provided that V¢(7) is nonsingular in 0 <» <« and
A> VA2,

When V,#V, (4.1) is no longer applicable. An expres-
sion similar to (4. 1) may nevertheless be derived by
using the methods of Ref. 14 with the result that N, is
likewise finite provided that V(#) has no singularities in
0 <7<« and that x> V1/2> Vi/2,

When 1 is in the range Vi/2<x < V1’2 however, p is
real but ¢=i(V, =1?)'/2 is pure imaginary. The zero en-
ergy wavefunction has the asymptotic form #1/2+ile} gng
oscillates infinitely rapidly near » =<, This suggests
that there must be an infinite number of bound states in
Vi/2<x < Vi/2, In Sec. 6 we show that this is indeed the
case and that an infinite number of Regge poles emerge
from the branch point V}/2 near threshold and move to
the right along the real axis converging on the point
X:V;/Z as E——»O_.

5. SINGULARITY OF THE S MATRIX AT k=0

It is well known that the S matrix has a fixed kinema-
tic branch point at =0 in the case of Yukawa poten-
tials.? This remains true in the case of 1/7° potentials.
However, the nature of the singularity at 2=0 is modi-
fied according to whether V(7) has a 1/72 core, tail, or
both,

When V(7) is given by (2.2), (2.3) with V=V, and
Ve(r) is an arbitrary superposition of Yukawa potentials,
the S matrix may be written in the form

] ‘ ¥(p, k) + &** exp(inp)
S=expir(\ = p) (Y(p, k) + K% exp(~ inP)) .

(5.1)

When V%(7) is a Yukawa potential of mass m,, we find
that

Y(p, k)= Y(p, kexp(-in)). (5.2)

Indeed, Y(p, k) is an analytic function of % in the whole
k plane with the usual Yukawa cuts starting at k=zxim,
and a meromorphic function of X in the A plane cut from
- Vi/2to Vi/2.

It follows from (5.1) and (5. 2) that S satisfies
S(p, kexp(~in)) = exp(2ixl)[S(p, k) + 2i cosmpexp(inl)]™?,
(5.3)

from which its circuital behavior about the singularity
at =0 may be easily determined.

When V(7) is given by (2.2), (2.3) but V,#V,, the
above expressions are no longer applicable. The pres-
ence of a 1/7? tail in V(7) modifies considerably the cha-
racter of the branch point at #=0 and an entirely new
procedure must be used in the derivation of the S
matrix.
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Let us consider the Schridinger equation (2. 1) with a
potential V(r) satisfying (2.2), (2.3). In the limit 2=0
it follows from (2. 3) and the theory of differential equa-
tions that for large 7 this equation must have two solu-
tions of the form

YOUP) = 24ag0 (), (5.4)
(o)

where £,%(7) are single-valued functions of . This sug-
gests that when £#0 Eq. (2.1) has solutions of the form

91, (M) =(kr) 2B g (k) (5.5)

where g, ,(kv) are single-valued functions of kr and v(k)
is some function of k satisfying v(0)=gq=(%-V,)*/2,

The existence of solutions of the form of (5.5) for an
equation of the type of the radial Schrédinger equation
may be generally established by means of Floquet’s
theorem?!® provided that »?V(7) is a single-valued func-
tion of . The parameter v is then the so-called Floquet
parameter and is in general a very complicated function
of k,x and the potential strenth and range parameters.
More precisely, if ¥V(r)=3;" u,7", then it follows from
the work of Fubini and Stroffolini!¢ that (1) if u,+0 for
some negative »n (singular potentials), then v(n, k) is an
even analytic transcendental function of 2 and a mero-
morphic function of A; and (2) if #,=0 for all negative =
(regular potentials), then v(\, k)=\. The case u,#0
which applies for the “transitionally” singular 1/#% po-
tentials is a special case. Using either the methods of
Ref. 16 or other available methods,!” it may be shown
that (1) if V()= =V,/7 + V() and V4(7) is a Yukawa
potential of finite mass, then v(x,R)=p=(2 =V /%

(2) if V(r)=V,(») for ¥<7,and V(r)=-V,/7 for >,
for some finite 7,, then v(x, k) =q={(%~V,)*/?; and (3)
lastly, when V(7) has both a 1/72 core and tail then
v(x, k) is an even analytic transcendental function of %
and a meromorphic function of x.

An immediate implication of the above observations
is that the branch point at 2=0 is more complicated than
the “Bessel function” singularity of Yukawa potentials
and is now characterized by the Floquet parameter
v(\, k). Indeed, as a direct consequence of (5.5) we find
that the S matrix is correctly given by the expression

Y(p,v, k) + k> exp(inv) )
Y(p,v, k) + k% exp(~imv)) "

where v=v(x, k). Clearly, v is of the nature of an “ef-
fective” angular momentum. Elsewhere we show expli-
citly that the representation (5. 6) applies when V(7) is
given by (1.1) with @ =2 plus an arbitrary superposition
of Yukawa potentials of finite mass m,.*? In addition to
this, we have also verified (5. 6) exactly when V(7) is
given by (1.1) with o =1,

S=expin(r —V)( (5.6)

For the cases indicated above we find that the S mat-
rix satisfies the identities!®

S(=v)=S(), (5.7)

S(v, kexp(~ im)) = exp(2in]) 1S(v, k) + 2i cosmv exp(in)) ™.
(5.8)

The circuital behavior of S about the point 2= 0 follows
immediately from (5.8), while (5.7) is a restatement of
the fact that the S matrix is analytic at A == V3/2,
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6. BEHAVIOR OF THE REGGE POLES
NEAR THRESHOLD

Detailed investigations about the threshold motion of
the Regge poles are available for the case of Yukawa
potentials. 2° In particular, it is known that an infinite
number of trajectories converge onA=0as E—~ 0. In
our case we find that the points A =+ V1/2 agsume the
role of the point A =0, and an infinite number of trajec-
tories converge on these points as E—0, Physically this
is not surprising as it is well known that the low energy
behavior of the S matrix and the Regge trajectories is
determined by the asymptotic tail of the potential. Here
V(r)~=V,/7® and, therefore, the relevant parameter for
very low energy phenomena is just g= (2 - V,)}/2,

From Eq. (5.6) we see that the Regge poles are given
by the solutions of the equation

Y(p,v, E} + E* exp(~inv) =0, (6.1)

where v=v(p, q, E) is the Floquet parameter. Near E
=0, v(p, q, E) has the expangion”1?

v(p, 4, E) = g+ E"[v,(p, q) + O(E™], (6.2)
where m is a positive integer and v,(p, q) is some func-
tion of p, g. Using (6.2), we find, similarly,

oY oY
Vo1, B)=¥5,0,0+E[ZE| +aZl| J+owr,

6.3)

where A=v,(p, q) for m=1and A=01if m#1, Using
these results in (6. 1), we readily obtain low energy ex~
pansions for the Regge poles A(E). As expected, when

E <0 and V,>0the Regge poles are real. As E becomes
positive, ME) acquires a positive imaginary part. When
V,<0, a trajectory A{E) may reach threshold on the
imaginary axis with XM(E) <i|V,|}/2if | V| >|V,| or

ME) <il VY2 if | V,I>1V,|. Additional information,
such as the angle at which the trajectories meet the real
axis as E— 0%, may be easily obtained from (6.1)~(6. 3).

+A

E=0 d
vag

The above results are not valid at ¢=0. Indeed, using
the result!®

Y(p) O,E):—ly (6.4)

which holds for any energy E, we see that when v(E)=0
Eq. (6.1) is satisfied identically. At this point the S
matrix is of the form 0/0 for all E and must be defined
using L.’ Hopital’ s rule. In order to determine the
threshold behavior of the Regge poles when v(E)— 0*,
that is, when x— £ V1/2 from the right, we proceed as
follows: Near | E|~0 and v(E)~q~0 we expand Y(p, v, E)
to find

Y
Y(p, V,E)=—1+q5; + O(q%). (6.5)
Ez0
v=0
A solution ¢(E) of (6. 1) is then obtained with
—_— 2nw 2nP72 Yo,
Req(E)=(r =)0 TETI2 ~ TImIE 1™
- 2nm
Imgq(E) *TmIETT? (6.6)

where n=x1, +2..., Y, =(3Y/3v)z.,,,., and E=|E|
X exp(éy) with | E{~0, Note that Y, is real.
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It follows from (6.6) that an infinite number of trajec-
tories approach the point ¢g=0 as E approaches the
threshold from any direction in the complex energy
plane.

When V,>0, V,> V, we find from (6. 6) that an infinite
number of complex conjugate trajectories converge on
A=-V./? from the right as E—~ 0", The angle of ap-
proach is proportional to (In|E|)™2, Similarly, an infi-
nite number of trajectories converge on A =+ V1/2 ag
E— 0*, The angle at which they meet the real axis is
proportional to (In| E{)™.

When V,>0, but V,< V,, the points A== V3/% are lo-
cated within the cut. We find from (6. 6) that an infinite
number of trajectories approach the point A = V1/2 on the
second sheet of x as E—~ 0", At E=0 these poles accu-
mulate at A = V1/2 on the lower lip of the cut. Thus,
these poles are never physical.

When V, and V; are both negative and the cut is on the
imaginary axis the analysis and results are entirely an-
alogous to the above. For example, an infinite number
of trajectories is found to converge on the point A
=1|V,1*/2 from above, and x=—il|V,|*/2 from below
both as E—~ 0* and E—~ 07, when | V,i<|V,l.

Suppose now that V,, V, are both positive and x is real
with Vi/2<x <V1/2, We recall that in Sec.4 we con-
cluded that there must be an infinite number of Regge
poles in this region for E<0. In this case, v(0)=gq is
pure imaginary and (6. 1) is not well defined in the limit
E- 0, Using the result Y(v)=1/Y(-v) (Ref. 18) and
(2.14), we see that for any energy E and imaginary v(E)
we may write

Y(p,ilvl, Ey=expliy(p, ||, E)], 6.7

where y(p, |v|, E) is a real function, As E—~ 0" and ¢~0,
we find, using (6.1)—(6. 3), that the Regge poles \(E) in
Vi/2<x < Vi/% are given by

(Vz—-iﬁ(E))”zz 2nm < 2nm

TmIET] |1n|E112>Y°°+""

where n==x1, £2, ...and Y= (@Y/3V) 5.0 ,.0-

(6.8)

We conclude from (6. 8) that an infinite number of
Regge poles must pass through every point in V3/2<
A< Vi/2for ES0, As E— 0" these poles approach the
point X = V1/2 along the real axis. Evidently, the above
discussion may be immediately extended to the case in
which V,, V, are both negative and il V,|!/2 <t <
ilV,y11/2, Again, we find an infinite number of Regge
poles converging on the points A ==/ V,|*/2 along the cut
as E—~ 07,

7. CONCLUSION AND SUMMARY OF RESULTS

When V(7) is a 1/72 potential of the type defined in
(2.2), (2.3), we have found that the S matrix is a mero-
morphic function of x with a cut from ~ V3/2 to Vi/2 and
an analytic function of % with a kinematic branch point
at £=0 and the usual Yukawa cuts along the imaginary
axis. We also found that the branch point at =0 is now
characterized by a Floquet parameter v(x, k) which is a
transcendental function of A and % and plays the role of
an “effective angular momentum” of the system.
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We also investigated in detail the properties and dis-
tribution of the Regge poles. The principal results for
E <0 with A in the first sheet and Rex >0 are as follows:

(1) V,>0. V(#) is attractive at the origin and the cut
in the ) plane is on the real axis. We find:

(i) There are no Regge poles on the cut.

(i) If V,> 0 there is a finite number of Regge poles
located to the right of V3/2 or V1/2, whichever is
greater. If V,> V; an infinite number of poles em-
erge from the branch point V3/2 and approach the
point Vi/2ag E—~ 07, If V,<V, there is an infinite
number of poles which approach the point V1/Z from
the second sheet of A. At threshold these poles are
located at V1’2 on the lower lip of the cut and are
therefore never physical.

(iii) If V,<0 we find a finite number of Regge poles
to the right of V2/2, There are no poles on the cut or
the imaginary axis.

(2) V,<0. V(¥) is repulsive at the origin and the cut is
on the imaginary axis. We find:

(i) If V,> 0 there is a finite number of Regge poles
to the right of V1’2, An infinite number of poles em-
erge from the branch points +¢|V,1*/2, move along
the cut and enter the positive real axis approaching
the point Vi/2 ag E—~ 07,

(ii) If V,<0 there is a finite number of Regge poles
on the positive real axis A >0, If |V, <|V,l a finite
number of poles is located in —%|V,|}/2<x <i|V,|*/2
{on the cut). Furthermore, an infinite number of
poles emerge from the branch points +2] ¥, |*/2 and
approach the points +i| V,|*/2as E~ 0", If | V,| >

| V! there is a finite number of poles both on the
positive real axis and on the cut. There are no poles
on the imaginary axis outside of the cut.

(3) The Regge trajectories A(E) are multivalued func-
tions of E, In addition to the usual branch points at £
=0, there may be additional branch points at finite, in
general complex, values of E, When such branch points
exist, they are of the square root type. That is, ()
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= (E ~ E,)*/?g(E) near the branch point E=E,, with g(E)
analytic at E=E,, Evidently, at the branch point E =E,
the Regge pole passes through the origin A =0. These
branch points do not appear in the scattering amplitude,
These singularities are characteristic of 1/#2 potentials
and are not related to the square root branch points as-
sociated with the crossing of Regge trajectories. '3
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We give the exact solution of the Schrodinger equation at zero energy and derive an expression in
closed form for the Regge poles for a particular 1/r? potential with the behavior r?¥(r) = —V,
at r = 0 and r’V(r) = ~V,at r = «. We give detailed results on the properties and
distribution of the Regge poles in the A plane and find them to be in agreement with the predictions

of a previous paper in this series.

1. INTRODUCTION

In a previous paper we discussed in detail the theory
of Regge poles for 1/#2 potentials satisfying lim 2V (r)
==V, at »=0 and lim»*V(r)=-V, at r=«.' In the
present paper we give the exact solution of the
Schrodinger equation at zero energy and study the
properties of the Regge poles for arbitrary angular
momentum and zero energy for the particular potential

1.1)

_ Y (Vo +rVire + Vz"’za)
Vir)= -3 ( oty .
where 7,, o are any positive numbers and V,, V,, V,
are arbitrary constants.

A potential of the form of (1.1) was first considered
by Eckart.? A particular case of (1.1) corresponding to
V,=V,=0 was investigated in detail by Cheng,*® who
obtained an expression in closed form for the zero en-
ergy Regge poles and gave a formula for the asymptotic
behavior of the S matrix for [x| —,

In Sec. 2 we recall some relevant results on the
theory of Regge poles at zero energy. In Sec. 3 we
solve the Schrodinger equation while in Sec. 4 we dis-
cuss in detail the properties of the Regge poles. The
results obtained are summarized in Sec. 5 and are
found to be in agreement with the general results ob-
tained in I in the limit E=0.

2. THEORY OF REGGE POLES AT ZERO ENERGY

The behavior of Regge poles at zero energy has been
the subject of detailed investigation.!*3* In the present
section we recall from I some of the principal results
for the case of 1/#* potentials.

The S matrix may be written in the form?!ss

Y{p.v, k) + k% explinv) )
Y(p,v, k) +F? exp(—inv)/ ’

S =explin(x - u)]( (2.1)
where p=(02 -V )2 g=(O%-V,)*/2 and v=0(p,q,k)

is the Floquet parameter of the Schrodinger equation.
When V(r) is given by (1.1) the zero energy Floquet
parameter is given by v(p,q,0) =¢/a. The following
results follow from (2.1) and the discussion in Sec. 6
of 1.

(1) If v(p,q,k) is not zero or an integer the zero ener-
gy Regge poles in the first sheet of A are given by the
solutions of the equation:
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0, Rev(p,q,0)>0, Rer>0,
Y(p,v,0)={ (2.2)

o  Rev(p,q,0)<0, Rex<0.

(2) If v{p,q,*) is an integer, v=n, a Regge pole at
A=12,, E=0 may only occur if S has a double pole at
X, E=0.

(3) If v(p,q,k) is pure imaginary, we have Y(p,il vl k)
=expliy(p, 1 v], k)] for all 2, where y(p, ivl,k) is a real
function of p, k which approaches a finite, nonzero limit
as k—0. Therefore, the denominator in (2.1) does not
have a well-defined limit as ¥ — 0. There are no Regge
poles at E=0 in this case.

(4) There are no zero energy Regge poles on the cut.

3. SOLVABLE EXAMPLE OF REGGE POLES AT
ZERO ENERGY

The radial Schrodinger equation at zero energy is
) (% -2
—+ - =Uu.
e\ TV jp=0

We wish to solve (3.1) when V(r) is given by (1.1). We

readily find that (3.1) may be reduced to a hyper-
geometric equation by means of the transformations

(3.1)

x==r%/r,), Yp=x@o)2ey 3.2)
The general solution of (3.1) is found to be®
Yr)=r12(1 - x) 40 /2[C x/2,F (a, b;c;x)
(3.3)

+Cox*/3,F (a+1—-c, b+1-c; 2~cx)],
where

a=3(1~0-5-p), b=3(1-0-6+4u), c=1-0,
(3.4)

o=(2/a)02=-V )2, pu=(2/a)(n2-V,)1/2,
6=[1+@4/e®(V,~V,-V,)]/2,

(3.5)

and C,, C, are arbitrary constants. Here ,F,(a,b;c;x) is
the hypergeometric series and we define o and u as
analytic functions of X in the X plane cut from - V1/? to
Va/? and — VI/2 to V1/2, respectively. With reference to
the notation of I, we note that c=(2/a)p, p=(2/a)q.

From (3.5) we see that when X is real and positive and
away from the cut ¢ is also real and positive. Thus, for
suffictently large A a unique physical solution of (3.1)
that vanishes at the origin may be obtained by setting
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C,=0and C,=1. For other values of A, the function (»)
is then defined by analytic continuation.

From (3.3) we find that, for large »,°
1/2

P(r)=a, (o, wri/2202-v2) 2 4 g (g u)trz-0%vpt/2 (3 g)
where o and 1 are given by (3.5) and
T(WI (1 + o) expGino) )
—amu/2 2
o (o, K)=7; (I‘(%(l +o+p+))TEA+o+pu—-6))/"
(3.7

/2 (- W (1 +0) exp(zino)
%0, W=t (I‘(%(l To-u NG +o- u—c)))' .8

From (3.6) we see that when A is real and sufficiently
large ¥(r) vanishes at infinity provided that

a,(o, ) =0. (3.9)

We conclude that a Regge pole occurs if (3.9) is
satisfied. Furthermore, this must be true for all A in
the right half-plane as a consequence of analytic con-
tinuation. More precisely, let us introduce the function
Y(\,%), which at zero energy is given by®

20 r(l + IJ') a]_(a’ IJ')
Y00 =2 5 (az(o, u))'
Thus, (3.7)—(3.10) give

x<1“(%(1 +0+6— WG +o-5—~ #)))
rA+o+s+urGA+o-5+p))/ "

(3.11)

(3.10)

The Regge poles in the right half-plane may be found by
setting ¥(x,0)=0 with Rex>0. Thus, they are given by
the solutions of the equations

1+04+p+6=~2n, n=0, 1, 2000, 3.12)

Equation (3.11) also has double zeroes at =1, 2es-,
However, these are not locations of zero energy Regge
poles. In this case the continuation of the hypergeomet-
ric series in (3.4) contains logarithmic terms and is no
longer given by (3.6). Reference to the appropriate
continuation formulas® shows that the points p=1, 2o
are locations of zero energy Regge poles only when
(3.12) is also satisfied at these points. Thus, (3.12)
gives all the Regge poles at zero energy.

Rex >0.

4. DISTRIBUTION AND PROPERTIES OF THE REGGE
POLES

We now study Eq. (3.12) in some detail. We limit our
discussion to the solutions of (3.12) in Rex = 0 with A in
the first sheet. In what follows we assume that vV, V,,
V, are real numbers. Consequently, we may take 5, o,
& to be nonnegative real numbers.

Equation (3.12) may be rewritten in the form

2=V )2+ (2~ V,)2=N, Rerz0, 4.1)
where
N=(a/2)(6=-2n-1), n=0,1, 2c-, (4.2)
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Clearly, (4.1) has at least one solution provided that

ReN>0. 4.3)
That is, using (3.5),
Vi=Vo-Vy,>a?nln+1), n=0, 1, 2~ 4.4)

Since o >0, it follows that there are no Regge poles with
Rex = 0 in the first sheet of X unless V, >V, +V,.

The solution of (4.1) is found to be

1 1/2 1/2
N=gx P+ a2 viop] T e (vre vy
(4.5)

It follows from (4.2)—(4.3) that there can be at most
a finite number of poles A, for arbitrary V,, V,, V,, and
«@. Indeed, the number of poles is given by the closest
integer less than 3(5 —1).

From (4.5) we see that A, may be either real or pure
imaginary. If V, and V, are positive or have opposite
signs, X is always real. The possibility that A, be pure
imaginary can only arise if both V,, V, are negative and
N satisfies the inequality

IVOII/Z_IV2‘1/2<N<IV0'1/2+IV2|1/2' (4.6)

When V,>0 and V,>0, we find from (4.5) that A, is
real and to the right of V}/2 or Vi/2, whichever is
greater. Indeed, ) (N) has a local minimum at

N=N*=(|V,-V,|)*/2, (4.7)
at which
—_— Vé/z’ VO>V2’
A"(N*)—{V;/Z, V,>V,. (4.8)

That is, if for some nonnegative integer n=#»* equation
(4.7) happens to be satisfied, then ) «(N*) corresponds
to the leftmost Regge pole and is given by (4.8). For
any other allowed value of n (such that N > 0) x, will be
to the right of A 4 (N*). In particular, we see from (4.8)
that there are no zero energy Regge poles in the seg-
ment Vi/2<)<vyi/2,

Similarly, when V>0 and V, <0 we find from (4.5)
that A, is real and to the right of V3/2, except when
N=(V,+1V,I)/% in which case A, is precisely at the
branch point V3/%. When V,<0 and V, >0, A, is like-
wise real and to the right of V1/2 except when N=(V,
+1V,1)*/2, in which case A =V}/2.

When V, <0 and V,<0, the Regge poles 1, may be
either real or pure imaginary. If N is not in the range
specified by (4.6), the poles A, are real and located on
the positive real axis Rex >0. If N satisfies (4.6), x,
becomes pure imaginary. If |V,l > |V,|, the poles are
located in —§| V,1*/2 <) <i|V,I/2, that is, on the cut.
We note that there are no poles in the segments
i1 V,11/2 <z <ilV,I'/2 or elsewhere on the imaginary
axis. If 1V,| > |V,| the Regge poles are located in
—ilVo!*2<x, <4l V,I'/2 which comprises the whole
cut.

The above discussion exhausts all the possibilities for
the existence of zero energy Regge poles with Rex >0
and A on the first sheet. We have found only a finite
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number of such poles. We note, however, that an in-
finite number of poles with Rex >0 do exist in the second
sheet, where Reoc <0 and Reu <0. Indeed, in this case
equation (3.12) reads

1-0-pd5==2n, n=0,1, 2++s, 4.9)

which evidently has an infinite number of solutions with
Rexr>0.

5. SUMMARY

We have derived an expression in closed form for
the Regge poles at zero energy for the potential defined
in (1.1) and studied in detail their properties and dis-
tribution in the A plane, which is cut from - V}/2 to
Vi/2. Our results agree with those predicted in a pre-
vious paper.! Briefly, we have found that:

(1) There is a finite number of zero energy Regge
poles with Rex = 0 in the first sheet of x. There are
no poles on the cut. If V,, and V, are both positive or
have opposite signs, the poles are real and to the right
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of V1/2 or V1/2) whichever is greater. If V, and V, are
both negative the poles may be either real and located
in Rex > 0 or pure imaginary and within the cut. The
total number of poles is given by the nearest integer
less than £(6 — 1), where & is defined in (3.5).

(2) There is an infinite number of zero energy Regge
poles with Rex > 0 in the second sheet of X.

IR, 0. Mastalir, J. Math. Phys. 16, 743 (1974), preceding
paper. Hereafter referred to as I.

2C. Eckart, Phys. Rev. 35, 1303 (1930).

H. Cheng, Nuovo Cimento 44, 487 (1966).

‘B.P. Desaiand R.G, Newton, Phys. Rev. 130, 2109 (1963).
SR. 0. Mastalir, J. Math. Phys. 16, 752 (1974), following
paper, III in this series.

SHigher Transcendental Functions, edited by A. Erddyi
(McGraw-Hill, New York, 1953), Vol. 1, Chap. 2.
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We give the exact solution of the radial Schrédinger equation and derive the S matrix for arbitrary

energy and angular momentum for a particular 1/r2
r = 0and r’v(r) =

potential with the behavior r2V(r) =
~V, at r = . We obtain an expression for the Regge poles and study

—V, at

their properties and distribution at low energy. The present results are in agreement with those

obtained in a previous paper in this series.

1. INTRODUCTION

In previous papers® (referred to as Papers I and II)
we studied in detail the general theory of Regge poles
for 1/7% potentials with the behavior #* V() = - V, at
=0 and ® V(y)=-V, at r == and we discussed the
exact solution and the Regge pole structure at zero
energy for a particular 1/#? potential with the above
characteristics. In the present paper we give the exact
solution of the radial Schrédinger equation for arbitrary
energy and angular momentum for the potential

1 (702 Vot r Vi’ + V27’4)
2

V(T)T——‘T‘g‘ (1,2+70)2

where 7, is positive and V,, V,, V, are arbitrary
constants,

(1.1)

We give the solution of the Schrédinger equation in
terms of a set of new functions which are generaliza-
tions of the spheroidal wave functions.? We give the
theory of these functions elsewhere® and only state
results here.

In Sec. 2 we obtain the exact S matrix and discuss its
analytic properties. In Sec. 3 we study the properties
and distribution of the Regge poles at low energy. In
each case the results obtained agree with the general
results predicted in I.

Lastly, in Appendix B we consider the problem of
deriving the S matrix for a potential which is a super-
position of (1.1) and an arbitrary Yukawa potential of
finite mass m,,.

2. DERIVATION OF THE S MATRIX

We wish to solve the radial Schrédinger equation

2

where k*=E is the energy and » =1+ } with [ the angular
momentum and V(r) is given by (1.1).

5 —V(r)]y=0, @.1)

Setting

==V )2, g=02~ VM2, p=(1+V, =V = V)7,

2.2)
we find that (2.1) may be rewritten in the form

2y, 2 2 _ 1
122_*_(’@2_ (1 % py_z")yzo,

(1 —Pz—p2+q2) N
ar* (r*+ 7P

2 +7r,)
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which is identical to the equation of Generalized
Spheroidal functions (of the second type).

A solution of (2, 3) satisfying the boundary condition

yr)=yt/2P 4y -0, (2.4)
is given by the function®

Ps{O(r)=v/22(2 + yp ) 1000 /2

X 21Ds, *Ps (i), (2.5)
wherem—

s

B e

><2F1(A+1—C,B+1-C;2—C;-(rz/ro)), (2.6)
and
A=m+v+1=3(p-p), B==m=v~3(p-p), C=1-p.

2.7

Here ,F;(a, b; c; 2) is the hypergeometric function and
(2),, is the Pochhammer symbol:

I'(z +m)

(2), =——r— ONE (2.8)

(2)=1.

The coefficients Ds? in (2.5) satisfy the three term

recurrence relation®

nKs?Ds¥ _ + Ls"Ds. +nMs? Ds” , =0, m=0,+1,+2---,
(2.9)
where
e o et e R
PP A 2
m (m+u)(m+u+1)
+m+v+1+5(p+p))mtv-3(p+p), (2.100)
Me? = — m+v+1=-5(p+pl¥m+v+1+3(p _@
™ Cm+2v+2)2m+2v+3)
(2.10¢)
and we have introduced the parameters
n=(r&?)/4, (2.11)
and
=[3g-D=-3p+p)ll3g-D+3(p+p)+1].  (2.12)
Copyright © 1975 American Institute of Physics 752



In the above expressions the parameter v is the
Floquet parameter associated with Eq. (2.3). It is a
complicated transcendental function of X, &, »,, V,, Vi,
and V,. It is an even analytic function of £ and a
meromorphic function of A in the A plane cut from
= Vo172 to V,'/?, In general, » may be obtained as the
result of a consistency condition in the process of
solving the recurrence relation (2.9). In practice one
can derive an expansion for As, in powers of 1 which
serves as an implicit definition of v, together with the
initial condition at zero energy (see Appendix 1)*

ve=0)=3(g-1).
It can be shown that xs, and Ds?, satisfy the following
identities3:

As, (B)=2s_,. (k) =xs (& exp(-in)),

(2.13)

(2.14)

Ds? (&)=Ds_, )= Ds’ kexp(-im)), m=0, 21,+--,

(2.15)

Proofs of the convergence of (2.5) and (2.9) as well
as {2.16) below and a more detailed description of the
computational aspects relevant to the present problem
can be found in Ref. 3. We note that the above treat-
ment is not adequate when v is integral or half-integral.
These are exceptional cases which require a slightly
modified treatment {briefly, the functions Ps*(») and
¥s¥(r) include logarithmic terms in these cases]. A
short list of relevant results is given in Appendix A,

A pair of solutions of (2. 3) with the behavior
exp(xiky) at infinity is given by?

Us, D (r)=7t/2203 + ) 1000 /2

x Z;Dsfnll)s,f{:,,(f), ji=3, 4, (2.16)
ma=c
where
¥s ) = — im(zk) ™ expl— in(m + 2v + 1)]
Xy 1PPHD ey, @.17)
b5, ) =i (3%) > explin (m + 2v + 1)]
Xy PPHD L (o). 2.18)

The coefficients Ds! and the Floquet parameter v in
(2.16) are identical to the ones appearing in (2.5).
Here H{:2) (by) are the Hankel functions of the first
and second kind.

At =  the following results hold®:

T3 )~ 1172 expl 7 (v + 3/4)] ()22 exp(F i)

x(mngs;) [1+O<|k1 l)], |ley| =<, .19)
where

- ?n/2 <arg(r)<3m/2 for ¥st®(r),

-3n/2<arg(-kr)<31/2 for ¥s!®(r). (2.20)

In order to find the S matrix we must obtain connec-
tion formulas between the function Ps!® () and the func-
tions ¥ s{¥ (r) and ¥s® (). These are derived in Ref.

3.
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As 7 — », We may write
Ps!®(r)y=f, explikr) - f.exp(=ikv),

from which the S matrix is obtained as S= (f,/7.)
exp(inl). The final result is®

Y, (k) +E**explin@r+1)] )
Y, (&) + &% 2 exp[-in(2v +1)] )°

(2.21)

Y — ooy

S:expin(A—Zu)( (2.22)

where
Y, ()= (&/r, (I,I;(_z—;:-_I%YRs,,(k)

XG_F(—V+ 3(p =pT(=v+ 3(p +p)) )
G+1+z:(p-pT(+1+3(p+p)))°

(2.23)

and

(D p . (2)
Rs,’Rs,

§9) I
Rs’)\Rs

r-l

Rs, (k)= (2.24)

with

(1) ED ( l)m(2V+1)m , (2.25)

(2)_ Z%D u( l)m (2V+ 1)

X((V+1—z(p+p))m(1’+1+z(1> p))m>
C+1-30 -, b+1+20+p)),.
Since v is an even analytic function of k£, we find,

using (2.14), (2.15), that
Y &)=Y {kexpl-in))=[Y_ &)

We see that ¥ (k) is likewise an even analytic function
of k with no singularity at # =0 and a meromorphic
function of A in the A plane cut from - V,!/2 to V, /2,
Evidently, Y,(k) is regular at A=+ V,/2,

From (2.22) and (2.27) we find

(2.26)

(2.27)

S, ()=S_, (&), (2.28)
S, ¢ exp(— im))= exp(2inl)[S, (#) - 2 cos(2mv) exp(im\)]™.
(2.29)

Thus, the S matrix is regular at A =1 V,}/2, The
circuital relation for S about the branch point at £ =0
follows immediately from (2. 29).

3. REGGE POLES AT LOW ENERGY

Due to the complicated nature of the results (2.22)—
(2.26), we restrict our discussion of the Regge poles
of (1.1) to the low energy limit. In what follows we
restrict x to the right-hand plane of the first sheet.

The Regge poles 1, (E) are given by the solutions of
Y, (E)+ E** exp[-in(2v +1)]=0, 3.1)

Using (2.13) and (A6), we find that in the low energy
limit (3.1) reduces to

2 _ 2
Y (0) [1 + 37,E (q(—;pt—l-%—)> + O(rozEz)] + Evexp(~ ing),

+ O(E®InE), E—0, (3.2)

where Y _(0) is just {2.23) with E=0. We see that the
Regge poles at zero energy 2 ,(0) are given by
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0,7(0) = V.24 (1,2(0) - Vo) /2=
where

NO0)=p-2n-1,

N(0), Rex,(0)>0, (3.3)

n=0,1, 2-:-, (3.4)

and p is given by (2.2). The solutions of (3.3) were
studied in detail in II.

When ¢ <1 we find from (3. 2) that the Regge poles
X, (E) in the right-hand plane are given by, to the leading
order in E

(2(E) = V)12 4+ (W, XE) =V, }/2=N(E), Rex, (E)>0,
(3.5)
where
N(E)=N(0) ~ M sin[nq(0)](r,E/4 7 @exp[~ing(0)],  (3.6)
with
Jg-n) T(-q O\ L1 +n+q(0))
M=(2/m) ( r(q(o)T) TA+nrp@) &7
and
q0)= 0, 2(0) ~ V,}/2=[N?(0)+ V, - V,]/2N(0), (3.8)
p©0)=0,2(0) = V2= [N?(0) + V, - V,]/2N(0). (3.9)
The solution of (3.5) is given by

A"(E)_zN(E) [NY(E)+ (V1 /2 + VM 2R /2

X[ NYE)+ (V2 = v, /2Pt /2, (3.10)

which is the desired expression for the Regge poles of
(1.1) valid for E~0 and ¢(0)< 1. An expression equiva-
lent to (3.10) and more useful for some purposes is

A, (E) =x (0) - (N ((g))xf&))) M sin[rq(0)](r E/4)®

X exp| ~ ing (0)]. (3.11)

Since we are taking Rex >0, it follows that Req, Rep,

and N(0) are also positive. Consequently, we see from
(3.7) that M >0, Since ¢(0)<1, (3,11) implies that

(1) If E <0, then A, (E) is real and A (E) <2,(0).

(2) If E>0, then 3, (E) has a positive imaginary part.
When 0 < ¢(0) < %, Rex (E) < (0), while if 5 <g(0)
<1, Rex (E)>1,(0). These results agree with
those predicted in I.

A similar calculation may be performed in the case
q(0)>1. For example if £E<0, we find

X, (E) =2, (0) ~ o (0 (70|E|/4)< (0)@;2(()_){2§0)))'

Again, 2, (E) < (0), as expected.

We note that Eq. (3.10) implies that »_(E) may have
branch points at values of E such that N(E)=1V,|!/?
+|V,11/2, at which A (E)=0. The values of E at which
these branch points are located are given approximately,

by,

(3.12)

[N(O) = ([ Vo] 122 | V| 1/2)]

sin7g 0] (G139

(ro| E|/4)* =
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with arg E=exp(ir). That is, to this approximation E is
real and negative. If the right-hand side of (3.13) is
sufficiently small these values of E will correspond to
the approximate locations of actual branch points of »
(E).

When v — — 3 we find that
lim Rs, (k)=1, (3.14a)
lim Y, (k)==1, v—=~3, (3. 14pb)

for all . In particular, when E~0, we see that (3.10) is
not valid when ¢(0)~0. This case was examined in de-
tail in I. One finds directly from (3.1) that 2 (E) is
given by

i
V=3,

2nm(n—y) _ 2nirlY,}

2 - 1/2 00

Re() *(E) - V,) T ET T TR (3.15a)

Im(» *(E) - Vz)”zzz”—”, (3.15b)

|in|E{]|
where n=2x1, £2, .-+, E=|E| exp(iy) with |E| ~0 and
in the present example
BY k _

Yoo = ( )‘ =1In(r,/4) +40()+ pG(1 + 5+ p))

+3G(1+p-p), (3.16)

where ¥(2) is the logarithmic derivative of the gamma
function and g= (V,~- V,)*/? while p is given by (2. 2).

Evidently, an infinite number of Regge poles approach
the points A =+ V1/2 as £ —0 along any direction in the
complex energy plane.

Lastly, we consider briefly the case when V,> V>0
and V2 /2 <) < V,'/2, Here q becomes pure imaginary
and (3.2) does not approach a definite limit as E ~ 0,
Following the discussion given in Sec. 6 of I, we note
that in this case Y, (0)=exp[iy(Iq!,0)] and therefore the
Regge poles in V, 1/2<x < V,!/2 are given by

2nmY o
|t 2] |*

2nw
|In|E] |

(V, — 2 2E)? = n=x1, +2+--

(3.17)

.
b

with Y, defined in (3.16). Thus, an infinite number of
poles approach the point V,'/2 along the real axis as
E-0°,

4. CONCLUSION

We have obtained the exact solution of the radial
Schridinger equation and the exact S matrix for arbi-
trary x and k for the potential V(r) defined in (1.1}, We
find that the S matrix is analytic in the whole & plane
with a kinematic branch point at =0 which is charac-
terized by the Floquet parameter v(x,k) associated with
the Schrédinger equation. Further, S is a meromorphic
function of A in the ) plane cut from -V, /2 to V,'/2,

We obtained an expression for the Regge poles ), (E)
in the right-hand plane and studied their behavior at
low energy. We find that our results are in agreement
with those predicted in I.

Lastly, we verified that x,(E) has branch points in the
E plane and gave an approximate expression for their
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possible location at low energy. The branch points are
of the square root type and do not appear in the S
matrix,

APPENDIX A

The recurrence relation (2.9) may be solved by using
the method of continued fractions.? If 1 is sufficiently
small, the coefficients Ds’, () may be obtained in terms
of a series of powers of 7. We find the results®

v —_ Ei]i 3
pegin=~ (55 1+ 0", a1)
Dety(n)=-(H22) n-+ 0t (42)
S,
and, in general,
Dz, () =, (»3)

The initial condition (2.13) on v is found as follows.
Setting =0 in (2.9), we conclude that we must have
Ds%(0)=1 and Ds,,(0)=0 for m #0 and

as, M= =Lp+pMe+1+3(p+p)) (A4)
Using this result and (2,12), we see that (2. 13) follows,
In order to obtain the next term in the expansion of v
in powers of 71 we substitute (A1), (A.2) in (2.9) (with
m =0), thereby obtaining (A4) with the following addi-
tional terms on its right-hand side:

v v v
(KL Ms? +——£—Mzsvsl{) 7+ o).
1

Ls?, (45

This formula yields v to order 7°. The above pro-
cedure may be repeated to any desired order in 7.

Using the above results, we readily find the following
expansion for the function Rs (%) defined in (2.24)—
(2.26):

Re,m=1+ @0 (LE=8) + oo,

from which it is obvious that at E=0 we have Rs,(0)
=1,

(A6)

APPENDIX B

Here we outline a derivation of the S matrix for a
potential V() which is a superposition of (1.1) and an
arbitrary Yukawa potential U(r) of finite mass m,. We
use the method of variation of parameters with the
unperturbed linearly independent solutions Ps, ' (r),
defined in (2.5) and Ps,“(r), which is given by®

Ps,,(4’(r)=7’1’2*"(rz AL /2

+o
memDsmvPsu,mM)(y), (Bl)

755 J. Math. Phys., Vol. 16, No. 4, April 1975

where

epele(pm +1-~1(p+p)
Ps((r)= (1) ““”21”—”—;;-({;—;%}:

X (_72/70)-’2F1(A, B; C; _72/1.0)’

with A, B, C given by (2.7). Here ,F,(4, B; C; z) is
the hypergeometric function and the coefficients Ds *
and the Floquet parameter v are the same as in (2. 5)
and (2,26).

(B2)

Setting V()= (1.1)+ U(r), we solve the Schrédinger
Eq. .{2.1) by the method of variation of parameters and
find that the S matrix is given by an expression identical
to (2.22) with the function Y, (¢) replaced by Y,(k), where

7, ()= Y"(k)(rﬂ(k) ,
with ¥ (2) as defined in (2.23) and T,(¢) given by

F(1+e)
r(1-p)

I‘(y+1+%(p—p))1"(u+l+%(p+p))
T+1-1(p - +1=3(p +p))

X fo " Ps, UL Wl Y, (B4

where W(3, 4) is the Wronskian of Ps,® (r) and Ps,‘ (r)
which may be easily computed at » =0, The functions
¥(’) in (B4) are given by appropriate iteration series,
which are certainly convergent for small enough k. The
cumbersome nature of the functions we are dealing with
precludes a more extensive discussion of the above
expressions. However, we are principally interested in
a few properties of the $ matrix and ¥ ,(2) which have
been used in I, II. Thus, we readily verify from (B4)
that the results (2.27), (2.28), and (2.29) hold for Y, (%)
and the § matrix, Similarly, we also verify that the
result (3.14b) holds for ¥, ().

(B3)

T,(k)= w(,4)- fn”Ps,,““ YOO W' Ydr')

!R. 0. Mastalir, J. Math. Phys. 16, 743, 749 (1974) pre-
ceding papers, hereafter referred to as I and II, respectively.
*Higher Transcendental Functions, edited by A. Erdélyi
(McGraw-Hill, New York, 1955}, Vol. 3, Chaps. 15, 186,
SR.O. Mastalir, Theory of Confluent Heun Functions (to be
published).
4Our notation for the Floquet parameter here follows the con-
ventional one in the theory of spheroidal functions, wherein
linearly independent Floquet solutions are labelled y, and
Yop.t- The parameter v in Papers I, II corresponds to 2v+1
here, as well as in Ref. 3, as may be seen by inspection of
Eq. (2.13).
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Double coset analysis for symmetry adapting Nth rank tensors

of U(n) to its unitary subgroups

John J. Sullivan

Physics Department, University of New Orleans, New Orleans, Louisiana 70122

(Received 1 July 1974)

Representations of the unitary group U(n) symmetry adapted to the subgroup sequences
are considered using double coset decomposition.The matrix elements of the double coset fn)
representatives are related to identical coefficients developed in an analogous manner for the
symmetric group [J. J. Sullivan, J. Math. Phys. 14, 387 (1973)].

I. INTRODUCTION

The relationship between the unitary and symmetric
groups implicit in the Shur—Weyl! construction of tensor
representations has provided a powerful tool for analyz-
ing the Racah algebra of the unitary group. Aside from
the direct relevance these groups have for elementary
particle, nuclear, and atomic physics, a complete un-
derstanding of their algebras facilitates study of their
(continuous or finite) subgroups.

In recent work? (hereafter referred to as I) we have
used double coset techniques to establish the orthogonal-
ity and completeness relations of the symmetric group
as conditions also holding for the recoupling coefficients
of the unitary group. The double coset representatives
(hereafter DCR) of the decomposition of S @ S, Sy/
Sy, ® SN2 are in one to one correspondance with double
coset symbols

N N, N N1 N2
iNiNj = 1N1N?'K1N2+K

2N2N3+K2N(2)_K

which indicate the action of the DCR on the set N, is to
fix ;N; elements within the set ,N (which amounts to the
transposition of K ordered elements if ,Nj={ NN N,|).
Because of Shur’s lemma the double coset matrix ele-
ments (DCME) possess certain diagonal features and can
be indicated by a symbol

A )\j
Nl

where ;) ; is a partition of ,N, identifying an irreducible
representation (irrep) of S,N,- The DCME is identified
as a recoupling coefficient in U(x) by means of the cor-
respondence between outer product coupling in Sy and
Kronecker product coupling (Clebsch—Gordan reduction)
in U(n). The orthogonality, character, and competeness
conditions in S, provide nontrivial relations satisfied by
the recoupling coefficients of U(n).

The use of projection operators belonging to Sy to
couple general Nth rank tensor products does not expli-
citly depend on the dimensionality of the tensors being
coupled. Use of projection techniques in I led to further
results that implied general structural relations between
the coupling coefficients of unitary groups of different
dimensions and tensors of different rank.

In this paper we exploit the duality between the rank of
a tensor and the dimension of the underlying space to
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13 U(n/) \

o um? U

show the same coefficients introduced in I are the DCME
of DCR with double coset symbols
n n, n,
n,
] g =K ny+ K

0 0
oM+ K g, =K

for the decomposition U(,n)® U(,n)\ U(n)/U(n)® U(n,).
The subgroup dimensions specify the generalized branch-
ing scheme?® for symmetry adapting the U(n) basis
states. The double coset development of I considers fi-
nite groups. This is extended to the continuous unitary
group in Sec. II. It is also shown that the DCME of the
permutation subset of DCR are just those matrix ele-
ments needed for generating a general matrix element
in U(n) by coupling presumably known matrix elements
of the subgroups. Section III establishes the identifica-
tion of these DCME with the coefficients introduced in I.
Section IV contrasts the results developed here with
those developed in I.

Il. THE DOUBLE COSET REPRESENTATIVE
Ul n) ®U (,n\Un/Uin | )®U(n;)

For conciseness the initial results of this section are
presented in a statement-proof form. Following two pre-
liminary lemmas, it is proved that the DCR is an n;-
parameter (for purposes of argument it is assumed
n,= ,m=,n=n) unitary matrix that can be put in a form
appropriate to SO(2)™, It is then shown one needs to
know only the matrix elements of a permutational subset
of DCR.

Lemma II: Any square matrix ¥ formed as the ordered
AA* that is positive because A can be considered as a
vector mapping of a space equipped with a scalar pro-
duct such that

(v,¥)=(Ax,Ax) > 0 for all x.

Lemwma II: Any square matrix y formed as the ordered
product of factor matrices A; (not necessarily square)
is equivalent by a similarity transformation to all ma-
trices formed by cyclic permulation of the order of the
factor matrices. i.e., Y=PA,~Y =PA ,, 7a cyclic
permutation, If ¥ and Y, have different dimensions, the
equivalence hold for the lower dimension matrix extend-
ed to the higher dimension by the requisite array of
zeroes. The equivalence holds because tr(¥") =tr(¥7)
for n=any integral power, as the trace is invariant un-
der cyclic permutation of the order of factors. Thus the
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characteristic equations of the set of matrices Y, are
identical and their equivalence follows.*

Theorem: Any n dimensional unitary matrix

U= 1A1 1Az
Ay A,
can be brought to the following form:
d 0T
1U1A1 Ul 1U1A2 Uz (1)
) ={ 0 EQ |
ZUZ‘AI Ul 2U2A2 Uz
—7* 0 d¥

where ,UC U(yn), ,UE U, U,€ Uln,), U,€ Uln,), d and
T are n, dimensional square matrices such that |4d;|?

+|7,;12=1, and E is the unit matrix of dimension »n - 2n,.

The diagonal elements of d may be considered real and
positive while the diagonal elements of T may be taken
as real or imaginary [i.e. , the right-hand side of Eq.

(1) has n, independent parameters).

Proof: The unitarity condition requires

ALAT+H AL A =E (2a)
AL AL+ A A =E,, (2b)
AlLd +ALA =E,, (2¢)
And, tAA=E,, (2d)
Ay A A A= Olnzn’ (2e)
ALA, T A1 4, =0y, (2f)

By Lemma I there exist unitary transformations ,U, ,U,
U;, and U} that diagonalize the left-hand side of (2a),
(2b), (2c), and (2d) respectively. By Lemma II the di-
agonal form of these equations must be

(P40, +(T2+E ., )=E_, (2a")
(72 & O neny) + (@7 VE,.)=E, (2b)
d2+72:E"1’ (zcl)
(1-2 + Oz"'"l + El"'"l) + (dz + Ezn'nl + On2~2n) = En2’ (Zd')

where we note n—-n,=n, —,n.
To satisfy these equations and the trasformed equa-
tions of (2e) and (2f), one must take
By Ny =y 1y
l‘U'!.Al Ul 1U1A2 U2 nl{ d O O 7
CPNAIN el
m=-nfl 0 O E 0],
m{ \-7* 0 0 d
where the dimensions of the blocks are as indicated (all

diagonal blocks are square matrices) and d may be con-
sidered positive and real. QED

The above form for the DCR can be displayed in the
usual form of exponentiation of the infinitesimal Lie
algebra. If e;,, 1<j, k<n, are the n® matrix basis ele-
ments (one in the jkth position, zeroes elsewhere) we
take the basis of the infinitesimal Lie algebra to be the
anti-Hermitian matrices

H,=ie,, R,=e,-e,, and [,=ile,+e,), j<k.
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The basis matrices squared give x%,==E ;) + O,-,
where E(,, is the two-dimensional unit matrix with one
in the jth and kth positions. The one-parameter sub-
groups are thus

exp(BX ;) = (cosB E ;. +sing X,) +E,_,.

The DCR then can be taken as a product of n, mutually
commuting one parameter factors

n o
® exp(B jIj,n'nl-o-j) = exp(ZJBjIj,n'n1+j> . (3)
j 1

J=1 j=

The choice of the R or I matrices and the particular or-
dering j, n~n, +j is unimportant as long as each ele-
ment of the set n; is coupled to a distinct element of the
set ,n. For n,> 2 each factor of the DCR is equivalent
by a permutation transformation (a transposition) to a
similar element contained in U(n,) whose matrix is pre-
sumed known. For n,>2 one can take n, mutually com-
muting transpositions as, e.g.,

U, n=2n;+7) exp(Bl; nom ) Uy 1= 21y + )+ 5)

= eXp(ﬁ jIn-2n1+j,n'n1+i)'

Thus the fundamental coupling matrices that must be de-
termined for a given irrep of U(xn) are those correspond-
ing to the symmetric group DCR in the decomposition
5.8 S\ S,/S, ®S, . Because elements belonging to the
group U(n —n,)® U(;n -n)® U(1)™ commute with all the
DCR, the number of independent group parameters is

MR AR i —(n—-n)? - (n-n)? - =P
as it should be.

The development indicated here is essentailly a gen-
eralized Euler angle parametrization of the group. Just
as the D.C. decomposition of S; reduces to Yaman-
ouchi’s result® for ;N=1=0N,, the procedure given here
reduces to Wigner’ s development of SU(2)® and Hol~
land’ s” development of SU(3) where in both cases 7, =1
=,n. For convenience the SU(2) development is given in
the Appendix, and the reader is referred to Holland’ s
paper for the U(1)® SU(2)\ SU(3)/U(1)® SU(2) decompo-
sition. To aid in identifying the permutation elements,
we note for U(n)> S, under the imbedding {1}+ = (n)
+(n-1,1) a transpose can be expressed as (jk)
=expl-7/2(H, + H,)] exp(n/2)I .

I11. TENSOR COUPLING IN THE UNITARY GROUP

In this section we show the matrix elements of the
DCR for §,® S, \S,/S, ® S, inan Nth rank tensor irrep
of U(n) are identical to the matrix elements of the cor-
responding DCR for S y® S 4\ Sy/Sy ® Sy,. The argu-
ment utilizes projection operators in S, and the general-
ized branching relations for U(n)/U(n,)® U(n,) and is a
particular application of Eqs. (4.8), (4.9), (4.10) of I
for the case n;N n,=5,,n;,. As those relations are rather
involved, we will give a complete development here. An
Nth rank tensor of U(n) can be projected from the pro-
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duct of an N;th rank tensor of U(n,) and an N,th rank ten-
sor of U(n,) where

N1+N2=N,

n +n,=n by

m
N T 7, +n) =(7|m;'rlm”72ma)
7, T, n
M, M,
my m,
xX{N, 7, n1<272n2.
M, M,

The upper labels specify the transformation properties
under action by the group Sy and the lower labels specify
the transformation properties under action by the group
U(n)> U(n,)® U(n,). By using the D.C. development of
the projection operator the normalization constant is
easily evaluated as

=(N!N!|Tl 1/2
Nt 7,1

where | 7| means the dimensions of the irrep of the sym-
metric group. Let U(k) €S, C U(n) be that particular op-
eration that takes % ordered elements from the sets n,
and 7, and fixes them in the sets ,z and ,» so that it has
D.C. symbol

n n, n,
0 0
Mt =k Mtk

0 0
2" z"1+k 2"2"3

Assuming n, = ,n > ,n>n,, we would have ,nd=mn,, ,n)=0,

0 0. <
ny=,n="m, My=,n, and 0<sk<n.

Consider the matrix element

T U(k)

’ ’ ’
T T T T 1 1Ts 272

Tl. 1'2 212 2°2 11 2

1
lMl 1M2 2M1 2M2 lMl/ 2Ml,. lMé ZMé

m * m
N T Mt N T ntn,
= ].T ZT U(k) 1-1 1'2 ’ (4)
171 1Ts 5Ty LT, 171 271 aTs 2Ts

lMl 1M2 2M1 2M2 lMll. 2Ml., !.Mé 2M£
where the additional specification of the basis with re-
spect to U(n) corresponds to the action of U(%) on the
tensor and therefore is indexed as in the D.C. symbol.
By considering both tensors as projected from product
tensors the right-hand side becomes
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+
1My M, oMy M,
NININ.IN.NY2
NILNIN N, N Y
LU 1 22
AT AN @ity
NyT 2N 2T o1
1T 1T 2T 2T
My M, My M
171y My 1, 1,
Mo | [ e
xqUR)f N, 7, m, ){ N, 7, n,
? ? ’ !’
171 2Ty 1Tz 272
? 14 ’ 2]
My My WM M,
TT, T,
A
NN PRSI .
[T RITAPRPRLIRPIASE
2T 2M 22

Each subtensor is further expanded in a Clebsch—Gordan
series appropriate to the action of ¢ on the tensors and
their respective dimensions. E.g.,

1"y My 1 2"y
M M LAY PYLA O 2\
N T Y I S T T 2P
1T 2Ty LY 191 29
My M
™ 2y 7

’ 7 ! ’ ’ !
XLaHY oMY 1B B3 (1T 2Ty

PP Q1M My (6)

ﬁl'

The final tensor contraction can be carried out in the
form
m + 1m2 +

177%1

Ny~ Ry Ry Ny g =Ry my Ry

ity 1M Y1 Ve
BB 19 19
2"y . 2™z v
X [Ny Xy o1y + Ry, o1, =k 2Ny Ay oty + Ry o1, — R
zHy obp Y1 2V2
2P Py 29 29
1"
XqU(R) [Ny 2y 1y = Ry gy + Ry
Y
1P1’ 2P1’
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2"y 1" \
X [N) 2y 1n1—k,2n1+k1 RAPRY 1"2+kz’2"2_k
LM 1hy bz
19 291 1P 2P
2Me
X zNz 22 1ty T Ry ot = k\
Vs 2Vs ’ @
RERRC) /

where the #, and %, subscripts indicate the initial sets
to which they belong. The action of U(%) is to inter-
change k, ~—k, on the left while g interchanges ,N; ~—= 1N,
also on the left. The dimensional overlap requires

) — r__ — [ r__ — — 7
1“2—0—2“1—1”1—2“2*1'/1—2“2-21’1—1”2’

J— —_ ! LA — - — !
M= A S, VL= =k (V==

Vo= =yVs, Py=0P, @ =P, 6,=,F;, and
2@ =59
The Clebsch—Gordan coefficients in turn require

— - & — — ’
Xy=;T;=,;7; and [ P;=,Q;= M= M

L) i

Upon contraction of tensors the left-hand side becomes

i, o N

DA AR A N R PR AR A

T T, T

1 2

L L mlr b LT,
NI NI NI NI

z 173747
1771017 2 21t 27 2

X 11°2

17!

1T1 271 Tl 1T2 272 [ 72
X lTl 27-1 1T2 2°2
I.Ml 00 2M1 lMl 2M1 ny 1M2‘ 00 2M2 1M2 2M2 no

(8)

The Clebsch—Gordan coefficients can be evaluated,
again by projection techniques, as

1 174
T2 | SN T
M, 00 .M, My M, " M, 0
.
21y
N T onm (Tl|171m12712m1§1711m12712m1)
X {21217
n
0 M,
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1y 2My NN l1/2
, o N LN
X\ 1" 1T ) (oM oT ) == AT |‘2'T—Ll| 9)
M, 0 0 M,
So the result follows:
T U(k)
lT ZT Tl TZ
lTl 1T2 2Tl 27.2 lTl’. 271, lTé ZTé
lMl 1M2 2M1 2M2 lMi 2M1’ ].Mé 2M2’
T T T,
=,iT3iTs My M 1T 1T T2 | - (10)
ZT 271 272

1V. DISCUSSION

Because of the various groups involved we recapitu-
late the results of this paper and of I as to the identifi-
cations established for the recoupling coefficients. I.e.,

UL P Y 1My o7y (M, BT,
1)‘1 2A1 1A2 2)‘2
1)\ 2>\ xl A2

IAI 1*2 2){1 2x2

N by n

1T 172 2Th 2T Ty 271 172 2T

1M1 1M2 2M1 2M2
AN A

TT T,

=hA A Al 1T aT1aTe] (11)

ZX ZKl 2"2 ZT 2T1 272

where the recoupling coefficients are compatible with
the D, C. symbols
N N, N, n n n,

N N —-L Nj+ LI and
2N2N‘1)+L 21\22_1‘

M-k nd+ ke
M+ R -k

respectively. Note the D.C. symbol of S, does not re-
strict the lower pattern nor does the D.C. symbol of
U(n) restrict the upper pattern. In I it is noted the re-
coupling coefficient can be regarded as the matrix ele-
ment of q; in the mixed basis or as the unitary (re-
coupling) transformation between g acting on the bases
expressed according to the right sequence and the bases
expressed according to the left sequence of the upper
patterns. Completely analogous considerations hold for
U(k) and the lower patterns.

The coefficients
A
AR

are tensor recoupling coefficients of Sy® U(n) with re~
spect to either the Sy group properties (upper pattern)
or the U(n) group properties (lower pattern). Alternately
they are matrix elements in an irrep of S, expressed in
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a particular (mixed) bases or they are matrix elements
in an irrep of U(n) expressed in particular (mixed)
bases, whereas in I the orthogonality and completeness
relations of group representation theory are directly ap-
plied, one must be cautious about their interpretation
here. The coefficients are matrix elements of only those
permutation elements 7 € S,C U(n), while the represen-
tation is irreducible with respect to U(n). Application of
the orthogonality and completeness conditions in U(n)
requires the appropriate invariant density and a proce-
dure as in Holland’ s paper must be followed. In the spe-
cial case of N=n with restriction to the weight space
W=(1") an irrep of U(x) is an irrep of S,® and the ortho-
gonality and completeness conditions give results iden-
tical to those of 1. By using both the structure of the
upper and lower tensor labels we hope to present in a
future communication an efficient procedure for actually
constructing the DCME by coupling totally symmetric
tensors in the individual weights.

APPENDIX: DOUBLE COSET DEVELOPMENT OF
UINSU(2)/U(1)

SU(2) is obtained by exponentiation of the three-pa-
rameter infinitesimal Lie algebra with defining basis
matrices

i 0 01 0
K=o —ifr %710 %F\io

and structure constants
[Xi, Xj] = zeiijk“

The defining representation is given by
( Xp X, X, +ix,

. . with x2 +x2 + 22 +x2=1,
—x2+1x3xo—le> o FA X+ Xy=1

The group parameter space is in one-to-one correspon-
dence with the points of the unit sphere in four dimen-
sions. The usual coordinates are

%, =cosA =cost, =cos¢d, cosd,,

x, =(a@,/A) sind =sinb, cosb,=cos¢, sing,,

%, =(a,/A) sinA = sinb, sinb, cosb, =sing, cos¢,,
x,=(a,/A)sind =sinb, sinb, sinf, =sing, sing,,
A?=0?toaltal,

The first set corresponds to exp(@,¥, + & x, +a.x,), the

second set to spherical coordinates in 4-space, and the
last to the D.C. decomposition

exp(@,x,) exp(8x,) exp(ay¥,)
with &; +a/=¢, and @, -a/=¢,

which is seen to be identical with the Euler angle de-

scription. The invariant group density is given respec-

tively as

dx dx,dx, sin’A
X, A

=sin?6, sin®0,d0,db,d6, = cos¢, sind, dp,do,dd,.

da,da da,

The matrices of SU(2) are easily displayed using the
totally symmetric projection operator of Sy as

1 +
N 2
W/2 + M’ N2 ~M'

[j:N/z U(ozj)] i
M M|~
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1
N N 2

N/2+M N/2 - M.

=2 N/2+M", + 1)N/2-M', - 1)*

e

xU(e))

X q, Ul J(N/2+M, +1)(N/2-M, - 1)

N ~1/2
X N NI

N/2 +MJ\N/2 + M

b

where q; has D.C. symbol
N  N/24M N/2-M
N/2+M' N/2+M—-LM -M+L
N/2 =M L N/2-M'-L
assuming M’'> M,

Expansion of the tensors by the trivial Clebsch—
Gordan series of U(1) in accordance with the action of
q and contraction of the resulting tensors gives

i=N/2 Ula))
M’ M

_ 5> LV/2 4+ My 1 (N/2 — M) 1 (N/2 + MY L(N/2 - M) 12
ST N2+ ML) (M’ —M+L)IL{N/2 - M - L)!

X (% + i, )V /2L (x4 g JHITHAE
X (=%, + i ) (xy =i, YV /2H

which is a standard form for the matrix element (viz.
Eq. 9-76, p.355, Hamermesh®),

Orthogonality and completeness give the relations

v/2 | ; it
2(2j+1)j 7 )" A coso, sing, dp, =647
0 M MMM

and
%Esin(Zj +1)6, sin(2j + 1)8] =8(6, — 6))
i

(using spherical coordinates 6,, 6,, 6.).
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Second order error in variational calculation of matrix elements
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The second order error 8F @, made by employing the Schwartz—Dalgarno-Delves variational principle
for the diagonal matrix element ¢'W ¢ of an arbitrary Hermitian operator W, is examined in the
case that ¢ is the bound ground state eigenfunction of some given Hamiltonian H. This variational
principle characteristically involves not only a trial estimate ¢, of ¢, but also a trial estimate L ,(¢$,)
of a well-defined but generally not exactly known auxiliary function L (¢). It has previously been
shown that, for certain special choices of a trial Hamiltonian H ,, the trial L ,(¢,) can be found
from a minimum principle. The present work finds that for these same spectal H, it is possible to
express 8F® in comparatively simple closed form, depending only on known quantities, so that §F®
should be calculable when the system described by H is not too complicated. However, these resulits
for SF® are obtained on the assumption that L ,($,) is known essentially exactly for any given ¢,;
the practical utility of the formulas derived still must be tested, therefore. If L (¢$,) can be
determined to this necessary accuracy, one expects that combining the computed 8F® with the usual
variational estimate of ¢'W ¢ will be a significant improvement over the usual variational estimate
alone. Under the same circumstances, when W is a positive definite operator, the expression for
8F® can provide nonrigorous but nonetheless potentially useful second order (variational) upper and

lower bounds on the exact &'W é.

1. INTRODUCTION

We shall be concerned with the diagonal matrix
element

Wi = bWy = ¢y, Woy)
of an arbitrary known linear Hermitian operator W,
where ¢, satisfying

(H" E1) ¢1 = 09

is the normalized bound ground state eigenfunction of a
given Hamiltonian H. To avoid unduly complicating our
discussion, we assume here and henceforth that E| is
nondegenerate; to simplify our notation we shall drop
the subscripts on ¢y and E; (i.e., ¢;=¢, E{=E), and
shall use

A== Wy =—¢'Wo.

1.1)

(1.2)

(1.3)

In general, neither ¢ nor E is exactly known. In this
circumstance, a well-known variational principle!=5—
useable for arbitrary off-diagonal or diagonal matrix
elements of W—may provide the most practical means
of estimating Wj,;. A very straightforward derivation
of this so-called Schwartz—Dalgarno—Delves varia-
tional principle has been given by Gerjuoy, Rau and
Spruch, ¢ and applications to various W have been per-
formed recently by Krieger and Sahni. ’

The variational principle for Wy, is
F=(Wipyar ='W, + L,"[(H- E,) o)+ [H-E,) ¢,]'L,
1.4)

where ¢, (assumedly normalized) and E, are trial esti-

mates of the exact ¢, E, respectively, and where L, is

a trial estimate of an exact “auxiliary” function L satis-
fying the inhomogeneous equation

H-E)L==W¢~21¢ (1.5)
together with the specification [undetermined by (1. 3)]

dTL=0, (1.6)
Equation (1. 5) suggests that L, be determined from
equations of the form
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(Hi= E;) Ly =q () =q; 1.7)

where H, and g, are appropriately chosen functionals
of ¢,; the desired property of (1.7) is that as ¢, — ¢,
the solution L, should —~ L. Generally, the “trial”
Hamiltonian H, cannot® be the original H, but there is
a wide class of H, consistent with the desired property;
the choice of g, is determined once H, is chosen. If H,
— H as ¢;— ¢, then it surely is the case that

qy=— W= 2,0, (1. 8a)
where
Xe=— ¢, "Wy (1. 8b)

however, it is not necessary® that H,—~Has ¢,—~¢. In
fact, Gerjuoy et al.® have found a particular choice of
H; which does not approach H as ¢, —~ ¢, but which per-
mits L, to be estimated from a minimum principle,

i. e., which implies that the functional

M(Ltt):LttT(Ht_Ez)Ltt—Lttfqt_thLtt (1.9)

attains its minimum value M(L,) when (for given ¢,)

the quantity L;, equals the L, satisfying (1. 7). An alter-
native choice for H,, which does approach H as ¢,— ¢,
but which retains the desired minimum property of the
functional (1.9), also has been reported. ?

The importance of the minimum principle (1. 9) is that
it provides a vehicle for accurate computation of a rea-
sonable L, for any given ¢,. In the present paper we ob-
tain the interesting result that in the two known cases®?
for which H, yields the minimum principle (1.9), use
in (1. 4) of the associated exact L, minimizing (1. 9)
leads to a rather simple closed form calculable expres-
sion for the second order error (to be defined precisely
below) made by the Schwartz—Dalgarno—Delves varia-
tional estimate of the matrix element W,;. The present
result is noteworthy because simple calculable expres-
sions for second order errors made by variational esti-
mates are uncommon. Moreover, as will be further
amplified below, such expressions for the second order
variational error can be the basis for nonrigorous but
nonetheless potentially useful second order bounds
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bracketing the exact value of W;;. These nonrigorous
second order bounds should be compared with the rigor-
ous second order bounds (involving, as might be expect-
ed, more complicated expressions than ours) derived
and discussed by Blau, Rau, and Spruch. !’ We stress
that although both types®? of H, yielding the minimum
principle (1. 9) can be constructed in the case that the
desired matrix element is

W= d)nT Wd)m (1. 10)

(with ¢, the bound nth excited state eigenfunction), the
results of this paper apply only to the ground state case
n=1. We have not attempted to extend our results to ex-
cited state n>1 matrix elements (1. 10), in part because
it is obvious from our derivation that in the casen>1 a
closed form expression for the second order error, if
obtainable at all, will not be nearly as simple in form as
when n =1, In the event the actual ground state is degen-
erate under some symmetry operator R, it can be seen
that our results apply provided ¢, L, and L, have the
same symmetry as ¢ under the operation R, a proviso
which imposes some restrictions on W. For instance,

if the ground state has total angular momentum J=1,
and if ¢, in (1. 1) now denotes the M =0 sublevel, then
¢ L, and L, should belong to J,=0; in general, to en-
sure (1.5) and (1.7) permit solutions L and L, having
this desired symmetry, W must commute with the
operator J,.

2. THE SECOND ORDER ERROR
The errors 6¢ and OE are defined by

0d=d;- &, (2.1a)

SE=E,-E, (2.1b)
Correspondingly, we define

dL=L,- L, (2.2a)

OF =(Wip) yar — Wiy (2. 2b)

The quantity 6F is the error made in estimating Wy,
from the variational principle (1. 4). Evidently 6F=0
when ¢,=d and E;=E, i.e., the zeroth order error in
8F vanishes. Similarly, because (1.4) has been con-
structed® to be a variational principle, the first order
error (the collection of terms proportional to 8¢, to
o4, to 6L, etc.) in 6F also vanishes, as is verified
below. Thus the leading terms in 8F are of second
order (terms proportional to 8¢ T8¢, to ¢ 5L, to
6L*6¢>, ete. ). The collection of these second order
terms, excluding terms of third order and higher, is
the second order error §F® made by using (1.4) with
given 8¢, BE and 8L from (2.1) and (2. 2).

In the form (1.4) for (W) ., it is implicit® that
¢t d,=1,
E;= ¢tTH¢t-
Since the exact ¢ is normalized, Eq. (2. 3a) yields
H1od + (5d) T+ 54 T8¢ =0,
Similarly, from Egs. (2.3b) and (2. 4)
SE=0THO6¢ + 00 THp + 6 THOO
=E[¢pT6¢p+ (50" ]+ 60 TH6)

(2. 3a)
(2. 3b)

(2. 4a)
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=6¢p(H~E) b6¢ (2. 4b)

implying that 8F is of second order.

From (1.4) and (2. 2b) we now see that the first and
second order terms in 86F are

SFD + 5F? = Y Woep + 50 "W + 6 T Wb
+ LY (H~E)8¢]+6L"[(H- E) ¢]
+OLY[(H-E)b¢]- (6E)L'¢
+[(H-E)8¢]"L+[(H-E) ¢]toL
+[(H=-E)6¢1' 6L — (6E) ¢ 'L. (2.5)

In (2. 5), terms containing (H~ E) ¢ vanish by (1. 2);
terms proportional to 6E vanish by (1.6). Also, because
E does not lie in the continuum, the solution L to (1. 5)
can be supposed quadratically integrable for reasonably
well behaved W; the same supposition already was im-
plicit in (1. 6)., Therefore, in (2. 5) we also have

L'[(H-E)b¢]=[(H-E)L]"69,
[((H-E)8¢]"L=0¢"[(H~E)L].

As a matter of fact, the relations (2. 6) are fundamental
to the derivation® of the variational principle. Hence-
forth, manipulations such as (2. 6), based on the hermi-
ticity of H in the space of quadratically integrable func-
tions, will be performed without comment. Employing
(1. 5) on the right sides of (2. 6) and recalling (2. 4a), we
find that all first order terms in (2. 5) cancel [as they
must, if (1.4) indeed is a variational principle], leaving
us [after introducing A from (1. 3)] with

BF® =5¢ Wo¢p + SL'[(H- E) 6¢]+[(H—- E) 5¢]T6L
+ A8 164,

(2.6)

2.7

Equation (2. 7)—which also has been obtained by

Aranoff and Percus®—is the general expression for the
second order error made by using (1. 4); to make further
progress, it is necessary to further delineate 5L, i.e.,
to delineate L,;. Actually, it is easily verified that if the
condition

¢, 7L, =0 (2.8)

is obeyed by L,, then Eq. (2.7) is an exact expression
for the total error 8F, i.e., with (2. 8) the error 6F of
(2. 2b) is precisely the purely second order expression
on the right side of (2. 7). However, we soon shall be
performing manipulations which involve dropping third
order and higher order contributions to (2. 7), so that
whether or not (2. 7) as it stands exactly equals 5F is of
little practical consequence.

3. CHOICES FOR TRIAL HAMILTONIAN

One H, yielding the minimum principle (1. 9) is®

Ht:Hmod,t:H"HPtH/Et (38.1)
where the projection operator
Pi=0.¢,' (3. 2a)

can be regarded as an estimate of the unknown projec-
tion operator

P=¢¢'. (3.2b)

Edward Gerjuoy 762



Although as ¢, — ¢ this H,—~ H- EP, which is +H,
nevertheless the associated L, obeys®

(Hmod.t_Et)Lt=_ W, ~ My, (3.3)
i.e., obeys Eq. (1.7) with g, given by (1. 8). From
(2.3b), (3.1), and (3. 2a)

¢+ "Hyoa, ¢ = Hoa, 161 = 0. (3.4)

Therefore, multiplying (3. 3) by ¢, on the left, and
recalling (1. 8b), we see that (3. 3) implies (2. 8).

Define
6H =Hyeq,: - H, (3. 5a)
o =X~ A== (¢ 'WOP + 5 W + 50 "W). (3. 5b)

Then Equation (3. 3) becomes

(H+8H—E—SE)(L +8L) == W(¢ + 5¢) — (A + 5A) (¢ + 6¢)
which, making use of (1.5), takes the form

(H- E)bL == (6H-8E)L - (6H = 8E) 6L — Wb¢

— A8 ~ (BA) @ — OGP, (3.6)

Equation (3. 6), which is exact, can be used to replace
(H= E) 8L in the terms

8L'[(H-E)b¢]=[(H~- E)oL]"60,
[((H-E)8¢]"6L =06¢ [(H- E) L]

(3.7

appearing in (2. 7). When this replacement is made,
the resultant expression for 6F® obviously will be the
correct second order error even if all terms of second
and higher order are dropped on the right side of (3. 6).
Actually, the right side of (3. 6) contains terms nomi-
nally of zero order, because we know Hy,,,,; does not
approach H as ¢, — ¢. Specifically,

HP;H  H(p+09) (¢ +60)'H
-~ "E, E +8E

__H(@¢'+(09) 9"+ 900N H
E

o0H =

=—E¢¢p'— (H¢) ¢ ' - ¢p00'H (3.8)
to terms of second order. The nominally zero order
contribution E¢¢ 'L to (6H) L vanishes, however, in
view of (1.6), so that the right side of (3. 6) indeed is of
first order. For our present purposes, therefore,
namely reformulating the second order expression (2, 7),
we can simplify (3. 6) to

(H-E)SL=0¢6¢ THL + E¢pp T6L — Wb ~ Ab¢ = (61) ¢
(3.9

where we have included the first order contribution
E¢¢ 8L from the nominally second order term SHOL
in (3.6).

Using (3.9) and (3.7) in (2.7), and remembering that
A and 8 are purely real, we obtain after some algebra

SF® =— 8¢ "Wogp - 18¢ T6¢ — (61)[¢ 8¢ + (60) "]
+ (66 THL) (60 "¢) + (L THb5¢) (6 T00)
+E(¢'5L)(8¢ 'p) + E(SL'¢) (6 T66) (3.10)
to terms of third order, a phrase we should not have

to repeat., From (1. 6) and (2. 8)
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@1OL +(0¢)TL+86 1L =0 (3.11a)
whose adjoint is
6L'¢+L'6¢p +5LT6¢ =0. (3.111)

Equations (3.11) permit us to replace ¢ t5L and 6L'¢
in (3.10) by — 5¢ 'L and ~ L '6¢, respectively. Because
of (2.4a), the b terms in (3. 10) can be dropped. Hence
(3. 10) simplifies to

5F® =~ 56 "Wop — x0¢ T8¢ +[8¢ T(H~ E) L}(8¢ )

+[LY(H=E)5¢](¢ To¢). (3.12)

We will return to (3. 12) after considering the alterna-
tive choice of H, yielding the minimum principle (1. 9),
namely’

-~

Hy=Hg 4, :=PHP, + (1-P,)H(1-P,)
=H- ¢;0,"H-Hoyd, " +2E,0,0,".
Thus we now have, two terms of second order,
SH=Hypy,s— H== (5¢) ¢ H— ¢6¢ "H— (HO¢) &
- (H$) 66 T+2E(¢00 " +500 ")
== ¢0¢ "H-H3¢p "+ E(¢d¢ '+ 500 )
== (H-E)0¢¢" - ¢3¢ '(H-E)

(3.13)

(3.14)

which is of first order, reflecting the fact that H,,

- H as ¢, —~ ¢. Consequently, the equation for the
present L, —which is not identical with the L, satisfying
Eq. (3.3)—surely is

(ﬁmod,t_Et)Lt:— W= M. (8.15)
From (3.13),
¢t*ﬁmod,t=Et¢t7 (3.16)

Therefore, recalling (1. 8b), we see that both sides of
(3.15) vanish identically after multiplying by ¢,% on

the left. It follows that L, is incompletely determined
by Eq. (3.15), just as L is incompletely determined by
(1.5); it is necessary to specify ¢,'L;, and we shall
adopt the specification (2. 8). The facts that with Eq.

(3. 15) the condition (2. 8) must be imposed whereas

(2. 8) is a consequence of (3.3) reflect the facts that

(3. 3) is constructed® to have no bound state eigenvalues,
whereas ﬁmod,t has the eigenvalue E, and eigenfunction

b+

We now return to Eq. (3. 6), which—because the right
sides of (3.15) and (3. 3) are identical—remains valid
for the present H,, ; trial Hamiltonian. Now (3.14) and
(1. 6) imply

(6H)L=- ¢5¢ " (H-E)L, (3.17)

Thus we now have
(H-E)SL=¢5¢p (H-E)L - W5¢ - 15¢ — (6)) ¢ (3.18)

instead of (3.9). Using(3.18) in (3. 7), and substituting
in (2.7), we find that the resultant expression for 6F'®
is precisely our former (3.12). In other words, whether
L, from (3.3) or L, from (3. 15) is used in the variation-
al principle (1. 4), the second order error made is the
same and is given by (3. 12) in terms of 6¢ and the exact
L, Moreover, Eq. (1.5) permits us to eliminate

(H- E) L from (3.12), thereby yielding
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5F® _ 8¢ TWqu— pXiT0) Yo — (5¢*W¢)(5¢ ‘o)
— (& TWBH)(9 T56) - A[(B9 T9)2 + (¢ 0)] (3.19)

which depends explicitly only on ¢ and 8¢ ; explicit
dependences on L and 8L have disappeared.

4. ERROR AS A FUNCTION OF TRIAL EIGENFUNCTION

As it stands, Eq. (3.19) is not a useable formula
for OF (2’, because it involves the unknown quantities ¢
and 5¢; in order to actually compute 6F®?’, we must
reexpress (3,19) so that it depends only on the known
trial function ¢,. This we can do as follows.

Suppose 6F? can be rewritten in the form

8F? =8¢ 1550 (4.1)

where S is an operator to be determined. Suppose
further that there exists an operator N such that

(H- E)N(H-E)=S. 4.2)

In these events, we would have
5F® - 5¢ " (H- EYN(H- E) 8¢
=[(H~E) 5¢]"N[(H - E) 6¢]
=[(H-E) ¢,]'N[(H- E) ¢,] (4.3)

by virtue of (1.2) and the definition (2.1a) of 6¢. Since
the right side of (4. 3) is already of second order, in

(4. 3) it is permissible to replace E by E, and N by some
first order estimate N,. Thus we would obtain the
formula

oF D = [(H~E) 6, N{(H- E) 6] @4

from which the second order error should be calculable,

We now address the problems of finding first S and
then N. To obtain (3, 19) in the form (4.1), each term
in (3.19) must contain one 6¢ ' (on the left) and one 8¢
(on the right). We can recast (3. 19) in this desired form
by judiciously taking advantage of (2. 4a), which permits
replacement of ¢ '8¢ by — 8¢ T¢ and vice versa. In this
fashion we obtain

SF®D == 5¢ "Wbp — A6¢ 160 + (6¢ "W (¢ T00)

+ (00 T) (¢ TWo ) +27(5¢ Tp) (o T00). 4. 5)
Equation (4. 5) is in the form (4. 1) with
S==W-=21+(Wp) o +p(We) ' + 2200 ", (4.86)

We now observe, recalling the definition (1. 5) for
A, that

qﬁTS:S(j):O. (47)

Indeed, in terms of the projection operator P defined
by (3. 2b),

S==(P-1)(W+A1)}(P-1). (4.8)

Consequently, Eq. (4.2) is solvable for N even though
in the full space of quadratically integrable functions the
operator H— ) does not have an inverse when A equals
the eigenvalue E of H. It is convenient to introduce the
function G—which has been termed® a Green’s function
in the generalized sense—satisfying

(H-E)G=P-1, (4.9)
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Then Egs. (4.8) and (4. 9) imply Eq. (4.2) is satisfied
by the operator

N=-G[w+a1]é. (4.10)

However, Eq. (4.9) does not determine the projection
of G on ¢, just as (1. 5) did not determine the projec-
tion of L on ¢. Correspondingly, Eq. (4.2) does not
determine ¢ N or N¢, For completeness, therefore,
we will specify

¢'G=0. (4.11)
Therefore, since

P-1==07¢,0," (4.12)

i#l

summed over all excited states of H,

-~ .T

G--2 ﬁz::‘f—’E (4.13)
and the counterpart to (4. 11) is

Go =0. 4.14)

With Egs. (4.11) and (4. 14) the operator N defined by
Eq. (4.10) is completely specified. In fact,

¢'N=N¢ =0. (4.15)
Evidently, a reasonable trial &, in (4. 4) is
N,=—= G [W+2,1]G, (4.16)

where ét is any rea%onable trial estimate of G. One
possibility is to let G, be the solution to

(ﬁmod.t_Et) G,=pP,-1 (4.17a)
subject to
¢,'G, =G, =0. (4.17b)

Defining é, via Egs. (4.17) has the advantage that ét-—
like L, satisfying (3. 15)—then can be estimated from a
minimum prineciple of the form (1. 9); moreover, to ob-
tain a reasonable N, (4. 186) for use in estimating the
second order error 6F®, it is not necessary to have

a highly accurate G, as the derivation of (4.4) has made
plain. An alternative possibility for G,, based on (4.13),
is

Gisdpit!

HECE (4.18)

6=
where the set ¢;, and associated E;, are a set of trial
eigenfunctions and eigenvalues estimating the exact
eigenfunctions ¢; and eigenvalues E; of H, with of
course ¢4; and Ey, equal to our previous ¢, and E,,
respectively.

This completes our assigned task of expressing the
second order error 6F% in terms of known quantities,
We stress that although the possibility of finding the
simple closed formula (4. 4) for 5F® is of undoubted
theoretical interest, the practical utility of these re-
sults remains to be established. Whether G, is defined
via (4.17) or (4.18), calculating 5F® from (4, 4) and
(4. 16) will not be a trivial matter, especially in many-
particie problems where matrix elements quadratic in
H always are very awkward to compute, Nevertheless
the expression (4. 4) should be calculable in few-parti-
cle systems (e.g., in the case that H is the Hamiltonian
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of the He atom), and certainly is calculable in the case
of a single particle bound by a potential,

An even more serious impediment to practical appli-
cation of (4. 4) is the fact that the foregoing results
have assumed Eq. (1.7) for L, has been solved essen-
tially exactly for the given ¢,; in practice, the required
accuracy in L, may be difficult to achieve. It is worth
remarking, however, that if the L, used in (1.4) is the
effectively exact solution of (1.7), the quantity

<Wﬁ>suw =<W11>var— 5F(2) (4. 19)

obtained from (1. 4), (2.2b), and (4. 4) should differ
from the exact Wy, by at most third order, i.e., should
be a supervariational estimate of Wy;. In actual calcu-
lations, ¢, probably will be determined from the
Rayleigh—Ritz calculation yielding E, via (2. 3b), and
one then expects that as the number of arbitrary param-
eters in ¢, is increased the estimate of W;; from (4.19)
will converge distinctly more rapidly than does the
original variational estimate (1. 4).

When W is a positive definite operator, Eq. (4.4)
yields simple upper and lower bounds on 5F?, Intro-
ducing the notation

¥, =G,(H-E,) ¢,, (4.20)

and recognizing that ét from (4.17) or (4.18) obeys
ét T= ét

[a relation implicit in (4.17b)}, Eqs. (4.16 and (4.4)

yield

SF P = w [w+rll¥,. 4.21)

Since XA, from (1. 8b) is a negative number when W is
positive definite, Eq. (4.21) immediately implies

- T, "W, <BFP < (¢, "W, )T, TT,).
Or, using (4.19),

{< W11>var— (¢t fI/Vqsl,‘)(\llt 1.\I’t)}' <<W11>sux>v < {<W11>var + ‘Ilt T‘IV‘I,t}
4.23)

We emphasize that although (4. 23) (like all formulas

in this paper) assumes L,(¢;) has solved (1.7) exactly,
the above inequality does not yield rigorous bounds on
the exact Wy, because (W,y) 4, differs from the exact
Wiy by third and higher order terms. Nevertheless, if
the L, used in (1. 4) really is the effectively exact solu-
tion of (1.7), then Eq, (4. 23) should provide quite relia-
ble variational (i. e., second order) bounds on the exact
W, whenever (W p ., has converged close to its final
{presumably the exact ¢'W¢) limit; the reason for this
assertion is that in these circumstances the second
order terms involving ¥, in (4. 23) should be much larg-
er in absolute value than the residual third order error

in ¢ W11>supv'

4.22)
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Before closing, a brief discussion of the errors in-
troduced by using trial L, which do not solve (1.7) ex-
actly may be worthwhile, Suppose that for given ¢, the
quantity L,, is our approximation to the exact L, solv-
ing (1.7), and define

AL=L,,—L,. (4.24)

Then if L,; rather than L, is used to compute (W) ac
from (1.4), our computed estimate of 6F%?’ will be in
error by an amount

AF® = ALT[(H-E)b¢]+[(H-E)8¢]AL, (4. 252)
recognizing that in (1, 4)
L,;=L+3L+AL, (4. 25b)

But our result (4.4) for 6F® is of order 5¢ 66, re-
calling (3.19) and (4.1). It follows that the actually ob-
tained second order error—in the value of (W ,,. com-
puted using the actual L,, in (1. 4)—will continue to be
represented by (4.4), provided only that the right side
of (4.25a) is of higher order than 6¢ '6¢, i.e., provided
only that AL is of higher order than 8¢ for the particu-
lar ¢, chosen. The error in (W;p,,, from (4.19), com-
puted using L, rather than L, in (1.4), will not be of
third order unless AL can be regarded as being of order
(6¢)%. Because the right side of (4, 3) already is of sec-~
ond order, any reasonable N,—namely, one differing
from N by first order—keeps the error in the computed
{ WP supv 2t third order, The mere fact that—for any
given ¢,—V¥, in (4. 23) depends via (4. 20) on a quantity
G, we have some freedom to choose [recall Eq. (4.16—
(4.18)] implies (4. 23) cannot yield rigorous bounds.
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A note on the unified Dirac-von Neumann formulation of

quantum mechanics

D. Tjo'stheim

NTNF/NORSAR, P.O. Box 51, N-2007 Kjeller, Norway
(Received 29 October 1974)

It is demonstrated that the mathematical model of a rigged Hilbert space is ideally suited for
obtaining a unified Dirac-von Neumann formulation of quantum mechanics. It is shown that the
eigenbras of an observable A can be interpreted as weak derivatives of certain functionals associated
with the resolution of identity E,, u € (—o, o), associated with 4.

1. FORMULATION OF THE PROBLEM

In a paper by Marlow' an attempt was made to unify
the Dirac? and von Neumann® formulations of quantum
mechanics using the mathematical model of a direct
integral of Hilbert spaces. Unfortunately, this work
suffered from some inconveniences as was pointed out
by Antoine.? Recently it has become increasingly popu-
lar**® to use a rigged Hilbert space as mathematical
model for obtaining a rigorous interpretation of the
Dirac formalism. The purpose of this noteis to demon-
strate that a rigged Hilbert space also appears to be
ideally suited for formulating a unified Dirac—von
Neumann formalism in the spirit of Marlow.

We consider (as does Marlow) a single observable
(self-adjoint operator) A in the Hilbert space H of phys-
ical states. The spectral decomposition® A= [udE,,
where E,, # € (=~ o, ), is the resolution of identity as-
sociated with A, was obtained by von Neumann and
forms the basis for his formulation of quantum
mechanics.

The concept of a rigged Hilbert space was introduced
by Gel’fand. It consists of a triplet ® CHC &’ (where H
is identified with H') where ® is a dense subspace of the
Hilbert space H and where ¢ is equipped with a topology
that makes it a nuclear countable Hilbert space. Fur-
thermore, the topology of ¢ is finer than the one induced
on @ by the inner product in H, The space &' is the
space of continuous linear functionals on ¢. The prob-
lem of constructing a “canonical” space ® for a given
physical system is not yet solved in complete generality.
In this note we will content ourselves by assuming that
there exists a dense subspace ® of H such that ® C.D(A)
is stable under A4, such that ® CHC &’ is a rigged
Hilbert space and A is continuous in the topology of ®.
[D(A) is used to denote the domain of definition of 4. ]

It is known? that a rigorous formulation of the Dirac
formalism results if the eigenbras of the observable A
are identified with those generalized eigenvectors of
A which correspond to the points of the Hilbert space
spectrum of A, The problem is to find a connection be-
tween these generalized eigenvectors and the von
Neumann spectral decomposition A= [udE,.

2. WEAK DERIVATIVES OF FUNCTIONALS

Let” H~ [, H(u) du(u) be a realization of H as a di-
rect integral of Hilbert spaces induced by the operator
A. The set ACR! is the spectrum of 4, and dimH(u)
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=d(u), u €A, is the spectral multiplicity of A at the
point . We denote by e,;(w), i=1,2,...,d(®), an ortho-
normal basis in H(u), Since the measure y is finite,’
the vector fields ¢/: u—~ ¢;(u), i=1,2,..., ¢;(u) =0 for

i >d(u), are contained in [, H(u) d(u). Denote by e, the
corresponding elements of H. Then

(e, ey = fA_(el(u)’ ei(u)),, dufu) < p(4),

where (+, 9y and (+, -), are the inner products in H and
H(u), respectively. Using the elements e;, a smooth
transition between the Dirac and von Neumann spectral
decompositions of A can be obtained.

Consider an arbitrary element ¢ in ® and let
¢ ~— ¢ (u) be the realization of ¢ induced by the reali-
zation H-— [, H(u) du(u). Then

(E(a) ey, ¢) = [, (e;), ¢ () dpla),

where we have used the fact that E,, # € A, constitutes

a resolution of identity. (A CR! is a Borel set.) Denote
by &, the complex measure defined by u,(a) =(E(4) ¢;, ¢).
Using the Schwarz inequality it is not difficult to show
that u; is absolutely continuous with respect to the finite
positive measure K., defined by e, (8)= (E(A) ey, &),
Since the measure u can be defined” as

B& = 25 a, b, (8),

where 2§, a; <%, a; >0, and where N=sup,, d(u) may
possibly be <, it follows that i; is absolutely continuous
with respect to 4. From the Radon—Nikodym theorem
for complex measures® it follows that the function % («)
=(e;(u), ¢ (), can be identified with the Radon—
Nikodym derivative du,/du.

Considered as functions of ¢, k¥(¢)=h{ (),
i=1,2,...,d(u), are elements of &' and, in fact, they
constitute’ a complete set of generalized eigenvectors
of A. What remains, therefore, is to establish a rela-
tion between 1j(¢) and E,.

Consider the linear functional f#*(¢) =(E, ¢;, ¢). Then
f¥€®"and it can be shown that the weak dervivative
gl (o) =dff (¢)/duw) of fi* with respect to u exists and
is well defined as a continuous linear functional on @.
From the definition of p, and the fact that

%‘3 () = (e, ), $(w)), = h¥($),

it follows that g% and /4§ can be identified. If we use the
Dirac bra notation (ui| for the generalized eigenvector
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i, we have that

i | 6)=gi(o)= Loueisd)

or (with a slight abuse of notation)

gesting the topic of this investigation and for several
encouraging discussions.
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Temporally inhomogeneous scattering theory for modified wave

operators

Joseph H. Hendrickson

Department of Mathematical Sciences, State University of New York, Binghamton, New York 13901

(Received 4 October 1974)

A theorem of Alsholm and Kato, which gives existence of modified wave operators for a large class
of long range potentials, is extended to include time dependent potentials. It is then shown that these
temporally inhomogeneous modified wave operators W, .(S) vary continuously, in some sense, on
the potentials. This result is new for both time dependent and time independent potentials. In
addition, part of the nonuniqueness problem of modified wave operators is resolved by noting that

the modified wave operators are asymptotically unique.

1. INTRODUCTION

In nonrelativistic scattering theory a particle at time
tcR is represented by u(t,-) e L3(R"). The Hamiltonian
H(#) of the particle is, for each ¢ R, a self-adjoint
operator on L?(IR") and determines the motion of the
particle according to the Schrodinger equation:

2

T ult, x) = — iH(ult, x).

Kato! has given conditions on H(f) under which the
Schrodinger equation can be solved in the sense of find-
ing a family of unitary evolution operators {U(¢,s): 1,

s e R} satisfying u(t, x) = U(¢, s)u(s, x}. The Hamiltonian
for a free particle is Hy=~ A/2. Potential scattering
concerns itself with Hamiltonians of the form H(#)
=H,+V{t,x), where V(t,+)e L} (R"). Goldstein and
Monlezun? have reformulated Kato’s conditions in the
case of potential scattering:

(AI) Assume V(t,x) =37,V (t,x), where V/(£,x) is real
valued and in L#i(IR") with 2 < p, <e and p, >n/2 for j
=1,...,m and with p;==. Assume that as a function of
t, VI:IR— L?(IR") is piecewise strongly continuously
differentiable.

Condition AI also implies that /) =/) (H,) =0 (H{#))
= W22(IR"), the Sobolev space of order 2, for all = IR.

The standard wave operators are defined as

W (s)= st-lim Uls, ) U,(t, s),
—im
where U,(t, s) = exp[~i(l - s)H,] is the evolution operator
for H,. This definition was originally proposed by
Jauch?® and extended to time dependent Hamiltonians by
Monlezun.? The existence of these strong limits is an
expression of the fact that the motion described by
U(t,s) is asymptotically free. If £,(0,+) are the free
particles that asymptotically approximate u(0,x), then
u(s,x)= W, (s)f,(s,x). For time independent, short range
potentials, i.e., V{x)=0(lx!""¢) for ¢ >0, this conver-
gence is well known. (See Jauch.?®) However, Dollard®®
showed that for the Coulomb potential 1/1x| conver-
gence fails, indicating that such “long range” potentials
have a residual effect at large distances. Dollard was
able to force convergence by the addition of an ad hoc
“anomolous term” to the free evolution operator. This
was not totally intuitively satisfactory and others
(Amrein, Martin, and Misra’; Lavine®; Thomas®) re-
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defined the wave operators in terms of momentum
observables and were able to show convergence. These
results are made reasonable by the following examples
of classical scattering in one dimension,

First, consider the short range potential V{x)=-1/
%2, Solving x(¢) =~ V’(x), Newton’s second law, one
easily sees that the motion is asymptotically free
(straight line) motion:

x(t) =+ V3¢, t+V2c, ¢, for large ¢,

where ¢,, ¢, are arbitrary constants. In the long range
case V(x)=~1/lxl, motion remains asymptotically
unfree:

x(®) =2V ¢, t+V2¢, ¢, +(1/c,)log(2Vx).

However, in agreement with the results mentioned
above, the momentum even in the long range case is
asymptotically free (constant):

(B =2 (2x1+2¢ )22V 2¢,.
For details see the author’s dissertation,!®

This indicates that the asymptotic dynamics, while
not free, do conserve momentum; i.e., their Hamilton
does not depend explicitly on x and is, therefore, of the
form H,+P(f,p), where p=—iA_. If P(t,p) were set
equal to V{(¢,pt), this would agree with Dollard’s
anomolous term. For a more intuitive motivation, see
Alsholm,!! Hendrickson, ! Herbst.!2 To show conver-
gence with this definition, it is necessary to place
growth conditions on V(t,x) in each variable. The
following conditions are modeled after those of Alsholm
and Kato!?:

(AII) Assume V(t,x)=V,(t,x) + V,(f, %)+ V_(f,x) and

(a) there exist positive constants ¢, €, 8, ¥, and M
such that

1=8>% and y>(1-pB)2st
and such that the following hold:
(o) | V,(t,x)| < c@+|x|)-e.
(c) DFD2V, (¢, x)e Lt (R™) for [a,[=0,1 and

@,=0,1,2,3. The derivatives are taken as

distributions.
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cl+|x|)-8, |a|=1, Cook—Kuroda method:

@ [D2v,(t, %) < l —Wt)dt
e+ |x|)*, |a|=2, 3. t
_Cug|ta, -
(e) | D, D2V, (t,x)] =0 ast—ae.
el + ’tl e+ |x[ e, lal =1 For the general case we use the following lemma, which
Vet + [+ |22, |a| =2, 3. follows directly from the definition of Wp,(s).
(f) V,(t, -)e L3(@R") for all 1#| >¢,>0 for some con- Lemma 1: If W, (t) exists for some {c R, then W, (s)
stant £, and 1V, (¢, )i, <M for all £l >¢,. exists for every sc R and
Unnecessary growth conditions on the essentially short Wy, (s)=Uls, hW,, (DU, 9).
range potentials V, and V, are avoided by using only V, Thus

in the definition below of the anomolous term.
” WD*(S)M - U(S ’ t) Ué(t’ s)ull
If Fe L*(R"), its Fourier transform and inverse

transform are denoted F and F respectively, where =I[w,,(0) - U©, U, 00]U4(0, s)ull < Cp ™,
F(p)=1.i.m. (1/21r)"/2fm" exp(=ix+ p)F(x) dx. where C, = U3(0, s)ue C3(R" {0})".

. . So, turning our attention to ¢(f), we see
F(p) can be considered as an operator in LZ(IR") defined

by o) =
F(plulx) =[F(p)a(p)] .

In particular, F(p)=p is the operator —:V, . In this )

context, we define the Dollard anomolous term gen- < 1V, (¢, ) Ug(t, O)ull

eralized to time dependent potentials and the associated + 1V, t, DU, O)uli
asymptotic or “semifree” evolution operators.

I% U, Hult, O)u”

= [V, x) -V, ¢, pt) U2, 0)ull

. +I[V, (¢, %) = vV, (¢, pO)]US(E, O)ul)
Definition: Let Xt(p)=[tV (7,p7)d7. To conform with

the notation of Alsholm and Kato, we abbreviate X%(p) = 0, (1) + &,(t) + &5(2).
=X,(p). The terms ¢,(t) and ¢,4(t) correspond to what Alsholm
Definition: Let and Kato call ¢(#) and ¢, (f). Although the terms are
¢ somewhat different, the bounds are arrived at by argu-
Ug(t, s) = exp(~ ifs Hy+Vp(r,p7) d7) ments similar enough to make repetition unnecessary.
One must merely note upon what the constants ¢, and v
= exp[-i(f - S)Hoa - iXi(p)] depend. In bounding ¢,(f) we use the following identity

from Alsholm!!:

be the evolution operator for H, + V, (¢, pf).
exp(it| p|2/2)F(x) exp(=it | p|2/2) = exp (- i | x|2/2t) F(tp)

The following theorem generalizes that of Alsholm

and Kato®® to the case of time dependent potentials. X exp(i |x12/21),
Theovem 1: Let n>3. Assume AI and AIl. Then the ¢, () =V, (¢, x) exp(=~ itH,) exp(-iX, Jull,
temporally inhomogeneous modified wave operators - HVl(t,pt) exp(ilx 'z/zt) exp(— iXt)uHZ
Wp.(s)=s-1im Us, T3¢, 5) <V, (¢, POl expl= X, Jul,
exist for all se R. In particular, if ue cs(mm{o})’, <3V (), exp(=iX, )ull,
i.e., u is infinitely differentiable with compact support < 2Mllal,

missing the origin, then there are positive constants

¢, and v, which depend only on u, M, C, €, 8, and y We note that the only need for restricting »> 3 was to
u ’ s y

such that, for |1 > ¢ insure n/2>1 at this point and thus allow singular,
Coulomb-like potentials. For detailed proofs of the
Wy ($)u—Uls, DU, shull < ¢, t7. bounds for ¢,(t) and ¢,(¢) and for examples of time
dependent potentials to which Theorem 1 applies, see
2. PROOF OF THEOREM 1 the author’s dissertation.!®

Throughout this paper, u shall always refer to an

element of the dense set C=(R\{O})" with K —supp #. We 3. ASYMTOTIC UNIQUENESS OF WAVE

T
shall often use without comment the fact that conver- OPERATORS

gence of a sequence of uniformly bounded operators on The decomposition of V is not unique since V is
this dense set implies strong convergence. Let W(¢) allowed to contain as little or as much of the short

=U{0,)UL(t,0)u and o(t) = 11{d/dt)W({t)Il. We first reduce range part of V as satisfies AIl. However, the non-
Theorem 1 to the problem of bounding ¢(t) by c, 1. By uniqueness this introduces into the definition of the wave
assuming this bound, the case of W,,(0) follows from the operafor vanishes in the limit.
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Proposition: Assume V=V, +V,+V, =V, +V}+ V]
satisfies AI and AII with respect to each decomposition.
If Wp,(s) and W}, (s) are the respective wave operators
of Theorem 1, then

S- thD*(s) - Wy, (s)=0
ot
Proof:
Lim|| W, (shu—~ W, (s)ull,
P

= lim LmllU(s, DUy (t, s) exp(- zf Vo, p7) dT)u

- Uls, U, (¢, s) exp(— zf Vi (7, p1)dT)ull,
=1lim lim|lx - exp(~ zf Vi =V, (7, p7)d7)ull,

8§~ 40 [ 4®

=1lim lim}l[1 - exp(- zf Vi, =V, (7,p7) dD]ull,

= lim limi| sup Ilf vy =V (r,p) drll lull,—0

Svie fei®

as s,t—~zx since Vy =V, =V, -V +V,—
function + a short range function.®

Vy=an L?

4. APPROXIMATION THEOREM

In Theorem 1, it was noted that the rate of conver-
gence of W,,(s)u which was established depended only
on the bounding constants of the potential, i.e., on
M, c, €, B, and y, rather than on the potential directly.
Thus, if a collection of potentials can be bounded uni-
formly by such constants, then their respective wave
operators will converge uniformly. This observation
is the basis of the following result.

Theorem 2: Let V, V., V :RXR"—~ R,
m=1, 2, 3,««+ be such that

(BI) The evolution operators {U(t, s)} for H(¢)
=H,+V(t, ) exist.

Bm v,=Vv,  +V,,+V,, . satisfy Al and AII with the
given decompositions for m=1,2,3, - -

(BIII) There exist positive constants M, ¢, 8, v and
¢ such that

@ v>U-p)pt,

(i) e, —€, B,~ B, V=¥ Cp—C, M,—~M, where
€m> Bus Vmor cm, and M”I are the bounding constants of
AIl associated with V.

(BIV) For every {, there exists a p; such that n <p,
<o and 1V(, «) =V, (¢, -)u,t——o as m—o.

(BV) For all pe R", t—V,(¢,pt) is in L],
all compact £ S R"\{0}, sup,c, | [4V, (7, pT)
—V, {T,p7)d7l =0 as s,t—x.

Let W

Diym

(IR) and for

(s) be the wave operators for V, and let
1
pel8)= st:lthU(s, DU, (¢, 9 exp(- ifs vV, (r,p7)d7).

Then Wut(s) exists and equals s-lim_ . Wy, (s).

Theorem 2 will be proved by a series of lemmas. Let
{U,,(t,s)} be the evolution operators for H, (t)=H,
+V,(¢, ). We use the following notation where
we CHRN{oP™:
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Xi(p)= ftVL (r,p7) d7,

Xt (p)= f Vg, (T, p7)dT,
W(t)=U(s, )U,(¢, s) exp(- iXt Ju,
W, ()=U_(s,U,(¢, s) exp{— iX§ )u,
W= lim W(z),

L= g0
Wm = tl}g: Wm(t) .

Lemma 2.1: U(t,s)=s-~lim__ U (i,s).

m=-°-m

Proof: By Goldstein,* it suffices to show that
[iH(?) - ¢I™ ~[iH,, (1) - ¢]™ -0 for all £>0 and tc R.
Note that [iH_(#) - ¢ is umformly bounded by 1/¢.

NeH() = & u~[iH, () - £]™ull,

= {[iH,,(t) = e[V, &, + ) = V¢, GHE = ]2 ull,
<MV, )=V, - )II, WH @) - £l ,
where 1/¥+1/p, =3. Since WV, (¢, -) - V{t,+)1, —0and

n < p, <= by assumption, it suffices to show that 11E2:463)
-¢f 1uII < for 2<r<2n/(n—2). But v=[iH()

- ¢t uc[) W22, Thus llpll, <ew, Also D% < L2(R") for
all lal =1, whlch implies lIvlly,; (,.9, <= by Sobolev’s
inequality. (See Friedman.!®

Lemma 2.2: s-lim__, exp{—iX} ) =exp(—iX?).
Proof.

llexp(—iXt  Ju~ exp(~iXt)ull,

< ”u”zfgg’ exp(—iXt, )(p) ~ exp(~ z'x;)(p)q

< llull, S“p' [V s =V, (1,p7) d'r, -0
PER s

by assumption.

Lemma 2.3: For each te R, Lim W, (})=W().
e

Proof:
W) - w, @l

=I[U(s, ) exp(-iX%) ~ U, (s, ) exp(= X%, DU, (¢, s)ull

Sm

< [I[U(s,8) = U, (s, D] exp(— iXL)Uy(t, s)ull

+ U, (s, )exp(= iXt) — expl~iX: )]U(¢t, shull —~
by Lemmas 2.1 and 2.2.
Lemma 2.4: {Wm} is a Cauchy sequence in m.

Proof: By BIII, we can assume that the bounds ¢, 8,
Ypns» Cn, and M, can be replaced by uniform bounds.
Thus, by Theorem 1, there exists ¢, >0, »> 0 such that
sup I\W, =W ()i <c it =a(t) ~0as f—+=. Lete, >0.
For some fixed ¢, so large that a(t,) <¢,, choose N>0
such that m, m > N implies I1W_(t,) - W5(#,)1l <¢,. Then
Nw,, - Wl

< \W,, = W N + W, (1) — Wz + W) — Wil
< 3¢, .

Lemma 2.5: The limits W=1lim,_, W(t) exist.
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Proof: We show {W(t)} is Cauchy as ¢+, Let e, >0
and choose T so large that ¢> T implies a(t) <¢,. Let
t, t >T. Choose m, m so large that

1W(t) = W, N + 1 W (D ~ W (DIl + | W,, = Wzl <e,.
Then

W) - w(ol
< [IW(E) = W Ol + W, 8) = Wl + 1, — W
+ ”W;, - W;(—E)" + "W,;(-f) - W(-Z)” < 3¢, .

w.

m=""m"

Lemma 2.6: W=1im

Proof: Let ¢, > 0. Choose |¢| so large that 1W - W(#)!I
+a(t) <¢,. Choose N> 0 such that m > N implies 1 W(¢)
- W, ()1l <¢,. Then, for all m>N,

W= W, It <|W=WEI+1W(Ee) - w, O+ 11w, @) - W,

<2%,.m
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Studies in the Kerr-Newman metric
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The Kerr-Newman metric is analyzed according to the null tetrad formalism. The components of the
Weyl and the Ricci tensors are calculated and these tensors are then projected on a suitable
null-tetrad basis. The spin coefficients of Newman and Penrose are also calculated. These results are
applied to obtain the equations of gravitational and neutrino perturbations in the Kerr-Newman

metric.

1. INTRODUCTION

In this note we shall work out some standard proper-
ties of the Kerr—Newman metric.' First the compo-
nents of the Riemann, the Ricci, and the Weyl confor-
mal tensors are calculated. Next the Weyl and the Ricci
tensors are analyzed according to the null-tetrad
formalism due to Newman and Penrose.? A tetrad ba-
sis is chosen such that its two real null vectors are the
repeated principal null vectors of the Weyl tensor. The
twelve spin coefficients defined by Newman and Pen-
rose® are also calculated. These results are summar-
ized in the next Sec. II. It should be noted that not all
results of Sec. II are new. In particular, the expres-
sions for the tetrad projections of the Maxwell tensor
and hence also of the Ricci tensor (with g different
choice of tetrad basis than in this paper) have already
been given in the paper of Newman et ql.! But the rest
of the material in Sec. II is new. Finally, these results
are applied to study the equations governing the neu-
trino and the gravitational perturbations in the Kerr—
Newman geometry. Our calculation here closely paral-
lels the work of Teukolsky® who has given an elegant
derivation of the equations governing perturbations in an
uncharged Kerr metric. It is found that the neutrino
equation for the present case is a simple generalization
of the corresponding equation of Teukolsky, but the
equation for gravitational perturbation is considerably
more involved. In fact, a decoupled equation does not
result for the latter in contrast to the situation in un-
charged Kerr metric.?

1. ANALYSIS OF THE KERR-NEWMAN METRIC IN
TERMS OF NULL-TETRAD FORMALISM

The components of the Riemann, the Ricci, and the
Weyl conformal tensors for the Kerr—Newman metric
are listed in the Appendix. From these expressions we
can calculate the tetrad projections of these tensors
once a choice of the tetrad is made. We shall consider a
tetrad {14, n*, m*, m**} of null vectors satisfying the
usual conditions

lun‘*:—m“m*”:l; [,m*=n,m*=0. (1)
Then
g =1+t - mEm ¥ - m*Em @)

The real vectors I* and »* will be chosen to be the
double principal null vectors of the Weyl tensor. In the
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null coordinate (see Appendix) the explicit form of the
tetrad is then*

, (3)
1 i
[ a— y j ) 1’3 1°2
"= (r+iacos€){wsm96°+62+sin963}'

In the above, = =+*+a?cos®f and A=v?+a® + &% — 2mr.
m** is the complex conjugate of m*. Using the above
tetrad (3) the projections of the various tensors (given
in the Appendix) can be calculated by straightforward
calculations. The result of this exercise for the Weyl
tensor is

Vo= =C,  tmPme =0, ¥,=—C,, I"n"Pm°=0,

(4)
‘If:; == Cupwm*“n”l"n" = 0, ‘1’4 == Cuvwm*unvm)*xnu = 0,

¥,=-C

* A
u.umm unVl mq (5)

1
T T r~iacos8P(r +iacosd

)[m(r+ia cos ) — e?].

Thus the null vectors I* and »* given by Eq. (3) are
along the repeated principal null direction of the Weyl
tensor. The tetrad components of the Ricci tensor are
similarly calculated:

=-3R_*"=0, &,=-3R, IPmv=3}=0,

oo
b, = _%Ruumumvz‘b){ozoi @225_%[{“””“71":0, (6)

b= %Ruvnump =94 =0, &, =~ %Rw(lunv +mim*)
-2
2z
Finally, the tetrad components of the electromagnetic
field tensor F,, are the following:

®o=F, 'm’ =0, ®,=F, m**n’=0,

e 1 ")
=1 gV Koy — 2

=5 F,, W tmrm’) 2 (r—iacos9)?

Thus [* and »n* are also the principal null vectors of the

Maxwell tensor.

Newman and Penrose have defined twelve spin co-
efficients. These are next calculated using the tetrad of
Eq. (3) with the following result:

i

k=l . m*lY=0,

= — K gV —
wiv ve=—n,, m**n" =0,

= TN = by kv
o=l ,m"m’ =0, A=-n, m*m*=0,
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e=3(l, il =m,, m*P)=0,

p=1l, ,m*m* =-1/(r-iacoss),

- " ___zasme rE e D

T=1,,mn" 5y’ piv
iasind

73 (r—iacos@)?’

cotd

2V 2(r +iacos8)’ ®)

B=3(1,

:vnumv - mu:vm*umv) =

*v _ iy kV) — o _ @K
u;vnum mu;vm m )_77 B ?
—-n,,m**m’ =~ A/2Z(r - iacoséb),

p A = m  omREn) =t (r - m)/22 .

It is noted that the effect of charge e is present in only
two spin coefficients p and v and that too through the
function A, The rest of the spin coefficients are identi-
cal with those for uncharged Kerr metric. The vanish-
ing of the coefficients x, o, X and v is a special in-
stance of a theorem due to Goldberg and Sachs® proved
originally for algebraically specialized vacuum metrics.
The vanishing of € is due to the choice of tetrad Eq.

(3).® In the remainder of this paper we shall apply the
results of this section in order to study the equations
for neutrino and gravitational perturbations.

11l. EQUATIONS GOVERNING PERTURBATIONS
AROUND THE KERR-NEWMAN METRIC

We shall consider equations governing the neutrino
test fields and the gravitational perturbations (linear-
ized theory) in a manner closely following the treatment
of Teukolsky.® A key role in these discussions is
played by the following commutation relation

[D-(p+1)e+e*+qp-p*](6 —pB+qT)
~[6—(p+1)B—a*+7*+g7](D—-pe+qp)=0

9)

where p and g are any two constants, D =I1* 3/9x* and

5 =m" 3/ax*. Equation (9) was derived by Teukolsky?
for any type-D vacuum metric. Here we note that Eq.
(9) is valid also in the present case. This is because
the relevant Newman—Penrose equations, from which
Eq. (9) is derived, are the same in the present case as
with vacuum-type D metrics due to the fact that none of
them involves the quantity &, which is the only non-
vanishing component of the Ricci tensor as we have seen
in the preceding section. To facilitate comparison with
the work of Teukolsky,?3 the final form of the perturba-
tion equations to be derived below will be written out

in the Boyer—Lindquist coordinate. In this coordinate
the Kerr—Newmann metric has the form”:

2my — &2 z
2 [{ MV =€\ y2_ & g2 2
ar —<1 >dt av? - de

2asin®#

+——————(2mr e dtde (10)
- sin%6 [rz+a2+azsm g(2 my — e%)] do®
773 J. Math. Phys., Vol. 16, No. 4, April 1975

and the connection of the above with the null coordinate
is
+a?

dt:du+rz—

——dr, d¢=d$+%dr, r=7 6=6.(11)

The tetrad of Eq. (3) when written in the Boyer—Lind-
quist coordinate has [¢,7, 8, ¢] components
2+
#= [Taz’lyoﬁ 2], n# :[72+a2, _A’Oyal/zz:;

m* =[iasing,0,1,i/sindl/[V2(» + iacoss)]. (12)

The spin coefficients and the tetrad projections of the
various tensors of interest are, of course, the same in
both these coordinates. We can now begin to consider
perturbation equations. The equation for the neutrino is
the simplest and will be treated first.

.A. The neutrino equation

The sourceless neutrino equation in the notation of
Ref. 3 is

(6* —a +mxo=(D-ptel,, (13)
(A+p- Y)Xo 6+8-~- T)XU (14)

when y, and x, are the projections of the two component
spinors on suitable dyad legs.® Treat the neutrino as a
test field. Decoupled equation for y, then follows from

(13), (14), and Eq. (9) with p=-1, g=-1:

[(D+e* —p—p*)a=y+p)-

X (6% —a + 7]y, =0.

(6-0*—7"‘71'*) (15)

The equation for y, follows from above under the inter-
change I ~—n, m-—m*. These equation when written out
in the Boyer—Lindquist coordinate become

0+ P 2) i
( a T +2 (2 ~ e
(@1 \ow
A sin%6/ 3¢?
? e 1 3 v
- A s+l 2. __ - i —_—
Ay 8%y Tsine 6 (Sme ao)
alr —m)  icos6) o¥
'ZS< N +sin29) 36 (16)

96 (m(r2 - a?) - e*r

v —{acosh ﬂ
A ia

ot
+(s2cot? — s)¥ =0.

In the above, s=1/2 when ¥ =y, and s=-1/2 when ¥
=p™x,. The quantity A in Eq. (16) stands for A=7%+a?
+¢?—2my. Thus, Eq. (16) is a simple generalization of
the neutrino equation due to Teukolsky.® From the work
of Ref. 3 we may further conclude that Eq. (16) is
separable in the Boyer—Lindquist coordinate.

'B. Equation of gravitational perturbation

The desired equations follow at once from the rele-
vant Newman-Penrose equation, the Bianchi identi-
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ties,® and the knowledge of the unperturbed metric in
Sec. II.

(6* —4a +m)¥B = (D —4p — 2)¥B — 3,5Y, an
= (6 + 7 — 2a* — 2B)®B, — (D — 2 — 2p*)®5, ~ 2433,
(A =4y +p)¥B - (6 - 47 = 2R)¥E — 30B¥, = (5 + 27+ — 28)85,
= (D —2¢ + 2e* — p*)®B, + 2038, (18)
(D-p—p* ~8e+e*)oB = (6-T+7* = a* = 38)k? - ¥G=0.
19)

In the above we have followed the standard practice of
denoting a perturbed quantity with a superscript B.
Quantities without a superscript denote their unper-
turbed values. Using Eq. (19), the commutation relation
(9) with p=2, g=-4, and the equations for unperturbed

Weyl tensor,
D¥,=p(3¥,+2&,,), 5¥,=1(3¥,-25,), (20)

it is possible to eliminate ¥8 from (17) and (18). The
resulting equation for ¥2 is

[(6-38—-a*+n*=47)(6* —4a +7) = (D~ 3c +e* ~4p — p*)
X(A=4y+ ) +3¥,+28, W8 =T-4%,,[(56 - 35— a*)kB

+(p+p*)o?] @1)
with
T=(5-38—a*+m*=47)[(5 +7* = 2a* - 285

— (D -2~ 2p%)@5,] = (D =~ 3¢ + % — 4p — p¥) (22)

X[(6 +27% — 2B)®E, = (D = 2¢ + 2* — p*)®5,].

The presence of terms involving perturbations in the
spin coefficients k® and o? make Eq. (32) so much more
difficult than in the case of uncharged Kerr metric,3
where these terms are absent. In fact, the difficulty
persists even in the limiting case of zero rotation of the
source (Reissner—Nordstrom limit). It is possible to
simplify things a bit further. We have the freedom to
subject Eq. (21) to infinitesimal tetrad rotations. By a
suitable choice of the latter we can make «% =0. When
written out in Boyer—Lindquist coordinate, the re-
sulting Eq. (21) now becomes

((7‘2 + 2)? 2p% + 2a(2my — %) 22%

-, \3
a T asinelm a TEL

B -
1 i(smea\p")—‘l(a(y m)
sinf 960 30 A (23)
icosh\ a¥h m(r? - a®) - e*r )
+sin29> 30 —4( A - —iacos9
avB 2¢?
_Q+ 20 .9 22 3:]
X = (4cot9 2 E)‘I’o
2
=—2ET—8§;’UB.
Similarly, with 8 =0 Eq. (19) becomes
P+a® 9 , 2 ,a d 27)
—_—t — - — B LB = .
( 2 9ty Taze )0 ~¥e=0 (24)
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Equations (23) and (24) are the equations for gravita-
tional perturbation. A similar set of equations can be
obtained for ¥ from Eq. (21) via the interchange I — 7,
m —m*. Let us now consider the source term T which
occurs in Eq. (23). The general expression for T is
given by Eq. (22). If, however, we restrict ourselves
to electrovac perturbations, then 2 =&2,=0 and &2,
=2®¥®% and the expression for T undergoes appro-
priate simplification. It is not surprising that for elec-
trovac perturbations ¥2 is coupled to perturbed Max-
well tensor 5. It also seems possible to consider a
further restrictive class of perturbations, namely,
those with % =0, i.e., T=0. These are purely gravi-
tational perturbations unaccompanied by electromag-
netic perturbations. On the other hand, an examination
of the Maxwell’s equations for the present problem re-
veals that it is impossible to consider perturbations in
the electromagnetic field without, at the same time,
allowing metric perturbations. This is because the
Maxwell’s equations couple the unperturbed electromag-
netic tensor &, with first-order perturbations in the
spin coefficients p?, 78, 7%, and u® as well as with
perturbations in the Newman—Penrose operators D?,
A8 and 83, These arise from perturbations in the
tetrad system and hence are connected with metric
perturbations. Without further restrictions the Max-~
well’s equations for the present problem are thus rather
involved, which is the reason why they are not consid-
ered further in this paper.
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APPENDIX

In the null coordinate the Kerr—Newman metric is?

2

dr*=g,, dx* dx’ = (1 - 2—’1";—51) & +2 dudr
- X
@—Szm—g (@mr - €2) dudd

(A1)
~ 2asin®9 dr dd - = d6? - sin?6

x(rz+a2+é§ﬁ—9(2mr—ez)) do.

We follow the notation x®=1, x'=7, £=9, x3=¢. The
components of the Riemann tensor can be calculated
from (Al) after a straightforward but extremely lengthy
calculation. The details of this calculation will not be
reported here, but will be supplied to the interested
reader upon request. Here only the final result will be
quoted. Define the Riemann tensor as

(A2)

calculated from

Vv

pwvin

R ve

Vn;u:V: uvpo
for any vector V. The components R
(A1) are then the following:

Lvpgo
Rg112 =Roz0s = Roges =Rig1e = Ryp =0,
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Rgi01 22—13[27’“’(72 - 3% cos?6) — e2(372 ~ a® cos?9)],

Roson :%;isnﬁ[”‘ T = 2r@mr~e?)],

Rosos =258 [imy5 + (@my - &)@ cos?0 - 7],
Ryyy = asin®d Royoys Rosgs= 202+ az:)s:: o sin®g soms
Rypin= as_iznz—oRoms’ Ropiz= Z:-’L‘i%‘fﬁi_nzgRoxoz ’

Rozen =2—13{ @mr — e22(r? = ¢ cos?6) — (2mr - e2)[mr =

+7* 4+ 2722 5in%6 — a® cos?6 ~ 44 sin?d cos?d]

+mrE (@ + a?)}
in2
Rygps =2 Szl;; 6 {@mr - €2)2(r* — a? cos?8) — (2mr — &%)
X[mrT + 202 + ) (7® - 2a® cos?6)]
+mrz (2 + )}, (A3)
A Z
Rozos = ;Roms » Rogra=- %Romz ’
P+
Roais :TRolos, Ry393 =2 R0,

Rygs=aSin?0Ry s, Rpgy == sin?0(r® +a?) Ryyq,,

Ry =a2,sé;£w(2m7 - e2)2(»2 - a? cos?6)
LI vt + a?)
in2
— (2mr—e?) sgls Ol + a2+ a?)
X (72 = 442 cos?9) + a?( + & cos?6)]
+mra®sin?6 3},

In the above ' =%*+ d® cos®d and A=7*+#? + e~ 2mr.
From the Riemann tensor we compute the components
of the Ricei tensor

Ruv(:gMquvn)’
Ry =R, =Ry, =R,;=0,

Ry, =~¢*/Z?, R,,=-asin®R,, R,,=- e2/T, (A4)
2 aine
Rw:-z;‘:[A+a2sin29], R°3=-asin29300+%‘-§’
+ 2 ain2
1233:_asinzezw‘cos——-————("2 "2‘: sin’6

From the components of the Riemann and the Ricci ten-
sors, we calculate the Weyl tensor:
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CuvM =Ruv)\a +%(gu).Rvo - guuva 8, Ru)« - gvARuu

(a5)
+%‘R(gucgul - gukgvo),

Co112 = Coz03 = Co32s = Cra12 = Cias =0,
_ 2 _ _
Coro1 =Ropo1 t+ €*/Z%, Coi00=Roi02» Coros= onos »

ae® sin%9

Conzs=Rons t+ 5z’ Coizs=Roi23s  Coza=Roras

Coz1s = Roaiss  Conos = Rozoe + a®€?sin?6/ 22,

+ ae?(r? + a?) sin?0 (a6)

Cozas = Rozas =2 » Cosos = Rogos»

Costa =Rog1ar  Coars =Roarzs  Cizzs = Rizess

Cra1s =Rygs + 822 8in*0/22, Cogq = Rygq,
Cagp3 =Rygps + (P + a2)?sin?6/%2.

It needs hardly to be remarked that not all of the 21
components of C, . are linearly independent, but only
10 are. Also, the Ricci tensors of (A4) satisfy the con-
straint R=R}=0, as they must. Similarly, components
of the Riemann tensor (A3) satisfy the required identity
Ry105 + Rog1a T Rogsy =0. From the above expressions for
the Weyl and the Ricci tensors, we can calculate their
tetrad projections. When this is done with the tetrad of
Eq. (3) of text, we get the results quoted in Sec. II. We
conclude this section with one final remark. We have not
quoted the components of the Maxwell tensor. These
may be calculated from the formula

(a7)

when c.c. denotes complex conjugate of the preceding
term and expressions for &, and the vectors I, n, m
are given in Sec. II. The components of F,, so calcu-
lated then agree with expressions given in standard
references.

Fo=® 0 -nl, +m,mf—mmt)+c.c.
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A system of integrodifferential equations, which has a structure similar to the Boltzmann equations
for a binary gas mixture and which qualitatively describes wave propagation, is investigated. The
Oppenheim model is used and a linear initial-value problem is considered. The initial-value problem
is shown to be well set mathematically with certain specifications on the initial distribution functions.
Justification is made for the use of Fourier—Laplace transforms. A discussion is made of the
dispersion relation and its analytic continuation. The roots o(k) of the dispersion relation are shown
to lie in three distinct regions of the o plane: the hydrodynamic region, the semihydrodynamic
region, and the rarefied region. It is established that the roots o(k) are bounded by —1 + & <
Reo < O under the assumption of plane-wave solutions which implies that the system is stable and

that plane waves cease to exist if Reo < —1 + 6.

1. INTRODUCTION

While many issues of the Boltzmann equation remain
unresolved, very substantial progress has been made in
the study of kinetic model equations for a simple gas—
a gas composed of like molecules. These model equa-
tions are integrodifferential equations which qualitative-
ly represent the Boltzmann equation.

In this investigation the theory for simple gas kinetic
models (particularly the work of Sirovich and Thurber?)
is extended to kinetic models for gas mixtures. This
study reveals significant physical and mathematical
features which result from the interaction of the com-
ponent gases as described by the kinetic models.

The Oppenheim model? was selected as the focus of
this study because this model (1) generates the conser-
vation equations, (2) satisfies an H-theorem, and (3)
has a relatively simple form. This model is representa-
tive of other kinetic models and the theory developed,
in principle, applies to other models as well.

2. A KINETIC MODEL FOR BINARY GAS MIXTURES
The Oppenheim model

d 2 9 X, 0
S S S SR (-0 vl £),

0 0
Yo ave-aidachaoy (- r) v vl i)
2

(2.1)

is a system of coupled integrodifferential equations for
the distribution functions of the component gases. The
molecular velocities, masses and external forces for
each gas are, respectively, £ and £’, m, and m,, and
X, and X,. The terms v,, are the collision frequencies
of the molecules; v,, and v,, are the self-collision fre-
quencies and v,, is the cross-collision frequency. The
moments and collision terms are defined by

R,=K/m,,
ni:ffi dak,
"i“i:f £f, dE,
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Prp =M N, + MyT,,

Pralys = Mytytly + MNoU,,
3niRiTi:f (E-up f, dt,
3"iRiTi:f (& —u,) £, dt,
Ny =0 t 1y,

1y, Thp= "1T1 +n,Ty,

(2.2)

= Gy expl-(6-w /2R T ],

n.;
fiz - (ZnR.Tl;)3 2 exP[" (¢ - “12)2/2R1T12J'
1

In the following analysis the external forces X, are as-
sumed to be zero.

The system is in equilibrium only if f, and f, are ab-
solute Maxwellian distributions (this assertion is a con-
sequence of the H-theorem for the model®), and we may
linearize the model about these distributions. In (2. 1)
we let

fi=f g,
n,=ng+n,
uw,=ul+u,
T‘.:T(;'FT‘., (2.3)
where f°¢ are the absolute Maxwellian distributions; the
notatjon °® refers to the equilibrium state; and g;, n;, u
and T, are small perturbations. We assume that ud
=ug=0, T{=T3=T° and retain the lowest order per-
turbation terms. The following dimensionless variables
are introduced

3]

= (Vu + Vlz)t’
%= (v, + v,)x /(R T2,

i, /(R T2,

i

U;

3

- 0
i=ny/ng,

i‘t Tl/T(l)!
E=t/(R,TOP/2, (2. 4)
£t/ (R, T2,

If
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(Z—W&L)—— exp(£/2) g,

1~ nl
2qR, TO)3/ -
- (Lan—;’—— exp(i/2) g,.

Retaining the same notation for the dimensionless vari-
ables as was used for the dimensional variables, we
obtain the linear form of the Oppenheim model:

agtf +£- g =+t g=n takeuta, (387 - 3T,
+ agg “Uy + a4(§£ - %)Tz’
(2.5)
3,  t 2 ~ s 1223
%8 L 5.%2 — . 132 _3
3 T3 e TR&E= ol + a8 - 2T,
+un, + 035 u,¥ + a4( 252 )sz
which may be written
2 N
By 28y g =3 b,0,0),
at ax or (2.6)
ag g ag2 N . .
982 45282 g =% b .
TR e 2 ,§ 2B
The terms in (2. 6) are defined by
v =(my/m, /2,
v=vyt (2.7)
b= vy + v3,)/v;
by ="y,
by =ayu; + azi,, (2.8)
b, = $Ha,T, +a,T,);
bo=un,,
by =7(ayu, + agu,), (2.9)

v (2. 10)
ay=(v15/V)M,,

a,= (V]_z/V)Nz;

a1 = (sz/V)Mly
az = (V12/V)N1y

y ” (2.11)
a,= 22 4 2 M2’
14 14
54: Ve + Vg Nz;
v v
Ny =n3/(n] +ny),
Ny =n3/(n) +n3), (2.12)

M, =mnl/(m,n+ m,nd),

M, =mn5/(mn} + mn3),
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and the functions ¢, are the Hermite polynomials: 1, £,
1s2
55 - 1,

We assume that the distribution functions belong to
the Hilbert space // in the velocity variables with inner
product

(g,f)=/

Since {¢,}c # ({$,} is a complete orthogonal set in /%),
the hydrodynamic perturbation quantities defined by

(2. 2) and (2. 3) may be expressed by inner products.

The number density, velocity, and temperature, respec-
tively, for each gas are

exp(- £2/2)

(2_",)372 gfdf- (2' 13)

7y = (&5 bo)s
uy=(gy, ), (2.14)
T, =(g, $s),

and
n,=(gz, $o),
u=7" (g5, 91), (2.15)
T,= (g ¢,)-

While N=2 in the Oppenheim model, it is instructive
to generalize the form of the model and allow N to be a
finite positive integer.

3. THE INITIAL-VALUE PROBLEM IS WELL SET

Our objective is to show that the system (2. 6) with
suitable initial conditions is well set mathematically by
examining an equivalent system of integral equations.
To this end, we introduce

G,=¢t
1748 (3.1)
G, = exp(ut)g,,
and define
f}n:(cp ¢'n)=€‘(g1, ¢,-,)v (32)
A,=(G,, ) =exp(pt) (g;, ¢,)-
The system (2. 6) may be written
a o N
7 +&- I G = ,,=Z>o B,¢,(£),
(3.3)
2 t 8 N
(i) Gr= 2 BubilE).
where
B,=A,,
a .
B=a,A, + % explt(1~ p)}4, (3.4)
B,= 2(a~zA2 +a, exp[#(1 - H)] 2)
and
By =u4,,
B, =7a, exp[t(p - 1)]4, + a,A,, (3.5)
B, =$(a explt(n - 1)) 4, + a,A,).
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The initial conditions for this system are
Gylx, £, 1=0)=G{(x, £)=gy(x, £,t=0),

) ; : (3.6)
Gylx, £, 1 =0)= G, E) = g,(x, £, £ =0).

By formal integration of (3.3) we obtain the system of
integral equations

N
G, =G~ gt, &)+ [* 2 B, (x%, )¢, (8) ds,

R ., (3.7
G,=G} (x— %t, g) +fot"=20 B (x*,s)¢ (£)ds,
where
x*¥=x-E(-5) (3.8)
and
¥*=x-(¥/7) (1 - s). (3.9)
We take moments of (3.7), replacing the umbral
variable £ by £, and obtain
Bp=(Gy, o) = [ 00, Gx— 5t £)dt
+ _[o‘ S ,,Z&é B(x*, s)wd, b, dEds,
(3.10)

n =Gz, Op) fw<1> GO( —t g> dt
N -~ ~
+f_/ 22 B(x*, s)wo, ¢, dE ds.
Q 14 n=0

We define

F(X,[):(AD, .. ,,AN,AO, v ’AN)

and denote by F° the vector whose components are
moments of G)(x — tt, £) and G)(x ~ (£/7)1, £). The map-
ping (3. 10) may be written

F=LE)=[7 [ M, $)Fl(x*, #)s]de ds + F° (3.11)

where M(%,s) is a (2N + 2)X(2N + 2) matrix of functions.

Let S be the space of all functions f=f(x, ) such that
af/3x;, 7=1,2,3, exist and are continuous functions of
{ and x for all { = 0; and for each f there exists a con-
tinuous function M(¢) such that | f| and 19f/9x,| < M(¢)
for all {> 0. We denote by S*¥*2 the (2N + 1)-fold direct
product of S with itself.

We require that (1) G%x, £)=C* in x, (2) GY(x, £) € C°
in £, and (3) G} and VG9=O(exp| £ |*) uniformly in x for
some a<2. For G thus specified, the moments of

G)(x - Et, £) and Go(x (£/7)¢, £), designated by A® and
A° belong to S and hence F°=(AQ, ..., A%, A ., A9)
belongs to S?¥*2_ Further, for the spec1f1ed 1n1t1a1 dis-
tributions, the mapping / defined by (3. 11) is a mapping
from S2¥*2 into S24+2,

We define
N ~
Fl,= 2 (max |4,] + max IA"I)
n=0 x X
| A | 0A |
and introduce a norm for S2¥+2
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IFll, = max |[F|

O=t=<y, *

Then, for 0 spu<1,
NLEY = L (EN =0 [ [ Mg, ) {Fltex, 5%), ]

~ Fl(x*, x*), s]}at dsl,

. (3.12)
< [0 Pet | F —F'||, ds,
where P is a finite positive constant
N . ,
P=C 2 [ wid,l|o,|de (3.13)

with C an upper bound for the absolute vaiues of the
constant coefficients in the matrix M. Therefore,

1) = £ (F, < T2 Lexplu(1 = ) = 1JIF = £

(3.14)

Since there exists a T such that

o<

T lexp(T(1-w)-1}<1
we have a contraction mapping for { <7. If 4 =1 then
from (3.12), T'<1/P provides a contraction mapping.
Therefore, by the contraction mapping theorem there
exists a unique fixed point F*=(A¥, ... ,A;,Ag, e ,fi;;)
of the mapping 7= / (F). We define

G =Glx-e,6)+ [1 2

n=t

BX(x*, 5)¢,(£) ds,
N (3.15)

y
Gf =G = &/, D)+ [*2) BY*, 5)9 (D) ds,

n=0

where B} and B are expressed in terms of the com-
ponents A¥ and A* of the fixed point F*. Since (G¥, G¥)
satisfies (3. 3) and (3. 6), we have existence and uni-
queness of solutions for 0 <t <7T. We take G¥(x, £, T)
and GX(x, &, T) as the initial value at { =T and again
show that there is a contraction mapping for T <{<T,
where T, > T. By proceeding in this manner, we show
existence and uniqueness of solutions for all £:0 s{<w,
As a consequence of the contraction mapping, we also
have continuous dependence of the solution on the initial
data. Thus for the prescribed initial distributions, the
system is well set mathematically.

4. USE OF TRANSFORMS

We solve the system (3. 3) with initial conditions (3. 6)
by first taking a Fourier transform in x, followed by a
Laplace transform in /. The transformed system is
solved, a Laplace inversion is carried out, followed by
a Fourier inversion.

We denote by |S|2¥*2 the subspace of elements of
S2¥+2 guch that the components of the eiements and the
Fourier transforms of the components are absolutely
integrable in x and the transform space, respectively.
In addition to the three previous requirements for the
initial distributions, we require that (1) the initial dis-
tributions and their x gradients are absolutely integrable
functions of x and (2) the Fourier transforms of the
initial distributions and the components of their x
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gradients are absolutely integrable in the transform
space. With these specifications on the initial distri-
butions: (1) The moments of G and VG and the Fourier
transforms of these moments are absolutely integrable
in x and the transform space, respectively, and (2) the
operations of taking the Fourier transforms and taking
the moments of G} and VG} are commutative (see Ref. 1
for simple-gas models). We may repeat the previous
contraction mapping argument and show that 7 =/ (F)
has a unique fixed point  |S[Z¥*2,

Let 2 be the Fourier variable and denote the trans-
formed variable by a superscript T. The system (3. 3)
and (3. 6) can be written

0 . il
(a_t" - ik E)G]? = E B:‘d’n(g),
n=0 4.1)
2 .k .: N e}
(5 L g) Gf= 2 Bro,®),
where
Gl=elg], GI=e"tgl (4.2)
and
AT=AT(k, t)=(GT, ,)=€'(gT, $,), (4.3)
AT=AX(k, )= (GF, 0,) =" g7, $,),
GYT(k, £)=G{(k, £,0)=g](k, £,0), (4.4)
G37(k, £) = GH(k, £, 0) =g7 (k, £, 0). '
We consider the following equivalent system:
a N
57 Gi= 2 exp(~ik - £1) B;¢ (£),
n=0
(4. 5)
—c' 2 exp[- i(k/7) - Et] By (£),
where
G| =exp(~ik - &) Gif, (4. 6)
G, =exp[-i(k/7)- Et]GT
Al(k, t)=(G{ explik - Et), ¢,), 4.7
Alk, t)=(G}expli(k/7) - Et], 9,),
0 -0
Gl (k!E) "‘Gl T(k’ E)) (4_ 8)

GY'(k, &)= G3T(k,}).

By formal integration of (4. 5) we obtain

GI=GY(k, )+ [ 2 expl~ ik - £5)Bj0,(8) ds,
e (4.9)
P t X R "
Gi=G'(k, )+ [} 25 expl—i(k/r) - ks] Biy(B) ds.
Taking moments of (4.9), we have
A= [ explik - £1) 06,63 (k, &) dé
N
+ L exslib(t-5)-6) Biwg,p,deds,  (4.10)
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= £ expli(k/7) - tt]lwd, Gy (%, £) dE

+ fo'fe ?No expli(k/7)(t - s) - E]é;w¢m¢>nd£ ds.

We now investigate whether the transformed quantities
are such that we can apply the Laplace transform. This
requires estimates of bounds for the quantities involved
and these bounds are not rountinely obtained. We define

N
\Fill =2 max|F;|
n=0 R

and
| [F'|,O| =0t‘ria‘u‘(0 E4l.

We have from (4. 10)

gl < lagh+P [TIA) dt +P J, " explt(1 - 1)1 1A/l dt
(4.11)

and

ALl <14} ol +P [* explt(u - 1)] 114 ndt+Pf IA;llat

(4.12)

where P> 0 is defined by (3.13). From the continuity
of the norm, there exist ¢, and ¢, < [0, T'] such that

lagil=1[4"] ]|
and

MAL =147 4],
Thus for 0 <u<1

[larlzl =1l || < agh+PT]]|A’] |

P "
13 (exp[T(1-w)]-1)||A"|,] (4.13)

and

14" 2| = 1ALl <UAGlI+ 72 (1= explT(w - D[ |47 |

+PT||A’],].
From (4. 13) and (4. 14) we have

(4.14)

(1-PT)||A’],] <lA; I+

- (exp[T(1~ )] - 1) |a’] |

(4. 15)
and

(1-PT)| |A’] ] <Azl + lfu (1-exp[T(n-1)D|]A"] ;|-

Using (4. 16) in (4. 15), we have (4.16)
_ pp_ Pexp[T(1 - p)] - 1) (1 - exp[T(u - 1)])
(1 PT (- wP(i-PT) )
x| 1A] ] <tiagh +ZexBTA=RI=1 20 (4 1)

(1-w1-PD)

We examine the function contained in the term on the
left side of (4.17)
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P2(exp[T(1 - u)] - 1)(1 — exp[T(p —~ 1))

AD=P+ T(1 - wP (1~ PT)

(4.18)

We observe that f(T) is continuous for 0<T<1/P,
lim,_ . f(TY=P, and f(T)= P. Therefore, on the inter-
val 0<T <5<1/P, f(T) has a minimum P and a maxi-
mum B. Hence, for T <T,=min(s, 1/8)

1-PT21-f(TVT21-pT>0 (4.19)
and
1/[1~f(TYT])<1/(1=8T). (4. 20)
We need three additional estimates. We have
1 P (exp[T(1-u)]-1) _
(1—f(T)T)1—u (1~ PT) <1 (4.21)
and
1 P (l-exp[T(p=1)]) _
(1 —f(T)T) 1-p (1-PT) <1 (4.22)

for 0sT<T, where T,<T,. Finally, since 0<1-87<1
(for T > 0) there exists an integer N,> 1 such that
1 1
+ < .
1~8T (1-BT)%

1 (4.23)

Let T and u be fixed, 0<T <T,and 0su<1, We
consider the intervals [0, T], [T, 2T], [2T, 3T}, etc.,
and iterate using (4. 17) and a corresponding relationship
derived from (4.16) for | |A’| .1, and the inequalities
(4. 19) through (4. 23) and obtain

aexp[nT(1-p)] _ aexp(nT)

a-pryr% - a-prym (P

A’\nT‘ <

and
[[A],7| <a/(1-BT)™o (4. 25)

for all integers n > 0 where o =max(ll4;1l, IA;]). We
may make a separate calculation using (4. 11) and (4. 12)
and show that these bounds are also valid for p=1.

For every { =0 there exists an integer n such that
(n=1)T<{ <nT and thus

lagi<flart, < [la

nT| <

o exp[nT(1 - p)]
(1- 7)™

< a exp(nT)
T (1-pT)

S(l_—_%m Xexp[T+ (1+ ﬁQB—-—);?]

1-8T (4. 26)

and

[e]

WAL <[1A ] < 1A' | < =577

o N, B
< a —ﬁT)ND exp(l —QBT t).
(4.27)

Therefore, each of the components A/ and A} can grow
at most exponentially in time. Since A] and A/ are con-
tinuous functions of time, we have the existence of the
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Laplace transforms of these quantities. Further, by
(4.9) G{ and G} can grow at most exponentially in time
and are continuous and we may apply the Laplace trans-
form to them as well.

5. THE TRANSFORMED SYSTEM AND THE
DISPERSION RELATION

We take the Fourier transform in space (k the Fourier
variable) and the Laplace transform in time (o the
Laplace variable) of the system (2. 6). Denoting the
transformed quantities by a superscript T, we have

gT_ giT Eﬁ:obqfﬁbn ,
17 gwik-t+1 o-tk-t+1
(5.1)
T_ & ZIIN=OI;:¢H

= +
& o-ik/v-E+u o-ik/r-E+u

where b7 and b7 are defined in terms of the inner pro-
ducts (g7, ¢,) and (g7, ¢,). We take moments of (5.1)
and obtain a (2N + 2)X (2N + 2) linear system for
VI=(VT, ... V]

2N*2

(I-K)WVT=L, (5.2)

where VI are transforms of the moment quantities
ny,uy, Ty, oo fy,u,, Ty, <+« and K and L are defined by
inner products of ¢, with terms of (5.1). The quantities,
(G G,/(0 =ik - £+1)) and (¢, ¢,/(0—ik/v+ £+ p)), in
the matrix I — K can be evaluated in terms of the com-
plex error function.

Formally, we have

VI=(~K)L. (5.3)

V may be obtained by a Laplace inversion followed by
a Fourier inversion

* ¥+ {00
Vix, t)= 511; / exp(~— ik« x) dkf e;—gﬁg—l ({ -K)*!Ldo.

ymie

(5.4)

We postulate the existence of plane wave solutions to
(2. 8); that is, solutions of the form

& = q,(£) exp(of — ik - x),

A (5. 5)
& =4q,(§) exp(ot — ik - x),
where g, and g, € //. We define
¢, =gy, @), €,=(qy ). (5.6)

When (5. 5) and (5. 6) are substituted into (2. 6), the con-
jecture (5. 5) leads to the system (5.2) with L identically
zero. In order that

U-K)YWVT=0 (5.7
has a nontrivial solution we must have
det[(I ~K)(c, k)] =0. (5. 8)

This is the dispersion relation and it defines the func-
tional roots o= o(k).

We assume plane wave solutions and that o =o0(k) is a
root of the dispersion relation. For a one-dimensional
problem (2. 6) becomes
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-

C -~
(O‘ - ik&l + l)q1 = Co(;bo +{a,c, + [ =1 ¢1 + %(azcz + a4cz)¢’2s
v

B,
O—Z;E]_-"p" q2

=UCo0, +( a,¢, +ag ;C,l)'r‘f)l +%(&202+ 2142‘2)¢>2. (5.9)

Since g, and g,< // and {¢,} is a complete orthogonal
set in 4

=2 e, =2 g=% 0 e

’ 5.10
" o) % %, 6 (5.10)

We take inner products of the equations in (5.9) with ¢,
and ¢,, respectively, and obtain

2
o(qlv Q1) - i(k£1q1y ql) == (611, ql) +("§3 byT,(¢n? ql))v
{5.11)

N 2 -
a(q,, QZ)(_ i é €1 qy, C12) == i(gy, qz) +< 2 b:((l),,, ‘Iz)) .

n=0

This system provides two relationships for Reo

Reo = [—Zj} le, 2+ [ey]? (= 1+a)+ |d,|2(-1+a,)

+ Re (51 ?) a,+ Re(azzlz)cu] (g1, @)™,
(5.12)

Reo = [—u Tle P+ e (- w+a)+ |dy |2 (- 1+ ay)
n=3

+ Re (cl (:;,_1> 2117’2 + Re(dzjz)glz] (42, qz)-ly
where d,=V3/2 c,, dy=v3/2 ¢,, and {¢,} is assumed

orthonormal for n = 3. We multiply the first equation by
nq,,q,). the second by n3(q,, g,), and add to get

© © N 6 2
Reo = — [ng’ 2 leq2+ung 23 fe, |2+ pniM, | ¢, ~ -;}—,
n=3 n=3
+pniN, | d, - C}2 ‘ 2] x [nﬁ(ql, q,)+ n3(qs, ‘h)]_l'
(5.13)
From (5. 13) we have
Reo <0. (5.14)

Using the inequality 2(Ix1%+ [y1%)= |x-y|%, we have for
0<p<u/2 with u <1

+ 20mIN,(|d, 12 + | d,]?)

n(lj(]cllz+ ‘d2|2)+“"g('61’2+ ‘[12|2)>2pn‘1’M24c1I2+ %%,L

L)
megMzI’ G- %.Lll

+ pniN, ’dz— azlz)

(5. 15)
which when used in (5. 13) implies
gy, q;) + 193(q,, g3)
Reo > - {41271 292 20} —~1+5 . 5.16
<n?(ql, q,) + 13(qz, gz) (1) (5.16)
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Thus for plane wave solutions with o= o(k) a root of the
dispersion relation and 0 <p < /2, we have

~1+6(p)<Reo<0. (5.17)

The assumption that the normalized cross-collision fre-
quency p is less than or equal to one-half the normalized
collision frequency u is physically reasonable.

We now examine the matrix /-K for a one-dimensional
problem. After integrations have been carried out with
respect to £, and £,, the elements of I-K contain inte-
grals of the form

exp(- £2/2)dt,

M(K)=(2:)1/z f = (5.18)

M) = (zj)”z / et iéz 4 (519
where

‘e o;- 1 (5. 20)
and

i=9k+/_rp_ (5.21)

The integrals M(x) and M()) have the imaginary axes in
the A and A planes, respectively, as natural branch

cuts and each integral defines two different functions
(one in each half-plane). The analytic continuation of
any one of these functions across the branch cut does not
lead to the other corresponding function. Therefore, we
have four different functions in / — K determined by

Rex >0, Rex <0, Rex >0, and Rek <0.

In order to define the Laplace inversion, we require
Reo > 0. Hence, by (5.20) and (5. 21) the branches of
M(\) and M(X) depend on the sign of 2. We designate
these functions by M(1)*, M(QX) for k>0 and M(K)‘,M(i)'
for k< 0. Having specified the branches of M()) and
M(i) so that Reo> 0, we analytically continue these
branches across the branch cuts. We may then find
roots o(k) for all k such that det(l — K) vanishes. How-
ever, by (5.17) the roots o(k) such that
Reo(k) & (- 1+ 5, 0] do not correspond to plane waves.
(The analytic continuation of the dispersion relation
was proposed by Thurber. %)

If we assume %2> 0, then the dispersion relation is a
function of M(A)* and M(})* and the analytic continuations
of these functions. The roots of the dispersion relation
lie in three regions of the ¢ plane which we may ap-
propriately call: the hydrodynamic region (- p < Reo <0)
where the dispersion relation asymptotically approaches
the dispersion relation for the hydrodynamic conserva-
tion equations; the semihydrodynamic region
(- 1< Reo < - u) where one gas has hydrodynamic
properties and the other has rarefied properties; and
the rarefied region (Reo <1) where both gases have
rarefied properties. These regions correspond, respec-
tively, to the use in the dispersion relation of M(2)*
and M(X)*; M(A)* and the analytic continuation of M(})*;
and the analytic continuations of both M(A)* and M()".
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6. SUMMARY

The initial-value problem for the linearized Oppenheim
model was shown to have the following properties: (1) it

is well set mathematically, (2) it may justifiably be
solved by the use of Fourier—Laplace transforms, (3)
the roots of the dispersion relation lie in three regions
of the o plane which are related to physical properties
of the component gases, and (4) the roots o(k) of the
dispersion relation for plane wave solutions are bounded
by -1+ 6 <Reo <0. The latter result has the important
implication that the system is stable.

The theory developed in this investigation can be ex-
tended to more sophisticated models. The structure of
the Boltzmann equations for gas mixtures may ultimate-
ly be revealed through studies of kinetic models.
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Vestigial effects of singular potentials in diffusion theory and

quantum mechanics *
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Repulsive singular potentials of the form AV(x) = Aix-¢I™, A > 0, in the Feynman-Kac integral are
studied as a function of a. For > 2 such potentials completely suppress the contribution to the
integral from paths that reach the singularity, and thus, unavoidably, certain vestiges of the

potential remain even after the coefficient A{0. For 2 2 a = | careful definition by means of suitable
counter terms at the point of singularity (similar in spirit to renormalization counter terms in field
theory) can lead to complete elimination of effects of the potential as AJ0. For a < | no residual
effects of the potential exist as ALQ. In order to prove these results we rely on the theory of
stochastic processes using, in particular, local time and stochastic differential equations. These results
established for the Feynman-Kac integral conform with those known in the theory of differential
equations. In fact, a variety of vestigial effects can arise from suitable choices of counter terms, and
these correspond in a natural way to various self-adjoint extensions of the formal differential operator.

1. INTRODUCTION

Averages of various expressions in Wiener measure,
such as

F(T)= [ expl-x [ V(x()dt] i,y ()

= (expl-x [ Vex(n) ar), (1.1)
arise in a number of contexts, specifically in diffusion
theory and in the imaginary time formulation of quantum
theory. In Eq. (1.1), the Wiener measure L, is a nor-
malized Gaussian measure on continuous paths x(?),
0<¢<T, where x(0)=0, with mean zero and covariance
=min (¢, t’) (standard Wiener process). We are interested
in studying F for singular potentials V, such as V(x)
=|x~cl| ™™, a>0, when x> 0. Examples where ¢ =0 and
¢ #0 are both of interest. In the latter case and for suf-
ficiently large «, it is conceivable that those paths that
reach x = ¢ may not contribute to F at all since for such
paths the appropriate integral in the exponent diverges.*
If this behavior applies to a set of paths having nonzero
measure, then it follows that F(T) # 1 as A + 0, and
more fundamentally, that the basic stochastic process
has been unalterably modified. Should this situation
arise in a quantum mechanical context, it carries the
interesting consequence that once turned on the effects
of the repulsive singular potential cannot be completely
turned off.? These are examples of what we mean by
vestigial effects.

In the related Schrédinger problem with Hamiltonian

1 92 N A
T2 92 lx—-cl®

it is known® that for o <2 it is possible to choose ap-
propriate boundary conditions at the singularity so that
the associated Hamiltonian operator converges strongly
as A ¥ 0 to the free particle Hamiltonian. For a > 2 this
is impossible: no choice of boundary conditions permits
convergence to the free particle Hamiltonian as A + 0.

As far as possible we wish to reproduce these results in
the path space formulation by exploiting in that approach
what plays the role of various boundary conditions in
the differential equation approach. Not unexpectedly the
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role of boundary conditions is subsumed by regulariza-
tions of the potential at the singularity (e.g., by the
introduction of counter terms). Specifically, we approach
a given potential V(x)=|x - ¢|~* through a sequence of
bounded, continuous potentials V (x), e> 0, for which we
require pointwise convergence for all x # ¢ such that

Um V (x)=[x-c|™, xzc. (1.2)
€0

and, as it turns out for a <2, it is the freedom in
choosing such sequences that corresponds to different
boundary conditions and eventually to (possibly) distinct
self-adjoint extensions of the Hamiltonian.

Along with a sequence of regularized potentials V (x)
we consider the associated averages

F(T)=(expl~x [T V,(x() at)) (1.3)
each of which is unambiguously defined. Instead of (1. 1)
we henceforth adopt the prescription

F(T)=lim F,(T), (1.4)

provided that the limit exists. Very different results for
F(T) may arise for different choices of regularization
even though each choice converges pointwise to the
same potential except at the singularity.

The question of the behavior as A + 0 may be phrased
more precisely in terms of path space measures. Let
us introduce the measures v*, where

T
dv}= exp[- fo V. (x(1)) dt]du, (1.5)
and define, when it exists in the topology of weak con-
vergence of measures, the measure

= lim (1.6)

€40
While +? is equivalent to i, this need not be the case
for v*; it may be desirable or even necessary to choose
different regularizations for different \. We may say
that the effects of the interaction disappear as x +0
provided the weak limit obeys

lim V)‘ = L
lin By, (1.7m
and otherwise not.
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Our basic results may now be stated: For potentials
V(x)=lx-c! ™, a <2, regularizations exist such that
(1. 7) holds; for a > 2 no such regularizations exist.
While these results agree with those found using dif-
ferential equation techniques, as desired, it is informa-
tive to probe their anatomy in the path space picture
more deeply. Specifically, to obtain (1.7), nonnegative
regularizations may be employed for a <1, while for
a = 1 this is not the case.* Moreover, in the interval
1<@<3/2, v is equivalent to p,, for all A, while in
the interval 3/2 <a <2, v* is inequivalent to 1, or to
any other +*', A’#\. For a > 2 (or with nonnegative
regularizations for o= 1), * — i}, _a measure appropri-
ate to the absorbing Brownian motion® (also called ab-
sorbing Wiener process) in which all paths that reach
x=c are thereafter disregarded.®

One of our prime tools of analysis exploits a well-
known and important equivalence demonstrated by Kac.”
For bounded and continuous V(x) he has shown that the
quantity

F(T)=(expl-x [ V(x(t) at) (1.8)
may be expressed as
F(T)= [ ¥(x, T)dx, (1.9)

where y(x, T') is that solution of the differential equation
of generalized diffusion,

(%, t)

_ 1 2%, 1)
3 =3 ae —AV) ux ), (1.10)
determined by the initial condition
Px, 0) = 5(x). (1.11)

Clearly this equivalence can be applied to the regu-
larized forms V (x) to yield F (T), and where analyti-
cally tractable this technique, treated in detail in Ap-
pendices A and B, provides valuable information on the
explicit behavior for small e.

Another prime tool of our analysis is the use of local
time and stochastic differential equation techniques.?
Recently, ? we have been able to show how to realize a
normalized form of the measure +? in (1.5) as a set of
continuous paths on path space, much as Wiener mea-
sure is realized by a similar set of continuous paths.
An alternative way, equivalent to that in Eq. (1.7), in
which to ascertain that the influence of the potential dis~
appears is to study the modified paths (determined by
%) and to show in the limits ¢ ¥+ 0 and A + 0 that they re-
duce to the Wiener paths. We shall find this to be an
especially convenient method when the measures v*
=1im v} and y, are mutually inequivalent.

The discussion in this paper is confined solely to
one-dimensional systems., However, this work has been
motivated, in large measure, by a potential applicability
of these concepts and methods to fundamental problems
in quantum field theory. An initial discussion of this
application has already been given,? and we hope the
present work serves to stimulate further research in
these directions. °
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2. ANALYSIS OF REGULARIZED SINGULAR
POTENTIALS: RANDOM VARIABLE VIEWPOINT

Local time

In this section we shall find it convenient to employ
the so-called local time

Py)slmmls:y <x(s)<y+h, 0<ss<Tl/h,  (2.1)
40

where x(s) denotes a sample path and where m denotes

Lebesgue measure. !’ For benefit of the reader unfami-
liar with local time we indicate its formal definition as

well, namely

)= [ 5(x(s) - y)ds.

Clearly {*(y) is nonnegative and satisfies
[ ryay=T.

For almost every path (*(y) has compact support [/*(y)
=0 for ¥y = max x(s) or y <min x(s); both bounds almost
surely exist], and it has been shown that t*(y) is con-
tinuous in y.'! Additional properties of (*(y) will be in-
troduced as needed.

The basic random variable in (1.5) may be expressed
in terms of (*(y) as

Q.= [T Vixdi= [T V.5 1) dy,

which shows that the study of the random variable ¢, is
at the same time a study of the random field {*(y) for
various “smearing functions” V (y), a point of view not
uncommon in field theory contexts. In quantum field
theory, we recall, one studies field operators smeared
by test functions, and as a matter of fact, under certain
circumstances such smeared operators may be re-
garded as random variables.

Case <1
We note first, for a <1, that
Q=[" |y-c|™ t*p)dy<=, a.s.,

since t*(y) is continuous and has compact support,

hence is bounded, almost surely, and [v —c¢| ® is inte-
grable at ¢ provided o< 1. Consider next any regulariza-
tion sequence V (y) such that on each compact set C

J v -ly-cl=ldy~0
as e¥ 0. As a consequence, as ¢} 0,
Q. ~@l < [ [V.0) =y —c|™[ () dy~0, a.s.;
namely,

limQ, =lim [ V (x(6)dt
€40 0 0

(2.2)

= [T b0 -l di=g, as.

To convert these facts into properties of the measures
requires for A = 0 that exp(- 2Q,) < G uniformly in ¢
where (G) < ». This condition imposes a certain restric-
tion on the negative excursions of V (y), but one that is
difficult to specify in detail. [For example, if V (y)z - M
uniformly, then exp(—XQ,) <exp(A\MT) for x > 0. | With

a uniform bound G, it follows that »* — * weakly, where
dv* =exp(~ Q) du,, and finally v*— u, weakly.
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Nonnegative regularizations

The preceding discussion applies to rather general
regularizations V (x). Nevertheless, it is useful to direct
the discussion temporarily to regularizations that in
addition satisfy the condition V (x)=0. A convenient
example of this type is given by

V(o) =(|x~ c|+er*
which we shall refer to as the basic regularization.

Elsewhere! we have proven a theorem related to our
present discussion. Suitably rephrased that result is
given by the following:

Theorem: Let x(t) be a standard Wiener process, £*(y)
the local time as defined in (2. 1), and f(y) a nonnegative
measurable function. Then

Jrowmay=[7 fx)dt< =, a.s.,
if and only if, for each compact set C,

Lreay<e.

The application of this theorem to singular potentials
in which a <1 is direct and confirms our previous re-
sult. Let us instead determine its implications for
a>1. Consider, initially, the basic regularization with

Q.= [ (|ly=c| +eyetx(y)dy.

For the set of paths that do not reach ¢ in time < 7T,
dominated convergence leads to convergence of @, as
e¥0to

Q=] ly=-c|txw)ay.
For the set of paths that reach c¢ in some time 1< T,

lim Q> [ |y~ c[™t*y)dy

by Fatou’s lemma, which for ¢ =1 is almost surely in-
finite [since t*(c)> 0, which holds in a neighborhood of
¢ by continuity]. For more general nonnegative regu-

larizations V (x) let us assume that for some m and M,

m(ly=c|+ere<V(y)<sM(|y-c| +e)™
besides the fact V (y) — [y - c[ “®. Then almost surely
Q.= [ V. dy—Q=[ |y-c| tXt)dy. (2.3)

The variable @ in (2. 3) is almost surely finite for
those paths that never reach ¢ and almost surely infinite
for those paths that reach ¢. If ¢ =0, however, all paths
“reach” ¢ since x(0)=0, and one expects for « =1 that
@ =, a.s. Indeed, we know from our previous work!
that, for =1,

lirglj;T([x(l)[ +€)%dt=w, a.s..

As a consequence, F,—0 as ¢+ 0, where
T
F =(expl-a [" (|x()| +e)y>arly

for A>0 and « = 1. The calculation in Appendix A ex-
plicitly shows for =1 and a =2 that for fixed » > 0 and
for ¢+ 0 asymptotically

a=1: F_~const(lne')?, (2.4a)

a=2: F_~consté, (2. 4b)
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where 6=4(V1+8x +1), and const denotes an e-indepen-
dent, nonzero factor.

With nonnegative regularizations, it follows that
exp(—AQ,) <1 and therefore 1* is absolutely continuous
with respect to . In particular, if c=0, then =0
for all x>0, and quite clearly »* /4 u, as x+0.

For c¢+0, 1*#0, as noted previously below (2. 3), and
in fact +*—~ uj, ., which is defined as Wiener measure on
the set of paths that never reach x =c¢ and which has no
weight on the complementary set. We recall® that there
is a finite probability

p,=V2/1T fOICI exp(— x2/2T) dx

that throughout the interval 0 <s <T paths satisfy

(2.5)

x(s)§ ¢, when ¢Z20.
Consequently,
Jauy, =p.<1,

but this simple fact hardly does justice to the fundamen-
tal difference that exists between uj, . and pg. The
modification of the process described here is just the
one to which reference was made in Sec. 1.

In partial summary, we have seen above that for
a <1 regularizations exist, indeed nonnegative regu-
larizations, such that 1* -, as 2 +0, a sufficient con-
dition being given by (2. 2). We have also seen that for
a 21 no nonnegative regularization exists such that
- u,; instead, nonnegative regularizations, e.g., the
basic regularization, lead to pj, ., which is the measure
for absorbing Brownian motion.

We next consider alternative prescriptions to deter-
mine if the property v*— 1, can be arranged to hold for
a=z1.

Case 1 <a<3/2
We recast the expression for @, in the form

Q= [ V) tXy)dy

-

ly=ci =1

V.(9) ) dy + [

ly-clI>1

V.(y) tX(y)dy.

The latter integral converges as et 0 to

J

| y=cl>1

|y =cl-txy)dy, a.s.,
for any a. The former integral we write in the form

Soaa VO @ay= [ V.0)H) = 1¥(e)] dy

[E3

+ t%(c) f|y.c| L Ve)ay.

We impose on the regularization the requirement that

161‘131 fly-cl <1 Viy)dy =K, (2.6)
where —~ *<K <«  which evidently controls the last
term above (see below for examples). Now, continuity
properties of t*(y) imply !! that for any fixed, nonrandom
y < § there exists a nonnegative random variable £,

R, <=, a.s., such that

|tx3) = t¥(0)| < |y - c|'R,
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in the range |y - ¢| <1. Consequently, we find

| [ [Vw)~ |y —c|-] [t¥(y) = tX(c)] dv]

| y-cl <1

Ry Syt V) = |y =c|| |y =c|” ay.

If we next impose on the regularization the condition

/

ly_cl<1|

Vi ~ly-cl=|ly-c|"ay—o, (2.7

we have established that
lim [ Vi [) = 1%(c)] dy

€0 ly-cl =

-

(y~cl=<}

|v —c|=o[t*(y) = t*(c)]dy, a.s.

This procedure leads to convergence for o < 3/2 since
v < % can be chosen such that o —y < 1. (However, the
above procedure is nof valid for a = 3/2.)

As an example of a suitable regularization for o =1
we may choose

V) =(lx—c|+e)t=b(|x-c|+e? (2.8)
where to satisfy (2. 6)
b, =elne + O(e). 2.9

For 1< a<3/2, we may choose
V.(x)=( ix—c| +e)‘°‘—be'a(‘x—c‘ +e)y ot
where (2. 6) requires

b

€

o= ae/{a=1)+O(e¥).

The terms O(¢) and O(c*) influence the value of K in
(2. 6) and correspond to distinct self-adjoint extensions
of the corresponding Schrodinger differential operator.

Combining the results presented above, we have
determined in the interval 1 <@ < 3/2 that

Q=limQ = | lv = |- t*(y) dy + Kt*(c)
€40 ¥

-¢i>1

+J,

{y=cl =1

ly = c|=2[t¥(v) = t*(c)] dy,

almost surely, provided that conditions (2. 6) and (2. 7)
hold. Only the first term is necessarily nonnegative.

With regard to integrability of the path space distri-
butions, we note that Fatou’s lemma ensures

f lim exp(-1@Q,) di, < lim f exp(-1Q,) duy,=F.
€10 €Ln

If F< e, then exp(— Q) has finite u, integral, i.e.,
{exp(—2Q)) S F <, If this holds true for all » =0, this
is sufficient for uniform (in ¢) integrability *® of

exp(— 1@, ) which assures us that in fact equality holds,
i.e., (exp(=\@Q)=F< o,

We have analyzed the case o =1 and ¢ =0 in detail in
Appendix B by Feynman—Kac techniques. With V (x)
as given in (2. 8), it is shown that

F=lim(expl- [ "y, (u(ty) dtly (2.10)

satisfies 0 < F< «, for any T and all x» >0, if and only if
(2.9) holds true.
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A similar calculation using Feynman—Kac techniques
for the interval 1< a < 3/2 has also been carried out,
but is not included in the present paper. This analysis
confirms the uniform (in €) integrability of the measure
for 1< @<3/2,

The results stated above establish the stated proper-
ties in the range 1 <@ < 3/2, and we now turn our at-
tention to developing techniques to treat larger values
of a.

3. ANALYSIS OF REGULARIZED SINGULAR
POTENTIALS: PATH SPACE VIEWPOINT

Preliminaries

Preparatory to studying cases where o = 3/2 it is
convenient to rephrase our basic problem in the language
of stochastic differential equations. Consider the
Radon~Nikodym derivative

dyy
dp

=NXT)expl-2 [ v ()t 3.1)
where NQ(T) is a nonrandom positive factor chosen to
normalize {1 ,; the measure ., is nothing more than a
normalized form of v} as evident from Eq. (1.5). Else-~
where® we have shown that g, may be interpreted as a
probability measure for a certain Markov random pro-
cess of continuous sample paths Y(t), 0 <t <T, each of
which satisfies Y(0)=0. In a one-to-one fashion, each
path Y(¢) of the Y-process is effectively generated by a
corresponding path W(¢) of a standard Wiener process
by a stochastic differential equation

dy($)=a(Y (1), ) dt + dW(t) (3.2a)
or more properly in integral form as
Y(O) = [* a(Y(s), s)ds + W(2). (3.2Dh)
0

Equation (3. 2) has a unique continuous solution with
probability one 1314 if

la(x, s)~ a(v, s)| <const [x -]
and
|a(x, s)] <const (1+ le),

in the interval 0 <s <T; but these conditions are not
necessary. In fact, it suffices to have a(x, s) continuous
along with the second condition. !®

The connection between the drift term a(x, t) and the
potential V(x) (assumed bounded and continuous for
present purposes) is as follows. ® Let B(x, {) satisfy the
differential equation

B 1 9°B

2 ox? (3.3)

for 0 <{<T, subject to the final value condition B(x, T
=] for all x €R. Then it follows that

_ 8B(x, 8)/ox

a(x, t)= B0, 1) (3.4)
and the normalization factor in (3. 1) is given by
N=B(0,0)".
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Note that the equation for B is just the equation of gen-
eralized diffusion with time running backwards. A sim-
ple mathematical (or physical!) argument® shows that
B(x,t) is bounded, continuous, and strictly positive in
Rx{0, T].

The preceding picture applies for smooth potentials,
such as V, (x), ¢>0, for which a set of paths appropriate
to the Y-process may be determined from the stochastic
equation, at least in principle. Assume that these con-
tinuous paths converge as e ¥ 0, and that the resultant,
e-limiting paths are also continuous. Finally, if as
A+ 0, the e-limiting paths, say Y(t), converge to Wiener
path W(t), then we may assert that all traces of the
interaction vanish in the limit A + 0. If instead the paths
Y(t)#~ W(¢) as x ¥+ 0, then the interaction has left an
indelible imprint that cannot be removed.

Two examples

Two relatively simple examples enable one to gain
proper perspective on the limiting behavior of sample
paths. If B(x,t)=1 on RX[0,T], then V=0, a=0, Y(#)
=W(#), and p,= . This self-evident behavior simply
puts us on notice that B(x, t)— 1 or a(x, t)—~ 0 on Rx[0, T]
is a clue that Y(£)—~ W(¢) and iy {or i) — py,.

The other example describes the absorbing Brownian
motion and is more interesting. Let ¢#0, and without
loss of generality assume ¢ < 0. Choose B(x, t)=erf(£),
where £= |x —c|/V2(T ~{), defined on RX [0, T] except
at the single point x=c, {=T where £ is indeter-
minate.® For all x#+c¢, V=0 and

alx, t)y= (x = c)™* E(£), (3.5)

where
E(£)=2£ exp(- £2)/V7 erf(£).

With such a drift term Y (¢)# W(¢). Less evident is the
fact that p,=uj, /b, where p, is given by (2.5), and
thus the Y-process is an absorbing Wiener process. In
the standard picture u), . arises from dropping those
Wiener paths that reach x=c¢ at any { < T'; the measure
is normalized as a final step to give a probability mea-
sure. In the nonstandard picture provided by (3. 2) and
(3.5), the Y paths are deflected just the right amount to
yield the normalized distribution g}, ./p.. As such, the
Y paths necessarily satisfy Y(f)-c¢>0 for all {=0,
which is surely an essential feature of an absorbing
Wiener process.

Although we are unable to solve explicitly for Y(¢)
with the drift expression (3.5), the most essential
characteristics of such paths are dictated by the be-
haviov of the drift term near the singularity and hold for
any smooth function E(£) so long as E(£)=E(0)=1 for
I¢] <1. Fortunately, the stochastic equation for E(%)
replaced by 1 is well known and describes the three-
dimensional Bessel process. !* Specifically, the
stochastic equation

ay()=(Y(t) = eyt dt + dw(t)

is solved (uniquely'*) by

Y(1) = c=VWi(5) + Wi(D) + (W,(f) - cF’,
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where W,, W,, and W, are three, independent, standard
Wiener processes all conditioned to start at zero at
t=0, and where dW =[W,dW, + W,dW, + (W, ~ c)dW,]/
(Y =¢). At t=0, Y(t)~c=-c>0. Couple this with the
fact that W2(¢) + W2(#) > 0 with probability 1 for ¢>0,**
and we conclude that Y(¢) - ¢ > 0 with probability 1 for
all { = 0. By analogy the solutions with the relevant

a(x, t) given by (3. 5) also have the property that Y(¢)

— ¢ >0 with probability one for all { =0, namely that the
paths never cross c. In fact, even the statistics of the
Bessel process near the origin are approximately those
with the relevant a(x, f), which offers still further in-
sight into the paths appropriate to absorbing Brownian
motion.

Approximate ‘‘solutions’’

Unfortunately, for a given V(x), explicit expressions
for B or a are nearly nonexistent. However, since we
are ultimately interested in the double limit e+ 0, A ¥ 0,
we may choose one of a family of “equivalent” potentials
all leading to the same limiting behavior [such as V(x)
+v(x, t) where V(x) is the potential of interest and
v(x, t) is locally integrable and bounded below at infinity].
Indeed we can choose a simple analytic “solution”

B(x, t) that defines [by (3. 3)] a potential, generally time
dependent, that faithfully corresponds to the
singularity of the potential of interest.

In fact, we shall go one step further and faithfully
represent the singularity up to a time-dependent factor,
a modification that in no way influences the ultimate
limiting behavior, Briefly, in what follows we choose
“solutions” of the form

B(x, t) = expu(t)W(x)]

with u(f)>0 save for u(7)=0 [so that B(x, T)=1]. It
follows that a(x, £)= w(f)W’(x) and

MV(x)= uW"(x)+ L2W'3(x) + 20 W(x).

In our case the singularity always appears in the first
two terms, while the last term is always locally inte-
grable. While any smooth function p(#) would suffice,
we shall, for convenience, arbitrarily let u(¢)= const
=4 >0for 0<t=<,99T, and let u(!) decrease for

.99T <t <T so that u(T)=0. Since the last term in V
is unimportant, we confine our discussion to the inter-
val 0 <f<.99T where {1=0.

A. Equivalent processes

Behavior for a <1
In the framework of the preceding discussion let
B(x, ) =explu(|x = c[ +e)¥® /p(1+8)]

denote a “solution” where >0, y>1, and u=const>0
for 0 <¢<.997, and p falls smoothly for .997 <t <T
so that 4(T) =0 ensuring that B(x, T)=1. In this section
the function u will be irequently used and invariably it
is so defined. For reasons discussed above we do not
concern ourselves in detail with the behavior near {="T,
but instead concentrate on the interval 0 <¢<,997. In
that time interval,

alx,t)=psgn(x = ¢)|x - | (|x—c|”+e)®
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and
DV (%)= pBlx—c|22(|x = c| +e)5?
+uly-D]x—c|"|x-c|"+e)

+uzlx—c|2"2(|x—6|’+6")25.

These admittedly complicated expressions have been
chosen with a special purpose. Useful simplifications
would arise if y=1, but strictly speaking that option is
not open to us [since V.(x) is not integrable, and since
a(x,t) is not continuous which we shall find useful in
discussing the stochastic equations]. Instead, to avail
ourselves of those simplifications we choose y to be a
function of € that rapidly approaches 1 as ¢+ 0. That is,
we do not simply choose y =1 +¢, but rather something
really dramatic like ¥ =1 + exp(— €"'*") which will enable
us to characterize V, in an especially transparent
fashion.

With the proposed behavior for vy, we can effectively
set y =1 already with ¢<.1 so that the preceding ex-
pression for a reads

alx, )= sgn(x—c)(|x=c|+e)
and the one for V_ reads
AV (x) = uB(|x ~ c| + et +2us(x = c)eb+ p¥(|x —c| + eyt

Here we have introduced 25(x — ¢) to represent the
limiting form

lim (y = 1) |x - ¢|"2=25(x ~ ¢),
ril

valid for continuous test functions of compact support.
In this form, it is easy to see that V (x) is a regulariza-
tion of |x—c|®?', 3> 0, the latter two terms either
vanishing as e ¥ 0 or remaining completely “harmless”
(i.e., not influencing our general conclusions). Hence,
apart from such “harmless” terms, we may interpret.
the “solution” B(x,t) as applying to V= |x~c| % where
a=1-8<1, and where x = u3/2 >0. While a general
discussion of the stochastic equation is given later, it is
fairly clear as A + 0 (here arranged by u + 0) that Y ()

-~ W(¢) and p,— p,, as found earlier.

So convenient is the picture provided by y rapidly ap-
proaching unity with e that we shall henceforth adopt
such a procedure; indeed, we shall go so far as to omit
the intermediate stage of discussion and only present
the vesultant expressions that avise as y ¥ 1.

Behavior for 1 <a<3/2

Consider first the open interval 1< a < 3/2 and choose
the “solution”

B(x, t)=exp|- u(|x - c| +e)*/(1 - B)]

with u as before, but now with 0<3<1/2. In the interval
0 <t <.997 it follows that

alx, )=—psgn(x—c)(|x-c| +e)®
and
MV, (x)=Bu(|x=c| +e) ¥ = 2ud(x — )™ + p2(|x = c| +e)*
(3.6)

Since 28 <1 the last term in V_ is “harmless” and its
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“null” effects have just been established. We set
A=pRu/2>0 and note that we deal here with a regulariza-
tion of 1x —c|™® for 1< @ <3/2. The contribution of the

& function blows up as ¢ + 0; nevertheless, this term jusi
precisely vegularizes the first teym in the sense of

Eq. (2.6). The idealization that y =1 has enabled us to
bring the regularizing term into clear evidence. In ad-
dition, Eq. (2. 7) is satisfied, apart, of course, from
the last “harmless” term in (3. 6).

We defer a discussion of the stochastic equation but
do note that the paths Y(¢) exist and are unique for
e>0, and pass to continuous paths as ¢ ¥ 0. Finally, as
A 40 (p+ 0 here) the paths Y (f) — W(¢) and all traces of
the potential disappear, as one would expect from our
former analysis.

For a =1 choose
B(x,)=exp{p(|x—c|+e)[In({x - c| +&) = 1]},
with u as before. Then, for 0 <¢ <,997,
a(%, )= sgn(x — c)In(|x = ¢| +e¢)
and
AV, ()= p(|x—c| +e) +2ud(x = ¢) Ine + p2[In( |x - ¢ | + ).

The last term is “harmless” while the second term
provides just the correct regularization for the first
term in the sense of (2.6). When ¢¥ 0 followed by A ¥0
(here » = /2), it follows rather clearly that the paths
Y(t)— W(t), etc., as is appropriate.

Additional remarks

Remavk 1: The analysis given above for 1 €a<3/2
does not contain the arbitrary parameter K that was
encountered earlier [cf. Eq. (2.6)]. This is readily
corrected if we take any of our given “solutions”
B(x, t) =B, 4(x,t) and introduce B, (x, ) by

Bneuﬁx’ t) Eexp[k“'( |X = | + 6)] Bold(x’ [)

where p is as before and k is a constant to be chosen.
The so modified B leads to

a,,, =04+ kusgn(x ~c)
and
22V

€ new

=2V, o+ 2kub(x — ¢) + 2ku sgn(x ~ c)ag,  + k2.
Apart from additional “harmless” terms, we have
evidently been able to affect the integral of the potential
in the vicinity of the singularity. In each case k can be

chosen so that (2. 6) holds for any pregiven K.

For convenience we shall omit from future discussion
the arbitrariness illustrated here.

Remark 2: We briefly outline the “solution” for
1< @ < 3/2 corresponding to nonnegative regularizations
and which leads to absorbing Brownian motion. (An
analogous discussion for a =1 is omitted.) Let

B(x,t)=(|x—c| +€)? exp{( |x—c|+e*8/(1-8)] (3.7

where u is as before, 0<f<1/2, and 0=1 for 0 <!

<, 997, while o falls smoothly for . 997 <! <T such that
o(T)=0. We note that by itself the first factor is a
simplified “solution” descriptive of (the essential fea-
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tures of) absorbing Brownian motion. The complete
“solution” (3.7) leads, in the interval 0 <¢<.997, to

alx, t):sgn(x—c)[(|x—c! +e)'1+u(|x-c| +¢€)8)
and, for x+#c,
AV, (x)=p(2 - B)|x = c| +e) 8+ u3(|x = c| +€)28

In the limit e+ 0, we have already observed [in connec-
tion with Eq. (3.5) and subsequent discussion] that the
drift term a{x, t) is such that with probability 1 no path
ever reaches the singularity and thus the behavior of
V at x=c is immaterial. Consequently, the present
“solution” may be interpreted as a regularized form of
[x—-cl™®, 1<a<3/2, with x=p(1-3/2)>0, such that
as A+ 0 (i.e., p ¥ 0) absorbing Brownian motion, and
not standard Brownian motion arises. The big, bold
clue to this behavior can be read directly from the
expression for the drift term!

B. Inequivalent processes

The reason Eq. (3. 6) fails to apply for a = 3/2 is
that for 28 = 1 the last term in the potential is no longer
“harmless. ” This fact suggests the introduction of one
or more counter terms chosen to cancel the “harmful”
terms and to ensure that only “harmless” terms re-
main. With this simple argument as motivation, we now
treat cases where a = 3/2. In order to avoid logarithmic
terms in the initial analysis we confine ourselves to the
restricted set of o values that satisfy

J—1
+ — <1+
1 7 <« 1

J
J+1
for some J=2, 3,4, ---. Observe that such ¢ respect
the general condition 3/2<a < 2.

Case 3/2 < «a < 2 (no logarithmic terms)

~ The “solution” for B is a straightforward generaliza-
tion of those given earlier. Let
J

B(x,t)=exp (— jZ} fiwd(lx = c| +e) 81 - B,)>, (3.8)
where f, =1 and the remaining f, are constants to be
determined, p is as before and p’ is the jth power of p,
and B, are positive parameters ordered so that
1>8,>8,>-->8,>0, where J=2,3, --+ is chosen so
that

J-1)/J<B=a-1<J/(J+1). (3.9)
Final specification of f; and 8,, j= 2, appears below.

From the “solution” given above we find, for
0<¢t=<,997, that

a(x, t)= - 5;‘ Fir( |x— c[ +¢€) % sgn(x - ¢)

and (from the fact that 2aV =09a/9x + a?)

(3.10)

2NV (x)= é} fiB [x=c| +e) 8 - 25(x = ¢) i}f,ui €8

J
+ 5 fuf ml™ (x| + ) oom,

n,m=1

(3.11)

We assume the leading term in the potential, namely

789 J. Math. Phys., Vol. 16, No. 4, April 1975

Blu(lx— c] +e)y 1By,

is the term of interest with A =8,1/2, and we choose the
remaining parameters to cancel all potentially “harm-
ful” terms. Since this cancellation must hold identically
in u, we require that

1+8;=8,+8,, forn+tm=j,
and

ijj:""J%):j fnfmv

for all j, 2 <j <J. The solution of the 8 equation is
simply

B,=1-(1-Bn, n=1,...,J. (3.12)

The f, are determined uniquely but no equally simple
solution can be given for them in the general case.

The cancellation between first and last terms in the
potential is not complete and the remainder is given by

T fuf (x| + ),

nm>aJ+l
But all such terms ave “havrmless” since
B,tB8,=2-(1-Bn+m)<2-(1-8)(J+1)<1,

as follows from (3.9) and (3. 12). It is of course this
very property that dictates the number of counter terms
in the first place.

In summary, therefore, the conditions imposed imply
that the “solution” (3. 8) corresponds to

J
AV, (x)=p,u(|x—c| + 0P =25(x —¢) ) fimleti+h.t.,
i

(3.13)

where h.t. denotes “harmless terms,” and A=8,u/2.
The essential distinction for a = 3/2, when compared
to @ <3/2, is that x-dependent regularizations are ve-
quived, as manifested by the power series in u that ap-
pears as a coefficient of 5(x - ¢). A moment’s thought
will convince the reader that this fact prohibits the al-
most sure convergence of

Q= [" vixn)at,

as ¢¥0, whenever ¢ > 3/2, which fact means that in the
limit ¢ + 0 the measures p, for distinct A values are
mutually singular for ¢=0 (or for the subset of paths
that reach c if c#0).

Finally, we observe that with the drift term (3. 10)
the sample paths pass to Wiener paths in the appropriate
limits since the characteristic clue for absorbing
Brownian motion is absent. (This fact will be discussed
further below).

Case 3/2 < o < 2 (logarithmic terms)

We complete the analysis for o < 2 by considering
those cases where

W-1)/J=p=a~1,

In this case B(x, t) is as above except that the last factor
(where j=J) is given by

exp{f,u?(jx—c| +e)[In(|x —c| +e) - 1]}

J=2,3, -,

(3.14)
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rather than by the form implicit in (3. 8). As a conse-
quence, the formulas for a and V, are changed so that

a(x, t) =1 47 In( ]x—c| +¢€) sgn{x - c)
+{Eq. (3.10) with J replaced by J - 1}
(3.15)
and
2V (x)=F,ul(|x—c| + e +25(x —c)f, 1’ Ine
+[fulm(lx-c| +oP
+2f,17 In(|x - ¢| +¢) sgn(x - ¢)
X{Eq. (3.10) with J replaced by J - 1}
+{Eq. (3.11) with J replaced by J —1}. (3.16)

The previous equations for 8; and f; hold for all j, where
now 2 <j <J -1, (f J=2 those equations are empty.)
The relation for j=J is replaced by

1=8,+8,, n+m=d,

fJ:_ Z fnfm‘

n+m=J

Since B, = (J — 1)/J the solution for 8, is given by 8,
=1~n/J, n=1,...,d-1, and f, is determined ac-
cordingly. Again the remaining terms are “harmless”
being of the form [In((x —c[ +€) [,

In(|x—c|+e)(|x—c|+ey%, g,<1,
or
(Jx=c|+e)ytrdm n+m=J+1,
where
B, tB,=2—-(n+tm)/J<1-1/J<1.
In summary, if 8, +l=a=1+J -1)/J, =2,3, «-,
and the relevant conditions for 8, and f, hold, then the

“golution” B(x, t) in (3. 8) as modified by (3. 14) applies
to the potential

ZXVE(x):Blp,(|x— cl + €)"1"F1
-25(x=¢) Jilfju €% —f,u’Ine) +h.t. (3.17)
=1

With this regularization the drift term a(x, ) in (3. 15)
reduces to zero in the appropriate limits establishing
that all traces of the interaction vanish.

Apart from a discussion of the stochastic equations,
this concludes our analysis for the range 3/2 < o <2.

Case ¢ =2
Nonperturbative Analysis: For a =2 choose
B(x,)=(|x=c]|+¢)° (3.18)

where 6=const for 0 <t <.99T, and ¢ goes smoothly to
zero thereafter so that 6(7)=0. In the interval 0 <¢
<.99T,

a(x,t)=0 sgn(x = c)(|x =c| +e)? (3.19)
and

AV (x)=6(6 - 1)( ]x - c| +e)2+265(x—c)t.  (3.20)
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Assume that paths are found from the stochastic equa-
tion, and the limit ¢+ 0 is taken. With A= 6(6~1)/2, we
observe that two ways for X ¥+ 0 are possible. In one such
way, A+ 0 by 640, which has the effect of reducing the
drift term to zero and leading to a vanishing of the in-
teraction effects. In the other way, A+0 by 6+ 1, for
which a(x,t)—~ (x - ¢)*, appropriate to the absorbing
Brownian motion (in our approximate “solution” sense,
of course). In addition, from our analysis of nonnegative
regularizations in Sec. 2 we know that absorbing
Brownian motion also arises as A ¥+ 0 by 6+ 1 with just
the basic regularization and without requiring the 5-
function term in (3. 20).

In'summary, with the “solution” (3. 18) and 8<0 the
regularization ensures the effects of the potential vanish
as A ¥0 (640). Solving for 6 we may express this special
regularization in the form

-1 -
V()= (|x-c| +ee - HBE=C) (3.21)
1+V1+8x
which illustrates an involved dependence on the coupling
A. The singularity in this expression at A =—- 1/8 arises

simply from the fact that for real 6, x=6(6-1)/2

=~ 1/8, but this fact need not concern us here. On the
other hand, there is another restriction on € that limits
the validity of (3. 21).

It is of fundamental importance to understand that &
is not arbitrary and that we must requive 6> -~ 1. Al-
though B(x, t) in (3. 18) is only an approximate “solu-
tion, 7 it is essentially accurate near the singularity
x=c and in the range 0 <{=<,99T. Clearly, after ¢+V0,
B(x, t) is not locally integrable at the singularity unless
#> -1, and this holds for all t, 0 <f<,99T.

The importance of this fact may be seen as follows.
Let

byl )= [ 8(x = x(£)) du 4 (x)

denote the normalized density of Y paths at (x,¢)eR
x[0, T]. Then it follows that®

bylx, )= B(x, t) y(x, t)/B(0, 0)

where (x, {) is the function determined by Egs. (1. 10)
and (1.11). Of course, B and i are closely related; if
W(x, £;z) denotes the solution of (1. 10) subject to ¥(x, 0;2)
=8(x — 2), then y(x, t)=(x, t;0) and B(x, t)

= [(x, T —t;2)dz. Conversely, in order to be acceptable,
two functions ¥(x, ) and B{x, t} that satisfy the proper
differential equation and boundary conditions must
necessarily also satisfy B(x, H)g(x, {) € L' for almost all
t, 0<t<T, since py(x, t) is integrable. In general, any
singularity in B(x, t) is not cancelled by a corresponding
vanishing of i(x, ¢), and thus a generally necessary con-
dition is that B(x, ) must be locally integrable for al-~
most all £. [By symmetry, similar remarks apply to
the function ¥(x, t) which should be integrable according
to Eq. (1.9).]

For 6 in the range — 1< 6 <0, it follows that 0 s <1,
i.e., A is bounded above. Equation (3.21) has validity
only for 0 <A< 1. On the other hand, larger values of x
may always be reached with the 6> 1 solutions. To
generate a family of potentials for all A > 0 that eliminate
interaction effects as A ¥ 0, it is possible (even if un-

(3.22)

(3.23)
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esthetic) to choose 8 > 1 solutions for large X values and
to switch to <0 solutions as \ is reduced and when the
integrability condition allows. Precisely the same view-
point is needed to generate similar behaving solutions
in the related Schrodinger problem. >

Pevturbative Analysis: It is tempting to ask whether
the results for @ =2 are in any way approximated by
those for a < 2 when J, the number of “subtraction
terms, ” becomes very large. If this approximation is
to make sense, then it must apply in the limit J —« for
which 8, =1, and indeed 8,=1 for all n. The equation
for the f coefficients then becomes

fi== 2 fofm

nrm=g

j=2. (3.24)
With A =8,u/2=u/2, we may ask whether the coef-

ficients of the regularization 6 function in (3. 13) and

in (3. 20) are the same; namely, whether

> FA) = — 6= iVITE -1]. (3. 25)
i=1

Since 6(6—~1)=2x, the sought for equality requires that
Y + 2 20 =2

a relation which formally holds identically in ) term by
term in vivtue of (3.24). Moreover, substitution of the
relation 6=~75 f, u’, coupled with ,=1 for all », con-
verts Eqs. (3.10) and (3. 11) for @ and V, into Egs.

(3. 19) and (3. 20), respectively. Even B(x,?) in (3. 8) can
be suitably rescaled (without essential change) so that
in the limit 8, ¢+ 1, for all j, the “solution” (3. 18) is
recovered.

By implication of the argument above, the perturba-
tion series for 6 converges absolutely for 0 <1 <1/8, to
yield §=3[1 - VI + 8\]. For real » =1/8 the perturba-
tion solution may be extended by analytic continuation
or by standard summation techniques for divergent
power series. However, the perturbation theory ap-
proach is connected only with the solutions where 6 <0,
namely, those for which all interaction effects vanish
as A ¥ 0 and yet which make sense for x <1. The non-
perturbative solution, on the other hand, can avail it-
self of the 8> 1 solutions for which X can take on any
positive value. These latter solutions cannot be reached
through perturbation theory from the standard Wiener
process, a fact that is wholly unrelated to the conver-
gence or nonconvergence of the perturbation series.
However, these ‘“unreachable” solutions can be reached
by perturbation theory taking the absovbing Wiener
process as the “unperturbed” starting point; this is the
viewpoint advocated in Ref. 2.

Case o > 2

For a > 2 there is only one form of B(x, ¢) that is
locally integrable, and this form inevitably leads to
absorbing Brownian motion.

In the interval 0 <¢ <. 99T choose

2V
B(x,)=X""*K, (4, (m X1'°‘/2>, (3.26)

where X= |x —c| +¢ and K, is the usual modified Bessel
function. For .99T <¢ <T, however, we let B(x,{)
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change smoothly so as to match the condition B(x,T)=1.
The other possible form for B(x, f) involves

2V -
x1/2 Ill(a-z’(———(a_z) Xt a/2).

In the limit €+ 0 only the first solution is locally inte-
grable at the singularity for any x> 0.

The solution B(x, {) in (3. 26) corresponds, in the
interval 0 <£=<.99T, exactly to

VE(x):(lx—-c] +ey®, x#c.

and leads to the drift term

Assume that the limit ¢ ¥ 0 has been taken and let us
study the form of the drift term as A ¥ 0. This means
we sit at fixed {x—c| >0 and study the drift term for
small . For simplicity we assume (@ -2)'=v>0 is
not an integer. Then to obtain the limiting behavior as
A ¥ 0 it suffices to use

K, (z) < z7[1+ 0(22°)],
where & =min{l, v), for which
B(x, t) <X[1+0(°X"%/¥)]
where X= |x ~c|. Consequently,
a(x, ) =(x =)+ 0%

which shows that as x ¥ 0 all such processes for o > 2
limif to absorbing Brownian motion. A parallel argu-
ment leads to the same result for (o - 2)1=m,
m=1,2,....

C. Discussion of stochastic equations

As evident from the preceding discussion, we must
deal with stochastic differential equations of the form

dY () =a(Y(¢), ) dt + dW(¢) (3.27)

for a variety of choices of the drift term a(x, {). Toward
the beginning of this section, we discussed a form of the
drift coefficients in which there appeared a parameter

y that rapidly approached one withe [e.g., y=1

+ exp(~€e%)]. Typical of the form taken by a(x, t) when
the parameter v is made explicit is the expression

alx, t)=—p sgn(x - c) [x—c|"H(|x—c|"+e)8 (3.28)

which is valid in the interval 1< o=8+1<3/2 and for
0 <{<.99T. Inspection of the relevant expressions ap-
plicable in the range 0 < a <2 ensure that in each case
a(x, t) is continuous and satisfies the bound

la(x, 1)|? <K(1 + x?)

for some K <«, In view of the simple form (namely
unity) of the diffusion coefficient, these properties for
a(x, t) are sufficient conditions !® to guarantee the
existence and uniqueness of a continuous solution Y(t)
with probability one for every e>0. As ¢+ 0, however,
the bound on a(x, ¢) tends to infinity and there is no ob-
vious guarantee that the resultant paths are continuous.

In order to discuss the behavior of the paths Y({) as
€+0, we probe more deeply into the behavior of the
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paths near the singularity by exploiting the following
simple transformation. For each path Y(¢) and ¢> 0 let
us introduce the path

Z(O)=f(Y () =(Y(£)-c).
This transformation is evidently invertible in the form
Y(8) - c=Z4/3(t)= sgn(Z(1)) |Z(t) [*/°.

Since Y(0)=0, Z(0)=- c® and, in addition, the “trouble
point” Y({)=c has been (arbitrarily) mapped into Z(t)
=0. At any rate Z(!) satisfies a stochastic differential
equation in virtue of the fact that Y(¢) satisfies one.
Specifically,

AzZ()=f"(Y()dy (1) + 3 f (Y (£)) dt,
so that if Y(!) fulfills (3. 27) then

dZ(t)=a(Z(t), £y dt + &(Z(t), £) dW(P), (3.29a)
where
a(Z(t), £y=3223(1) + 3| Z() |2/ alc + 223, 1),
(3. 29b)
o (z(f), t)=3]z(1)|2/5. (3.29¢)

For the typical form of a(x, {) given in (3. 28) this new
stochastic equation becomes, in the interval 0 <{ <, 99T,

r/3
dZ(1)=3Z3(f) (1 - “—;(‘7%277)5) dt +3|Z(t)|2/2 aw ().

(3.30)

Although (3. 30) itself does not have a unique solution, it
does have a unique continuous solution when we require
as well that Z/3(1) + ¢ satisfy (3. 27) with (3. 28).

In the formulation in terms of Z paths the drift and
diffusion coefficients remain locally bounded as ¢+ 0 and
fulfill a condition of the form

|a(x, |2+ |5(x, 1) |2 <K(1+2)

for some K < © uniformly in e. Moreover, the drift and
diffusion terms are both continuous uniformly in e.
These properties hold not only in the example illustrated
by (3. 30) where 0<g< 4, but in the more general cases
considered involving sums of terms each of which has

Bj <1. In view of these facts, we are assured that the
limiting equation as ¢+ 0, i.e.,

dZ(H)=3Z3(1) [1 - p |Z(t) [ /3)de + 3| Z() [*/2 aw(2),

(3.31)
for 0<g< 4 and 0 <¢<.997, has a continuous solution
with probability one. !°

To help understand the stochastic equations for the
Z paths it is helpful to consider the simple example

Z(ty=W(t) - )

for W(t) a standard Brownian motion. Then it follows
that

dZ(t) =3ZY/3(t) dt + 3| Z(£)|2/® dw(1). (3.32)
Observe that as pw +0 (A ¥0), Eq. (3. 31) passes contin-
uously into Eq. (3. 32) suggesting that the Y paths pass
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to Wiener paths and that the final distribution corre-
sponds to Brownian motion. Thus, all traces of the po-
tential disappear.

In case the final distribution is absorbing Brownian
motion we are still assured of continuous paths when
e ¥ 0. To illustrate this we adopt the form of a(x, {) im-
plicit in Remark 2 above. In the interval 1<«
=8+ 1<3/2 this leads to a stochastic equation for Z(t)
of the form (0 <t <.997)

'Z(t)lrls
Z(OV B+ ¢

p1Z(§)1/3 )d
(lZ(t)l7/3+e7')B L

dZ(t)=3Z*3(8) (1 +

+3]2(8) |2/ aw(t). (3.33)
This equation has with probability 1 a continuous solu-
tion for every ¢ > 0 that is made unique by requiring that
ZY3(t) + ¢ satisfy the Y form of the stochastic equation.
The limiting equation as ¢ ¥ 0 reads

AZ(®)=3Z*30)[2+ u|Z(t) | B 3] at + 3| Z(6) |22 aw (1)

(3.34)
which has a continuous solution with probability 1.
Lastly, when i +0 (A ¥ 0) the resultant equation
dzZ(t)=62Z*3(1) dt + 3| Z(t) [2/3 dw(¢) (3. 35)

is easily seen to be solved by
Z(t)=[Wi() + Wi(t) + (W,(0) - P12,

which is just our Bessel process idealization of ab-
sorbing Brownian motion. Observe the extremely sim-
ple relationship in the Z-path description between Egs.
(3. 32) and (3. 35), which are the stochastic equations for
Wiener and (idealized) absorbing Wiener processes,
respectively.

We now proceed to show the existence of a limiting
process as ¢ ¥+ 0. For each ¢ >0 we have a unique con-
tinuous family of Y paths with probability 1, which with
probability 1 satisfy the Z form of the stochastic dif-
ferential equation where Z(¢) = (Y(t) - ¢)®. This means
we have for each ¢ >0 a measure on path space for the
Y paths (u,) and another one for the Z paths (i, say).
From compactness arguments we shall show conver-
gence of a subsequence of the measures p, ase+ 0,
which in turn shows convergence of a subsequence of
the measures u, as e+ 0. According to (3. 29) we have

z0)- 2] < | [ @z(s),vas| +3] [ |z awis)],
which leads directly to the relation
20 -2 <8((| [ @z(s), )as|

+81(f‘: |Z(s)\2/3dW(s)|4>).
We next note that'®
(L 126) |25 awis) | < 36— b) [ ¢ |2(9)[*/) ds.
0 0

For Z large (i.e., Y —c large) the paths are well be-
haved and for all intents and purposes are Wiener-like.
Only near Z =0 are the paths significantly changed, but
this does not prevent us from putting a bound on the
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previous averages that leads to
(|2(t) - 2(t,) [ <K(t -1,

for some K < =, uniformly in e. This gives a sufficient
compactness condition to ensure that a subsequence of
path space distributions weakly converges to a path
space distribution as ¢+ 0. " From the convergence of
the drift term, it is clear that every convergent sub-
sequence of distributions has the same limit, and there-
fore that in fact the path space distributions weakly con-
verge to a path space distribution as ¢+ 0. In addition,
results of Skorokhod!® ensure that the paths Z(t) con-
verge as c¢ ¥ 0 with probability 1 to paths Z(¢) for e=0,
and that moreover those paths satisfy the appropriate
limiting stochastic equation. Consequently, the Y paths
satisfy their limiting stochastic equation, suitably
interpreted, with probability one.

A parallel argument based on the limit 4 +0 (i.e.,
A ¥ 0) leads to the weak convergence of the relevant path
space distributions as well as a convergence of the as-
sociated paths with probability one. In this way we
establish the claimed properties of the paths and dis-
tributions as the limits ¢+ 0 and A ¥ 0 are taken. The
ultimate distributions are those of either the Wiener
process or the absorbing Wiener process depending on
the ultimate form of the drift term.

SUMMARY

In quantum mechanics as well as diffusion theory
there are perturbations so singular that they leave in-
delible imprints on systems after the coupling coef-
ficient is reduced to zero, which we have termed vesti-
gial effects. The simple example of a particle moving in
a singular, one-dimensional potential is used to em-
phasize that such vestigial effects can clearly be dis-
played in terms of Feynman—Kac integrals on path
space, their associated measures and the closely related
stochastic differential equations. The vestigial effects
can be controlled by adding counter terms to the poten-
tial, and this in fact constitutes one way of defining dif-
ferent self-adjoint extensions of a formal Hamiltonian
operator. The cases with V(x)=x-c|™®, 1sa <2,
are already indicative of what may happen in quantum
field theory where very singular perturbations abound
and helpful mathematical pictures are needed.
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APPENDIX A

We are interested in the asymptotic behavior as e+ 0
of

FUT)=(exp(= %, [T([=(0)] +e) de =, [T (| x(0)] +6)= any,

(A1)
with
)‘120v —§$2)\2S2, (AZ)
which we shall obtain by solving the Feynman—Kac dif-

ferential equation (1.10). In this appendix, we shall
discuss the cases with A, =0, 2,2 0 and \,>0, %, >0,
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The results with the cases A, >0 have been presented in
(2.4).

Let the Laplace transform on T of y(x, T) be denoted
by H(x, s) and its abscissa of convergence by ¢. The
formula (1. 9) then involves the inverse Laplace trans-
formation,

F(T)= ﬁ f ds exp(sT) f dx B(x, s), (A3)
c -0
where the contour C on the complex s plane is a straight
line parallel to the imaginary axis and lying to the right
of s=0. The differential equation (1. 10) and the bound-
ary condition become

1 42 by A -
(‘5252_+ I (lxlie)z +s) ¥ (x,8)=0, (A4)
(dp/dx], .- = [dP/dx], o + 2, (A5)
and
Ux,s) = 0 (s>0). (A6)

The function J(x, s) thus defined for s >0 is to be con-
tinued analytically over the complex s plane.

The solutions to (A4) are the Whittaker functions, 8
W,.»(2) and M,  (z) with

z=al|x| +¢] (A7)

and

a=(8s)2, Ek=-2/a, mP-i=2a, (A8)

We take the convention that s'/? be defined on the s-
plane cut along the negative real axis such that s!/2= Vs
for s>0.

We note here that, due to the restriction 1, =0 in
(A2), the parameter % ranges, if at all, only over the
left-hand half of its complex plane as s varies over the
cut plane of its own; this fact will be found to have a
vital importance for the analyticity properties of #(x, s).
The restriction of A, in (A2) enables us to use a real
parameter u as defined by

Wu+1)=2, -—-3<su<l, (A9)
The Whittaker functions behave asymptotically as
follows:
As |z| ==, largz|<w/2 (which cases are all we
need),
_ T(2+2u) -2 1
Mk,m(z)" F(l—k+u) Z GXp(z/z)[1+O(z )]v
W m(2)=2* exp(— z/2)[1 + 0(z1)]. (A10)

When z— 0, however, two cases have to be distinguished.
Namely, if u#0

Mk,m(z) — zl+u + O(Zz*u),

k+u Zlen
I(1-Fk—p)T(2+2u)

W (o) = TERE2)

1
Y TA<hr o

) {2pz7* + (B + p)z*™*}
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_Lo(zz-lu!)>, (All)

and if p =0, the second function must be understood as
lim, W, ,,s,,, so that

Mky‘m(z) lu:n =z+ ()(Zz}'

1

W (@)oo= P

(1 ~2/2—kz{¥(1 -k}~ 2¥(1)~1}

— kz logz + O(22 logz)], (A12)

where ¥( -) is the digamma function'® and ¥(1)
= ~0.577 - is the negative of Euler’'s constant.

Now, we can write down the solution to the differential
equation (A4) which satisfies the boundary conditions
(AD) and (A6); it is

Wx, $)=N W, (al|x] +€]) (A13)
with the normalization constant
No={oa-[-aw, (2)/dz],_ )" (A14)
Let, for s>0,
[“’ P, s) dx = EE ! [.o W, ) dt
J o [-aW, (2)/dz] . Jy. *
= 2 floe, k), (A15)

exhibiting that the s-dependence of this function comes
onlv through

ae=(8325)/2 and k=-2x,/(8s)/2 (A16)
Then, (A3) takes the form
F(T= -—L / € f(ae, By exp(sT)ds (A17)
: 2ri J,

and we are interested in the limit as e+ 0.

Before starting the evaluation of the integral, we
have to study the analyticity of the integrand f(we, k) on
the complex s plane, thereby fixing the contour C of
the infegration. 1t is enough for our purpose to look at
the positive real axis s >0, because, being a Laplace
transform, f(ae, k) should be analytic on the part Res > ¢
of the s plane if it is finite on the portion s > ¢ of the
real axis. The function f(ae, 2) as defined by (A15) has
three factors. All the first factor 2/a”=1/(4s) can pos-
sibly do is to produce a pole at s =0. [But, see (A30)
and (B7). | Under the restriction (A2) of 1, and x,, the
third factor is analytic all over the cut s plane except
possibly at s =0, as one sees from the integral rep-
resentation, valid for Re{l1~Fk+ u)>0,

W, (2)=[T(1 = b+ p)|? gtem 2712w

x [T exp(— Lz cosh6) sinh'*2*6 coth?*(10)d6,
T

(A18)
and the range of # as remarked earlier.

The analyticity of the second factor depends critically
on A, and 1,. In the case of »,, 1, >0, we shall show
shortly that the derivative can have no zeros when
s= 0. This implies, when combined with the analyticity
of the other two factors, that c=0, which in turn im-
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plies that f(ae, k), being a Laplace transform with 0=0,
is analytic everywhere on the right-hand half of the

s plane. To prove de'm(z)/dz;eo, 220, we look at (A4)
to notice that Wk.m(z) =N, (x) with z=a(x +¢) is convex
everywhere towards the x axis, i.e., [dZWk'm(Z)/dZZ]/
W, m2)>0, 2>0. Then, dW, (z)/dz cannot change sign
because it is continuous and has to vanish as z — =,

Thus, in the case of A, >0, %,> 0, we have found that
0=0 and therefore that the contour C of the integral
(A17) can be put on the imaginary axis of the s plane.

When 1, =0, %,<0, the derivative vanishes at one
point, say z=2z,>0 giving a pole to f{ae, 0). To see this,
observe from (A18) that W,  (z)>0 for z>0, which, if
combined with the differential equation (A4), implies that
d*W, .(z)/dz® changes sign once and only once as z
varies over the positive real axis. Then, taking into
account that dW,  (z)/dz>0, d*W, (2)/d?z<0 in the
neighborhood of z=0 and that W,  (z)—~ 0 as z— =, one
sees that dW, _(z)/dz should vanish once and only once
on the positive real z axis. In this case, 0=(z,/¢)?/8.

Among the different cases specified by (A2) to be
considered, the ones with 1; =0 admit rigorous and
simple arguments based upon the Tauberian theorem of
the Laplace transformation. Let us discuss this case
first.

Thecaseof A\, =0, A, >0

When x, =0, we have k=0 and f depends on s through
ac=(8e%s)*/? only. Because 0=0 in this case, we can,
by a change of variable to u =¢®s, rewrite (A17) as

§o0
F(T)= 5 [ FUBUT2, 0) exp(uT /) du,  (A19)
- i
which is a function of T/¢® only. Note that 7/~ = as
¢— 0 and the Tauberian theorem ®° provides the asympto-
tic evaluation of the integral.

_ In general, let the Laplace transform on ! of F(1) ve
F(u) and the abscissa of convergence be 0. If.

(a) F(H=0, t=0,

(b) o020,

(¢) Fm)~Cu?, (C>0, y>0) asu—0,
and further

(d) F(t) is monotone decreasing,
then
FO~[Cy/T(1+ )7t as [ — =,

That F(t)=F (T), t=T /e satisfies the conditions (a) and
(b) is clear. The condition (d) is obvious from the de-
finition (A1). The condition (c¢) for F(u)= f([8u]'/2, 0} can
be checked by the help of (A11):

F8ul2 0y~Cu (u—0) (A20)
with
y=(1-u)/2
and
c- 2(3“1*/” 2 T()TA + p/2)T((1 ~ p)/2)
mt/2 r2u+1) )
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where the formula

f Wi, mit) dt:ﬂ—f,? r(1 + ‘;—) r(—%—“—) (A21)
0
has been used.
By the theorem, thus, we can conclude that
FE(T) ~B eltu/T(hu)/z as T/ez—' 0 (A22)

where B=C/I'([1- 1]/2). This is a particular case of

(2. 4b).

Thecase of \; =0, A, <0

As we have seen before, the function f(ae, 0) has a
pole, say at ae=2z,, or s=(z,/e)*/8, and is otherwise
analytic all over the cut s plane; we should note that the
behavior of f(ae, 0) at s =0 as determined in (A20) is
valid also here.

The use of the variable u =¢2s gives

PT)= 5 f F([BulM2, 0) expluT /) du,  (A23)
where C’ is a contour parallel to the imaginary u axis
and lying to the right of 0=22/8. Deforming the contour
into C;+ C;, where C] encircles the pole and Cj is on the
imaginary axis,

F(T)=A exp[22T/(8¢?)] +2m f f([8ul*’2 0)

x exp(uT /€®) du.

The second term can be evaluated in the same way as in
(A19) with the result Bel** /T “*V /2 The coefficient of
the first term is the residue at u=22/8 of f([8u]*/2,0),

i.e.,
:__f Womt)dt/[ dW“’"(z)]

Because dW, ,/dz>0 as z+0 and z =z, is the only place
the derivative vanishes on the positive z axis, we see
that - d®w, (z,)/dz,>0 and consequently A >0 as it
should.

(A24)

We can now conclude that, if A, =0, ,<0, then
F.(T)~A exp(aT /e?) — = (A25)

where A and a=22/8 are constants as determined by 1,.

as ¢—0,

It may be interesting to remark that,
then (A11) gives

if0<-p«1

z() R - 2p'v
which is close to 0. Consequently,
-d*W, (2,)/dz5~~ pu/z5=1/(- 4p)
by (A11) again, and
JTw, (tat=2
% ’
y (A21). Then, (A25) becomes

F(T)=2 exp[2(u/e*T], (\,=0, 0<-xr,«1). (A26)
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It is amusing to compare the results of this subsec-
tion with the simple and universal upper bound on F (T)
given by replacing all paths x(¢) by zero which leads to

F(T)=(exp[- zf (|x(8)] +e)® at)

<exp(|r, | T/e?).

The case of Ay >0, N\, 20

In this case, it will be found convenient to divide the
complex s plane into two regions with a big circle of
radius R =X, /(4¢): As eV 0, either |ac| < £~ 0 or
[k| < V2x,¢ — 0 depending upon whether s lies within or
outside the circle.

Let us first look at the contribution F!*(T) to the in-
tegral (A17) from that portion of the contour C lying in-
side the circle R. Here, the inverse derivative factor
in (A15) can be evaluated by using the asymptotic forms
as z— 0 of Whittaker functions, namely (A11) or (A12):

1/ [- 2]

YT =k +u)/uT(1+20)] (aef™ +0(aef*) (1>0)
(1 - k)/[klogae + £ + O(ae logae)] (1 =0)
(A27)

£=0 €t

in the second line, we notice, |k logae| grows inde-
finitely as s — 0 and becomes very small when s ap-
proaches the circle R, yet the denominator as a whole
can never vanish. On the other hand, the integral in
(A15) is given by

/ W, (dt= —— 1" H

for (-2<) u <1, where F denotes the Gauss hyper-
geometric function ,F, [not to be confused with F (T)]
and where the error term?* A, introduced by replacing
the lower bound of the integral by 0 is O(¢!™*) and

O(e® loge) for u >0 and =0, respectively.

I@+u)r-p)

oL
Ta—g F-m2+m 2=k +a,

(A28)

Let us verify that the approximate expressions above
do give f(ae, k) the same analyticity as expected from
the general argument presented before.

In view of the range of £ as remarked earlier, the
gamma functions in (A27) and (A28) are analytic every-
where in the cut s plane. The hypergeometric function
in (A28) is also analytic as manifested by Euler’s in-
tegral representation, valid when |1 <1 and Rek<0:

t
f £ (1 -y
o

F(l-p,2+u,2-%3)

B I(2- &)
T(1-p)T(1=k+pu)

X(1—1/2)" 25 g, (A29)
Thus, we see from (A15) that f(ae, &) is analytic every-
where on the cut s plane except possibly at s =0, even
in the approximation that the error terms in (A27) and
(A28) are disregarded.
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As s—~ 0, one has |k2| — « and (A29) shows that??
F(l-u, 2+u, 2—’@;%)R - 1,

e kw-w

for in this limit the contribution to the integral comes
from /~1 reducing it to the beta function
B(1—-y,1—-4k+ ). Then, a short calculation leads to

rE2+u)h(1-pu) 2

AT rew) @y o #20
2
€ f(ae, k) >
2 1
(@3 Togl(8s)72/e] (=0).
(A30)

We see that the singularity at s =0 is present only when
# =0 and it is indeed very weak.

Now, we can estimate the contribution F*)T) to the
integral (A17) from that part of the contour C which lies
inside the big circle R.

Let us divide the contour C further with a circle
having a fixed (e-independent), yet sufficiently large
radius R, >2%/8, so that

LS

The first integral is obviously O(¢**) and O(1/log[1/e])
when >0 and ¢ =0, respectively; the smallness here
is due mainly to the inverse derivative factor (A27).
That the second and the third integrals are negligible
compared to the first can be seen by using (A27), (A28)
and the fact that (A29) is approximately constant when
Ikl <2, /(2R )*/? <« 1. In fact, if u >0, one sees, e.g.,
that

)____ &€ f(ae, k) exp(sT)ds.

2mi

(A31)

J;:Zez flae, B)exp(sT) ds = constel™ fi;R s~ /2 exp(sT)ds

0

=conste"* O(R;1*/2) (R, — =)
(A32)
with the aid of the asymptotic estimate
iR 1 iR y iR
f 57" exp(sT) ds :[— s77 exp(sT) + =
. T iR T N
zRO 0 IRO
X s~ axp(sT)ds, (A33)

as established by integration by parts; the second term
here is bounded by [S-Y/T]go. A similar estimate may be
made for the case of yu =0.

Now, let us turn to the contribution F™(T) to the
integral (A17) from the portion of C outside the big
circle R, where k| <v2xe ~0aset0:

FONT) = Zm f f

When 1 >0, we may approximately set =0 and
change the variable of integration to u=¢e%s,

e flae, k) exp(sT)ds.

(A34)

796 J. Math. Phys., Vol. 16, No. 4, April 1975

F([8u]t2,0) exp(uT /e?) du,

P = 50 2m f f

~i2R

recognizing that the first integral here is nothing but the
one (A19) already evaluated with the result [C/T {(y)}"** /
TE#/2 = (1~ u)/2; see (A22). To evaluate the se-
cond, we may invoke (A20) on the ground that R
=x,e/4—~ 0 as e+ 0, obtaining

irge /4

1 ie?R
u'7

F([8ult/?,0) exp(uT /e*) du=C f

2mi 2
-irge/4

ans
X exp(uT /e?) du,
(A35)

which, upon returning to the original variable s=u/e?,
turns out to be

a4 exp(ST) ds = [C/l"('y)]e““{T'“‘“ /2 40

ce [i* &),

the first term being the value at R —~ « and the error
committed being estimated similarly to (A33). Thus, the
main contributions of order ¢'** cancel out, so that

F2(T)=o(e*™)
which is of higher order in ¢ than is F®*(T).
When u =0, the approximation 2=0 implies

W, m(2)~ W,y ,(2) =exp(- 2z/2), so that we can go back
to (A15) and (A17), and write

i -
F>®YT)= —l— + f\L exp(sT)ds.
€ 2t iR e /S

Hence

Fe1)=0(z) =06,
which is again of higher order in ¢ than Fi}T),

Summing up, thus, we can conclude for F (T)
= F®(T)+ F>(T) that

el+t (A >0, p>0)
F,(T)=const

1/log[1/e]

(A36)
(Xl > 0, M= 0)
as indicated in (2. 4). The first line of (A36) is valid in
fact for », =0, p >0 as one sees from (A22).

APPENDIX B

This appendix is to show, for the case of the example
(2. 8), that there exists a regularization with param-
eter b, that leaves the average

F(T)={exp{-x, J: [([x(D] +e)t =~ b (jx() | +)*]dt,

(B1)
nonvanishing in the limit e+ 0 as indicated in (2. 10). We
assume that b, + 0 in the limit because it is a regulariza-

tion; consequently, we have p 40 for the parameter u
defined as previously by

plp+ 1) =2x,==2xb, (uz-1/2).

The average (Bl) can be expressed as the inverse
Laplace transform (A17). Here, however, the integra-
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tion contour C may no longer be taken to be the imagin-
ary axis of the s plane, for the potential function has a
negative part which may produce some singularities in
f(ae, k) in the right-hand half of the s plane.

Here again, it is convenient to divide the complex s
plane into two regions with a big circle of radius
R= X1/4€.

Let us first look at the region outside the circle,
where |k| <v2x,e —~0 as e+ 0 implying W, . (2)~W,  (2).
Moreover, since p 40 in the limit, we have

W, (2)~W | ,.(2)=exp(-2/2),
so that
€f(ae, k)~ 1/s

which has no singularities in the region considered.

(s >R=2x,/4e) (B2)

In the inside region |ael < v2h,e =0 asev0. For
those factors comprising €% f(ae, k) in (A15), we get, on
the one hand from (A11), %

AW, n(2) 1 2\
[— C;Z ];:ae - I"(l —k) (83)172 [D0(€)+D1(s)

+ Ole loge, w?! loge)] {B3)
where k=—21,/(8s)*/? as before, and
Dy(€) = u/(2x€) — loge, (B4)

D\(s)=log(- k) - 1/(2k) ~ ¥(1 - k) — log2x, - 2y
with ¥ = - ¥(1)=0, 577 being Euler’s constant. On the
other hand, we have

. ) ,
f W/l dt = g (14 B[ = /2) = ¥(3 - 1/2)}

+0(u, e)l. (B5)

In fact, from (A28) we get

° 1
[ #rantat= g5 R,z 2= 51/2) 0w, 0,
Qe

of which the hypergeometric function can be evaluated
in the following way: Use one of the Gauss recurrence
relations

aF(a+1,b,c;x)=cF(a, b, c;x) = {(c - a)F(a, b, c+ 1;x)
to derive
Fl=p,2+u,2~kx)=[p(u+1)]?

X[B(1=-BYF(=pu, 1+ 4, - Ex)

F (1= +R)F(=p, 1+ 1,2 kx)

—2B(1 = R)F(-u,1+p,1-kx)]

and then go to the limit u — 0 using
Fla,1—-a,c¢;1/2)=2%°V7 I‘(c)/[l“(a;L C)I"(c = g hd 1)];

then we obtain
F(1,2,2-2;1/2)=2(1 - &) [1+ B{¥(1 = k/2) - ¥( - k/2)}]

which we were unable to find in the available tables of
mathematical formulas. &
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Thus, substituting (B3) and (B5) into (A15), we get

EZf(ae.k)=—% [1 +k{‘1’( - 12?_)_\11(% ) 5)}]/

[Dole) +Dy(s)] (B6)

in the approximation to neglect those error terms which
should eventually vanish in the limit e+ 0. Note that this
function goes over to the asymptotic form (B2) already
within the circle R if [k| «<1, or Is|>12/2, Thus, (B6)
can be used all over the cut s plane.

We can now see that the function ¢® f(ae, k) is analytic
all over the cut s plane except possibly for poles due to
the zeros of its denominator, D,(e)+ D,(s). To see this,
it is enough to recall that x, > 0 implies Rek <0, in
which region the digamma functions comprising its
numerator and denominator are all analytic. Despite the
factor — k=1,/(25)/2 in front, (B6) remains finite as
s—-+0:

€ f(ae, k) = {D(e) - (log2r, + 2y )], (B7)

for s — 0 means [k|— < and

1 1 1
¥(x)=log(x - 1) + 2x-1) " 12(x =17 +O((x— 1)3)
(] <o).

In order to decide on the possibility of poles, let us
examine how the denominator of (B6) behaves on the
positive real s axis, Asymptotically we have

D(s)— Dyle) = (log2x, + 2y)=D(0) (s—0)
and

D(s)~Dyle) +(2sY/2/(2n)) (s — =).

The latter is an increasing function of s. As a matter
of fact, D(s) is monotone increasing over the entire
range of s from 0 to « as one sees from the positivity
of the weight function multiplying exp(kt) in

1

1.1
D(S)—-DO(E) - 10g2>\1 +’{ (-e—t-——l‘ - [_ + 5) exp(kt) di,

©

which is constructed by using Binet’s formula
“f 1 1
¥(x)=logx — f (-eTI -3 + 1) exp(~ xt)dt (Rex>0)
0

and ¥(1+x)=¥(x) +(1/x). Thus, D(s) has a zero, and in
fact one simple zero (say, at s=s,) on the positive real
s axis if and only if%*

D(0)=D(e) - (log2x, + 2y) < 0. (B8)

This is a necessary and sufficient condition for the func-
tion € f(ae, k) to have a pole on the positive real axis.

We remark here for later reference that the residue
at the pole, if there is one, is positive:

Res[e* f(ae, k)., = [N(s)dD(s)/ds)],., >0,

. (B9)
where N(s) denotes the numerator of (B6). In fact, the
right-hand side is positive not only at s,, but also for
any 0 s <, for dD(s)/ds >0 follows from the mono-
tonicity of D(s) established above and N(s)>0 from its
integral representation
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N(s) _ expl(1 - 2%)t/2]
Crpy =10 '2")[ et/ +1
Y exp(- 2xt)
‘[ T+ exp(= t72F 7%
where x=(1~£k)/2>1/2 and the first line derives from

\I/(z)zfc(expt(— H_

as applied to the numerator of (B6), the second line
being obtained by integration by parts.

exp(— tx)
1 —exp(- t)>dt

Now, we can turn to the discussion of F (T), that is,
the inverse Laplace transform (A17). There arise dif-
ferent cases depending on how w0 as eV 0.

Let us begin with the simplest cases where € f(ae, k)
has no poles on the right-hand half of the s plane. In
such cases, the contour C of the integral (A17) can be
put on the imaginary s axis, which we divide into three
regions: |s|<R,, R;<|s|<R, and [s|>R with R=1,/
4¢ and an e-independent R, >3/8. The limit of the con-
tribution F* from the first region depends critically on
the behavior of D (e) as e ¥ 0. If u was taken to be a con-
stant (| 1| <1 as the foregoing argument requires), then
Dyl€)~ 1u/(2x€) and F'Y would vanish like ~¢ ¥ 0 in con-
formity with the previous result (A36). However, if it
is arranged that D (¢) approaches a certain constant
-K as ¢+ 0, then F" has a nonvanishing limit. This is,
in fact, the case if the regularization counter term is
chosen such that

#=2nelloge - K. (B10a)

y (B8), we note, the condition of no pole requires that

K< = (log2x, + 2y). (B10b)

When F ‘e” is nonvanishing in the limit, estimates similar
to the one in Appendix A shows that the contributions to
the integral (A17) from the second and the third regions
do not outweigh F*’, Thus, under the conditions (B10)
we have

F (T)— const+0 ase+0. (B11)

Among the cases where the pole comes in, two will
be of particular interest. In either case, we move the
contour of integration C to C;+Cj, where C; encircles
the pole and C; is on the imaginary axis.

(1) m=peE® with g,<0, 0<6<1.

As e ¥, we have

D(0) = (ito/21,)e™® (B12)

—log(2r€) = 2y —~ =
and the position s; of the pole and the residue are given
approximately by

=p2/(2¢%°) and Resléf{ae, k)] =2. (B13)

To make it certain that the pole lies within the circle
R, however, we must change our R to R =2X,/(2¢*),

p> 5, taking advantage of the fact that the whole argu-
ment so far remains valid as long as 8¢R — 0 and 2%/
2R —0 as ¢ ¥ 0; these conditions impose 0<p <1 and the
-existence of such a p> 6 is guaranteed by our presump-
tion 0< 5 <1.
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Thus,
FAT)~2exp[2(py/e’ PT] (e40), (B14)

because the contribution from the contour C; vanishes
as in (B10) in the limit € ¥ 0. Note that, as 54 1, this
F(T) for x; >0, p=pe? (1,<0) approaches the one,
(A28), for A, =0, p=const(0<-pu «1).

(i) p=2xe{loge~K] with — (log2\, + 2y) <K <=,

K#0. (B15)
This means D (e) =~ K and
D(0)= = K - (log2x, + 2y) < 0.
In this case, we can only write
F (T)=Reslé f(ae, k)],.,, exp(s,T)
+ 2—% - € f(ae, R) exp(sT)ds, (B16)

-fo

where the pole s, should be determined as the zero of
D(s)=D(s)-K (B17)

and the residue determined by (B9); such a pole exists
for any value of K > — (log2x, + 2y) and it indeed lies in
the circle R. We notice that the function ¢ f{we, k) is now
independent of e: In fact, it is given by (B6) with the
denominator D(s) in (B17) and this does cover the
asymptotic behavior (B2) outside the circle R, It is clear
nevertheless that the first term dominates over the
second at least at large T. Therefore, F,(T) cannot
vanish identically.

Denote the first term in (B16) by Fr°/(T).
If, in particular, 0<K <« 1, we note, s,=6)\2K and
FPTY= 6 exp[6A2KT].
If, on the contrary, K > 1, then s,~2x3K? and

FPYT) =2 exp{2A2K?T ]. (B18)

*This paper, originally scheduled for September 1974, was
delayed in publication through no fault of the authors.
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The unitary continuous representations of U(n,1) and O(n,1) are discussed from the point of view
of deformation of I U(n) and 1O(n). It is shown that there are two general ways of writing the
matrix elements of the infinitesimal generators of the groups U(n,1) and O(n,l). The first one is to
write them as either pure real or pure imaginary. The second one is to write them as complex. We

show how these different ways are related to each other.

I. INTRODUCTION

The infinitesimal method has been a very successful
tool in the investigation of unitary representations of
Lie groups, In the case of the compact groups U(n) and
O(n), the first successful attempt was made by Gel’fand
and Zetlin® when they determined the matrix elements
of the infinitesimal generators of the groups. In the case
of noncompact groups, Ulr,1) and O(n,1) have been
studied by many authors. In particular, the matrix ele-
ments of the generators of U, 1) have been determined
by Gel’fand and Graev® and by Ottoson.® Those of Ok, 1)
have been determined by Hirai,* Ottoson,® Schwarz,®
and Wong,” There is, however, another approach re-
garding the representations of U(x,1) and O(n,1), and
that is through the deformation of IU(x) and I0(x). This
was first done by Chakrabarti.® Similar results were
obtained by Wolf® through multiplier representations.
On the other hand, Rosen and Roman' have discussed
in detail the Lie algebra of these groups.

In an attempt to unify these investigations, we came
across an apparent problem. The problem is: The
matrix elements of the infinitesimal generators of Un,1)
and O(n, 1) obtained by Chakrabarti are complex, while
those obtained by the other authors are either pure real
or pure imaginary. We shall show in Secs. IIl and IV
that there is no contradiction between these results., We
have thus reached the following conclusion: There are
two general ways of expressing the matrix elements of
the generators of U(n,1) and Ofn,1). The first one is
to write them as either pure real or pure imaginary.
This is a matter of definition of the generators. One
can see this already in the case of the compact group
O(n). The original Gel’fand—Zetlin matrix elements
for O(n) were in terms of the matrix 4,,, which has 1
at the ith row and %th column and ~ 1 at the kth row and
ith column. As a result, A, , .., for example, has
matrix elements which are pure real. On the other hand,
the later papers by Pang and Hecht'' and by Wong'? used
J;;, where J; has i at the ith row and jth column and ~1¢
at the jth row and ith column. As a result, their Jy,, 4,
has matrix elements which are pure imaginary. We see
therefore that this is purely a matter of definition of the
generators of the group. This difference of definition,
however, has an influence on at least two properties of
the generators, The first influence is on the commuta-

800 Journal of Mathematical Physics, Vol. 16, No. 4, April 1976

tion relations of the generators. The second influence

is on the properties of the generators under Hermitian
conjugation. We shall see in subsequent sections that

for U(n,1) the difference of these two properties persists
in the different definitions of the generators given by
Rosen and Roman on the one hand and by Gel’fand and
Graev and Ottoson on the other,

The second way is to write the matrix elements of
the generators as complex. This is done by Chakrabarti.
This, in principle, corresponds to adding a phase fac-
tor to the matrix elements. We shall show how
Chakrabarti’s results can be reconciled with the results
of Gel’fand and Graev, and Ottoson in the case of Uln,1)
and with Hirai, Ottoson, Schwarz, and Wong in the case
of O, 1).

1l. REPRESENTATIONS OF /Ufn) AND DEFORMATION
TO Ufn, 1)

IU(n) is a group which is made of the semidirect pro-
duct of U(x) and I(2n). The generators of U(r) are labeled
by A (i,j=1,2, .. .,n) and the generators of I(2x) by
I, I;‘” (i=1,2, .. .,n). The commutation relations
are

(43, 4%]= 614% - 52af, 0

(Al Ik, ]=~84},, @)

Lt ) = oy, o

[n+1, 7 A=, I"” [I"*1 r,1=0 (4)
with

A =4i, 5)

@) =1 (i,j,k,0=1,2,...,n). ®)

Chakrabarti has shown that the matrix elements of

I, are given by

n+l

(g = 1|17 | 1)

_ H"Laz(hind_hl,,—'l“']*'l)nn (. Ein'i“’j))”z
T, <y Crgn = Figp =+ 3 + Dy, — by =i +))
i#3

= |17 | By, ~ 1)* ™)

Without loss of generality, we can choose « to be equal
to 1, The (infinite-dimensional) basis is labeled by (n
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—1) numbers in the first row, followed by the familiar
Gel’fand basis for Un),

hznvf“'hanol . hnn-rl
B hoyioet Bocin P
hln—l e hn-l n=1
hll

with the usual inequalities
hyjuzhy> Biargn G,i=1,..., n)

and

ez h

nn+l = hfm (8)
but allowing the two extreme numbers to tend to infinity:

hlﬂ = h2n+l = hm

By, h, - =%,

The matrix element in (7) differs from the Gel’fand—
Zetlin matrix element in A7, by a factor of
[— (hlnﬂ-hjn +j)(hn+i‘n~r1_hjn _n+j)]1/2- (9)

The group U(xn) is then extended to U(r)® U(1) by in-
troducing an extra parameter ¢ and the generator 4771,
such that

atlm=(s+ Zny - S . (10)

The deformation to Ufn,1) is then obtained by taking
the semidirect product of U(r)® U(1) with I,,: [Un)

® U(1)]X1,, ~ Uln,1). If one defines
A:ﬂ [ n+1] + del} n 19 (11)
A=A I )+ dell (12)
with
Ax— [Z) AlAl +<fﬂ2+n) 1] (13)
2VA(2) 1,721 ¥ A(z) +“j?
n
E{Z=;1 "’II"HI, (14)
)= 2 IPAN L+ AT, (15)
one finds that
Aly=- (a1, (16)
[A‘u’ n+1] [A’iHI,A;ﬂ]:O’ 1m
and
(477,47, [=4) - 634732, (18)

In other words, the generators A} (4,j=1,...,n+1)
now generate the algebra of U(n,1), according to the
definition of Gel’fand and Graev.

The nonzero matrix elements of A"

" and A7 turn out
to be complex:

1 ]A'l"l]

— [E(g - n)+ i€ ~ (hj" -j)](hjn
=~ (n|An* [y, - 1)*

1)1z, |7

(i=1,...,n). (19)
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{11 RECONCILIATION OF CHAKRABARTI'S RESULTS
WITH THOSE OF GEL'FAND AND GRAEV

We know, however, from the results of Gel’fand and
Graev, that the matrlx elements of A", for Uln,1) are
pure imaginary. To reconcile the two results, we now
calculate the value of A7, A"*' from Chakrabarti,
obtaining

? (h,,, -1 ]M,ﬂh)(h]A:*‘lh,n -

=§)—[(%£— B L (R U VoMY R 1)
We know that the principal continuous series of
Gel’fand and Graev is given by
Bpu=-n/2+z, (21)
By =1/2 + 2%, (22)

where z is a complex number and z* is the complex con-
jugate of z. Comparing (10) with (21) and (22), we obtain

t=2Rez. (23)
Let us now make the identification

e=Imz . (24)
Then the first term on the right-hand side of {20)
becomes
-[(Rez —=n/2 - by, +j)* + (Imz )]

=~[(Rez —=n/2 - hy, +j +iImz)

X (Rez - n/2 - Ry, +j —iImz)]
=~[(z=n/2 =k, +i)e* ~n/2 - h,, +))]
= = (g gy = By + Wy = Py =+ ). (25)

But the last expression in (25) is just the square
of the factor suppressed [see (9)]. We see therefore
that Chakrabarti’s result (19) is in agreement with that
of Gel’fand and Graev, except that Gel’fand and Graev
now make a further demand that, in view of (16), one
requires that the matrix elements of A?  be pure imag-
inary. Thus the matrix elements of A7,  according to
Gel’fand and Graev, are

in = IIA:'dlh)

— Hi.l(h{ru-l =Ry — i+j+ l)H’,':%(h‘ n=} _ hjn —1 +j)>1/2
= MyeganCryy = Ryy —i+7j+ Dy, = by — i +5)
=-|Ar"|hy, ~

i#
(26)

This is a pure imaginary quantity because the factor
under the square root in (26) is negative, due to the
branching laws of U{x,1).

We would like to mention here that, in this connection,
there are two different ways of defining the generators
of U(n,1). One way is according to Gel’fand and Graev:
Egs. (1), (5), (16), (17), and (18). In this case the
commutation relations are exactly the same as for the
generators of Uz + 1), However, Eq. (16) is different
from the corresponding equation for U(z+1). As a re-
sult, the matrix elements of Af,, A1, i=1,...,n,

n+ls
are pure imaginary. The second way of defining the
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generators of U{n, 1) is according to Rosen and Roman,
where instead of Egs. (1), (18), and (18), we have

Apa=@ty @7
and

[4], 431 =g14} - g}4}, 28)
where

gi=gi=""r=gh=~gu=1,

gi=0, forizj. (29)

According to this definition the generators of U(xn,1)
under Hermitian conjugation, Eq. (27), behave the same
way as the generators of U(n+ 1), However, the com-
mutation relations (28) are different. If one uses this
definition, then the matrix elements of A!,,, A}™!
(i=1,...,n)are real, but they differ from those of
the generators of Ulr+1), i.e., the Gel’ fand—Zetlin
results, by a factor of v—-1.

Speaking of the definition by Rosen and Roman, we
would also like to point out that the connection
Chakrabarti makes of his result with those of Rosen and
Roman, i.e.,

E,=A} -4}, F, =ildl+4) (30)

is valid only for ¢, j=1,2, ..
has to make the identification

.,n. Fori=j=n+1, one

En+1,] = l(A;*l —A}il +1), Fn+1,j == (A",!*l +A{1+1)’
E{,nu:i ria-l_A'rl)’ Fl.n+1= - (‘4:1+1+A'i”l)’
and
Frna == 20405 G

in order that the commutation relations (42), (43), and
(44) of Rosen and Roman may be satisfied, i.e.,

[EuWEpv-J:gupEw_gvauo+gqupv_kpru’ (32)
[Fuwqu]:gupEw+gvaua"gqupu—gpru’ (33)
(B Fool=80sFre = 80 F ua t 8ot oy = ZucFpus (34)

where gy ="**=g,=-8a,nn=1.

One sees therefore that if one uses the E, and F_,
of Rosen and Roman as the infinitesimal generators,
then the matrix elements of E,_,, ;, for example, are l

real and under Hermitian conjugation:

E

n+l,

*=E, L. (35)

We therefore conclude that another way of expressing
the matrix elements of the infinitesimal generators of
Un,1) is by means of the £, and F_, of Rosen and
Roman. In that case the matrix elements of E ., ; are

real, and under Hermitian conjugation, E,, ,=E, ..

V. /0(n) > Ofn,1)

I0(n) is actually the Euclidean group in n dimensions,
consisting of combining rotation and translation in an
n-dimensional Euclidean space, For example, J0(2)
consists of rotation and translation in a plane, There
are three parameters: one for rotation and two for
translation. This is called E, by Miller,*® where the
number 3 refers to the number of parameters, Miller’s
E, is the same as JO(3). The matrix elements of E;, as
found by Miller (Theorem 6.3, Eq. 6.30), are in
agreement with Chakrabarti’s results for IO(3) upon the
following identification:

M=y, U=, S=Mg,, w=K=1, (36)

For the I0(r) group the generators obey the following
commutation relations:

[Jab’j cd]: z.((Sm:de + GMJac - 6adec - 6chud)! (37)
[Jab)Inﬂ c]:i(éar.‘ln’rlb —6bcIn+1q)’ (38)
Uy sasdnars]=0 (39)

{a, b, c, d=1,...,n).

Chakrabarti has shown that the matrix elements of
Ly, for I0(2k) are made up of representations with
( — 1) numbers in the first row, followed by the Gel’fand
pattern for O(2k):

Fopae °°° Popaiper Ropaan

Bop1 Pope Boprr  Popr
‘h> — eesn
Roy
fay

with

<]lztzj +1 '12k+1‘2k|h>= <h IIZk*l 2k ‘thJ + 1>*=;—<
== <thJ' +1 lIZk 2k¢1'1h>a

where
Lyp=hpy+hk =0, Uy y=hy +k—a. (41)

For IO0(2k — 1) the basis vectors are

Ropz "** Pyper Bggy
Fogers hoperz Papeipes
y=| - 42)
h:u
h’21
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ﬂ‘g‘z(lgkﬂg - lg&j - 1)(l2)u15 + lznj )nlzx-gllz(lzta-l a "~ lzkj - 1)(l2k-1 o + lzk!) )1 /2
T2 Gt o~ G ) o~ ey — 2oy — 1)

40)
i
with
i ngz(lgkﬁ - lg =1 )
L v v
W e o = 5 y) )”2
X = 43)
n’fz;lj (lgk-l «” lgk-lj)[ (lgk-l o™ 1y - lgk-l i] ’
15 oo 117 1
I h :_T_ELQ&MS_ZE:Z_L_. (44)
<h I PRl 2 l > n’:x:xlzk-x a(l2k-1 o~ 1)
The deformation to O{n,1) is given by
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Jnn+1=(i/VA—(Z))[A/2’Inn¢'I]+>‘Inn*1’ (45)

where
n

A(‘-’)lh>= alnﬂklrn-rlh)lh):llh) (46)

and
n
A= E ij . 47
i<jal

Notice that we have added a factor of } to A in Eq,
(45). This is necessary in order to obtain the correct
commutation relations for O, 1):

[J +14’Jn01b]=_iJab° (48)

This factor has been correctly added by Wolf in his de-
formation formula, Eq. (4.4).' This also changes
Chakrabarti’s Eq. (6.14) to read

Jj"+1: Hlé(IinuJ{j+J‘ljlin+1)+ujn+1 (49)

(G=1,...,n\
Accordingly the matrix elements are

<h2kl +1 'J2k+12k lh>

={m iy, + R =+ 5+ M + 1 D0 2 |1, (50)
(roper 3+ 1| Joper 2 | 1)

={= i (hgger; + o =)+ 2 gy + 1[Iy 0 | 1, (51)
and

) T ppey 20 [ )= X0 | Typey 2 | ) (52)

Comparing this with the results of Oz, 1), obtained
by Hirai, Ottoson, Schwarz, and Wong, we find that
they agree if one makes the following identifications:

First for O(2k - 1,1): rx=il,,, (53)

This is especially consistent with the results of Wong,”
who has explicitly stated that 7,,, must be either zero
or pure imaginary, since A is real,

Again, (51) gives a complex quantity. So we shall find

the value of [J,,.;,,!% from (51):

] (oger s+ 1] Taper 2n | Bopeg 10 |2 = A2+ D115
| Groger s + 1| Lppey 2 | Ragen 10|

=(- l?z’e-l + lgk-l + lgk—l 1) ‘ <h2k-1! +1 |12k-1 2h]h2k-1]> %

(54)
(54) agrees with the results of Oz, 1),
Next for O(2k,1): One has from the principal series
Bop 1=3~k +ic. (55)
If one makes the identification
c=2x, (56)
one obtains from (50)
| Grap s + 1] Japar 2 ’h>lz/l (hapy +1 Mpor 2 | )]
=A%+ (ly,, + 2P
== (g1 =5 +EP+ [y + 3P
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== (lzhl [ %)2“' (l2k! + %)2
= (l2kj +lopn 1)(lzk1 =Lyt 1)
== (l2k+1 1= l2kj - 1)(12;,.;1 1+ lgk!)- (57)

Equation (57) again agrees with the results of O(2k,1)
obtained by Ottoson and others.

V. CONCLUSION

We see therefore that Chakrabarti’s results in both
IU(n)—~ Uln,1) and I0{)—~ O(n,1) can be reconciled with
the results of Gel’fand and Graev, and Ottoson and
others, The representations of U(n,1) and O(n,1) thus
obtained are continuous representations. The matrix
elements obtained by Chakrabarti appear to be complex,
but they can be reduced to either pure real or pure
imaginary by working out their. absolute value squared
and then taking the square root. The results then agree
with each other. We can therefore say that the matrix
elements of the generators of U(r,1), at least for the
continuous representation, can be (a) complex or (b)
pure imaginary or pure real. The first case (a) cor-
responds to the results obtained by Chakrabarti. The
second case, i.e., pure imaginary, corresponds to the
results of Gel’fand and Graev. In the case where one
defines the generators according to Rosen and Roman,
then one obtains the matrix elements as pure real,
which, however, is just a variation of case (b).

In the case of O(n, 1), for the continuous representa-
tion, the matrix elements of the generators again can be
either (a) complex or (b) pure imaginary, for the off-
diagonal part of J,,,,,, and J,,_; ,,. The case where the
matrix elements are pure real is just a variation of the
definition of the generators from case (b)., For the diag-
onal matrix elements of J,,_,,,, it is always real. The
first case (a) corresponds to Chakrabarti’s results (with
a correction of a factor of $) and the second case (b)
corresponds to the results given by several authors,
among whom are Hirai, Ottoson, Schwarz, and Wong.
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Killing inequalities for relativistically rotating fluids*
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For rigidly rotating fluids in general relativity, it is shown that the angular momentum density is
everywhere positive. This result depends on a global inequality satisfied by the Killing scalars. The
inequality follows, via the Hopf theorem, from an elliptic equation (essentially one of the field
equations) on the scalars. A derivation of the field equations in terms of the manifold of Killing
orbits is presented. Possible generalizations of the result to systems with differential rotation or

interior event horizons are discussed.

1. INTRODUCTION

In a general asymptotically flat space—time, the as-
symptotic symmetries define certain energy— momentum
linkages in terms of two-dimensional integrals over sur-~
faces at infinity.! The resulting total energy—momentum
is unique up to the usual transformation properties of a
Lorentz four-vector as in special relativity. However,
the total angular momenium not only contains an arbi-
trary amount of momentum (corresponding to the choice
of axis freedom in special relativity) but also an arbi-
trary amount of supermomentum resulting from the su-
per-translational freedom associated with radiative
space—times, From an asymptotic point of view, total
angular momentum is less rigid a concept than total en-
ergy-momentum. However, when these surface integrals
are converted to three-dimensional volume integrals
over the inferior, neither the energy~momentum density
nor the angular momentum density have their usual de-
gree of special relativistic uniqueness. While total en-
ergy—momentum is well defined, there is no density ri-
gidly associated with it. Consequently, neither energy
density nor angular momentum density retain the same
local physical significance they possess in special
relativity.

For space—times with global symmetries the situation
is quite different. The linkages reduce to the corre-
sponding Komar integrals® for which unique densities
can be defined. Here we consider asymptotically flat
space—times with two global commuting Killing vectors
corresponding to a time franslation and a spatial rota-
tion, so that the associated components of total energy
and total angular momentum and their densities are all
mathematically well defined. For such systems, the en-
ergy density and angular momentum density are in close
agreement with their standard forms in the special rela-
tivistic limit (see Sec. 2). This gives some assurance
that these densities have useful physical meaning in gen-
eral relativity. More reassuring is the positive-definite
nature of the energy density in the strong curvature case
given reasonable matter conditions. Similar results con~
cerning the angular momentum density would not be ex-
pected even for axisymmetric special relativistic sys-
tems since different portions of the system could have
opposing rotational motion about the same axis. How-
ever, in special relativity, the angular momentum den-
sity of a system with uniform sense of rotation about a
given axis is uniformly positive (or negative). Our ma-
jor result is a similar property of the angular momen-
tum density of a uniformly rotating general relativistic
fluid.
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We begin in Sec. 2 with a discussion of the Komar in-
tegrals which shows that our result is not manifestly
obvious as in the flat space case, but depends upon a
certain global inequality involving the Killing scalars.
To establish this inequality, we set up in Sec, 3 a geo-
metrical formalism for interior solutions based upon
the Geroch treatment of the manifold of Killing trajec-
tories. In Sec. 4, we show that a certain combination of
Killing scalars satisfies a two-dimensional elliptic equa-
tion whose source terms do not depend upon the material
properties of the interior. This equation leads via the
Hopf theorem to the desired inequality.

2. THE KOMAR INTEGRALS

Let £ and £° be commuting Killing vectors corre-
sponding to a time translation and spatial rotation, re-
spectively, We fix their extensions by the requirements
that

50"5% -=1
at infinity and that solutions of
dx“/dqﬁ = El“

describe closed rotational orbits for the parameter
range 0< ¢ <27, The mass and angular momentum are
then given by the Komar integrals over two-~surfaces at
infinity

M:_%fv“go”dsab (2.1)

and

_1
“ 167

The minus sign difference between the forms of these
integrals arises because the Komar integral gives the
covariant energy component. The factor of 2 difference
is less trivial: It arises from virial effects (see below).

viog ds,,. (2.2)

By means of Einstein’s equations

G =gnT? (2.3)
and the Gauss theorem, these integrals lead to the vol-
ume integrals over the interior

M==2[ 4T~ 15,T]dS, (2.4)
and

J= fglaTab dsb; (2,, 5)
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where we choose our integration regions to contain the
rotational orbits, * so that

§1" dSb = 0.

The integrand in Eq. (2.5) is the standard angular
momentum density of a special relativistic system. The
special relativistic energy density, £,°T, does not
agree with the integrand in (2.4). However, Eq. (2.4)
does give the correct total energy for a stationary (but
rotating) special relativistic system via the virial
theorem,

[T dSy= [ £,°T 0 dS,.

The energy densities agree to the extent that stresses
are negligible compared with energy density. Further-
more, the energy density defined by (2. 4) is positive for
general relativistic systems without unduly negative
stresses, so that it provides a useful density associated
with total active gravitational mass.

For an axisymmetric rotating fluid, the stress—
energy is given by

T = (p+plut® +pg”, (2.6)
with

ut= (= )7 + g, (2.7)
where

P= 290 + 2@ + 0y (2.8)
and

Mg = Ea"Epge
This leads to

M= [[u+3p - 22k +p)¥™ (g + ) ]E°dS,  (2.9)
and

J== [(+p)y (hgy +Q0yy) £ dS,. (2.10)

The timelike nature of the hydrodynamical stream
lines implies that i is negative, so that the sign of the
angular momentum density is determined by Ay + Xy,
where ), > 0 except on the axis where it vanishes. In
the special relativistic limit, Ay — 0 and the density is
strictly positive when the angular velocity € is positive.
However, to decide this question in the strong curvature
case, we need the interior Einstein equations.

3. THE FIELD EQUATIONS

We use a formalism developed by Geroch? for space-
times admitting two commuting Killing vectors. Since
the field equations have been given only for source-free
fields, we here present a general derivation of the equa-
tions with sources.

Let (M, g,,) be a space—time admitting a pair of com-
muting Killing vectors, £,% and &°. We assume that £,°
is everywhere timelike and &° everywhere spacelike.

It is convenient to introduce upper-case Latin indices*
with the range 0, 1,° and write £,° for the Killing vec-
tors. Upper-case Latin indices will be raised and low-
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ered with the alternating symbol €,5 (With €5 =€3; =0,
€y = - €;4=1), using the rules

€Mepy=0%, pr=€"pu, bpa =pey,. (3.1)

Two points p and ¢ in M are said to lie on the same
orbit if there is a curve from p to ¢ whose tangent is
everywhere a linear combination of £,° and &° The set
S of orbits possesses (locally) a manifold structure.
Furthermore, there is a natural, one-to-one corre-
spondence? between tensor fields T“"‘”C,_,d on S and ten~
sor fields 7%"*®  _, on M which satisfy

EAme“‘b = 0, .

. . gAmTa...bc.“m:O’ (3.2)

£ T =0, (3.3)

corrd

Thus, we shall speak of tensor fields on M satisfying
(38.2) and (3. 3) as tensor fields on S.

The Killing scalars X 5 =£,"&;,, are scalar fields on
S; the timelike character of the orbits requires that

1—2:_ AMNAMN (3. 4)

define a positive scalar field 7° on S. A metric &, and
alternating tensor ¢, on S are given by

oy = &ap T 2T NN E, £y, (3.5

€ap = (l/ﬁ)‘rd(MNEabmnngENn' (3.86)

Note that indices of tensors on S may be raised and
lowered using either %, or g,,, with the same result.
Furthermore, if 7%, , is a tensor field on S, then
50 is

DaTb“ncd. 0o :hamhbn et hcphdq v hervan.“pa...r- (3- 7)

Equation (3.7) defines the derivative operator D, on S,
The Riemann tensor R % of S is given by

D[apb]kc:%/eabcmkm} (3- 8)

where &, is any vector field on S.

We wish to write a collection of equations, equivalent
to Einstein’s equation, involving only tensor fields on
S. To do this, we require one more pair of scalar fields,
c4, defined by

(3.9

Following the procedure given by Geroch, * we obtain the
equations

DD, Ay ) = T30, (D™D, X0 0)

1
cyp=zeNeme ErtmEnnVolag-

+273¢ 05 - 277R, £, ELT, (3.10)
Dycy==V2Te"Rpyt,", (3.11)
R =3THD ") (Dyhyy) + 7D, D7

- 2T p M ¥c ey + 1" R (3.12)
where R, is the Ricci tensor of M.
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It is convenient to separate (3.12) into its trace and
trace-free parts:

R =37(D™\MV)(D, 2, ) +7LD"D, 7
- 4t*\eycy + 1R, (3.13)
Rap = shaR =5T3(D 2HM) (Dyhyy)
= 3T 20 (D™D, Ay
+7D,D, T =37, D"D T

T h,"h,"R,,, — 3R W™ R, . (3.14)

Equation (3. 13) may be simplified somewhat. Contract
(3.10) with 242 to obtain

DD 7= 2T 0N e +2TININR £ ELT, (3.15)
and substitute into (3. 13):
R =3T3D™ M) (D 2y y) — 6T 2N e ey
+H"R,, H2TEAINREMELT, (3.16)

The left-hand side of (3.14) vanishes identically; thus
we have

DD,T = 5hgD™D, T + 3T D) (D))
— 3T, (D™D Mgy + (1 R = ™" R )
=0. (3.17)
The Bianchi identity

V™(Ryp =~ 58,mR) =0 (3.18)
takes the form

Dm(ThmﬂRnpgAp)ZO; (3.19)
D™[T(h,"h,P R, — 3hymh™R )]

+%hmannDaT + T-IAMNDa(RmnnggNn)

+2V2T2MN e "R, Ex"= 0. (3.20)

Equation (3. 19) is the integrability condition for (3.11),
The role of (3.20) is more subtle. The divergence of the
left-hand side of (3.17) vanishes if (3.10), (3.11), (3.16),
and (3. 20) are satisfied. But the left~hand side of (3.17)
is a symmetric, trace-free tensor field S,, on S. K

S,» vanishes on a closed curve bounding some region in
S, and if its divergence vanishes everywhere in the re-
gion, then S, vanishes there. Thus, if (3.10), (3.11),
(3.16), and (3.20) are satisfied, and if (3. 18) is satis-
fied on some closed curve in S, then (3. 18) is satisfied
everywhere in the region bounded by the curve.

Let Tpp, 64, and{, be defined by

TAB = Tmn EAmEBﬂ: (3' 21)
eAa:hamenEAn? (3' 22)
Loy = Ry T e (3.23)

806 J. Math. Phys,, Vol. 16, No. 4, April 1975

Substituting for R,, from the Einstein equation (2.3) in
(3.10), (3.11), (3.16), (3.20), and (3. 18), we obtain

D™TD, N y5) = T2, g (D™*) (D, 2 0y) +2T3¢ 40

— 1677 T g = 52,5 T), (3.24)
Dyc,==-8V2nTe,"0,,, (3.25)
R =3T2D™ M) (D, A yy) = 6T NN e e
+8m(T +47 T, ), (3.26)
D™(1t,,) ~ TT yy D, (TN
+2VZTEMN e e 0, =0, (3.27)
D,D,7 + 3T HD NN (DN ) = 5T g (D™ Y)Y (D 0y )
+ 73 M e yey +80TE, =0, (3.28)
where
T=T", =h""%,,~ 27239 T, . (3.19)

Equations (3.24)—(3.28) are equivalent to Einstein’s
equation, That is to say, a 2-manifold S with metric

hy and fields Aag, €4, Tap, 84, and ?,, satisfying
(3.24)—(3.27) in some region of S, and (3.28) on the
boundary of that region, determines a unique space—
time (M, g,,), with two commuting Killing vectors, satis-
fying Einstein’s equation.

We require the field equations only for perfect fluids,
described by (2.6). Decompose the four-velocity #° into

Ug=unb s, vo=h"u,,. (3. 30)

Substitution into the field equations gives
DMTID, 2, 0) = T30, g (D™D ) +273¢ 405

= 16m7 (1 +p)ujuy + (L —pIAypl, (3.31)
(3.32)
R =3T3D™ N M) D2y y) = 6T e +87(1 +p),

Dycy=-8V2a(lL +p)Tuse, ™,

(3.33)
2 D1 +p)Tv ]+ (b +p) T D0,
= (1 H+P)TU Dy + T+ PINVD, (1ty0)
+TDp - 2V27 ¥ +p)IA Ve cpe ™, =0, (3.34)
DD, T +5THD XN Dy Ay ) = 3T gy (D™XVUD, 2y )
+ T30, M Ve ey + 81T +po gy Fphg =0, (3.35)

Equation (3. 34) can be simplified by substituting from
(3.32). This gives

T3 + PNV D (gt )

=—T(h,"+v ™D, p + (L tp)e, ", (Te®Dp,

—2V2 TN e ), (3. 36)
(L +p)w™Duy =~ ugv™D,p, (3.37)
D™(tuv,) =~pD™(Tv,). (3.38)

Equations (3. 36) and (3. 37) are the equations of hydro-
static support in the directions perpendicular and paral-
lel to the flow of convective circulation, respectively.
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Equation (3. 38) expresses the conservation of convective
flux.

We now specialize to the case of vanishing convective
circulation, i.e., v*=0. The four-velocity then takes
the form

wo = (= ) oM (3. 39)

the field equations become

D™TAD ) =T30 5 (D™ ) (D, 2y ) +2T3¢ 05
+8rT (1 +3p)h g5 + (1 +P)TE Vs 455,
(3. 40)

DaCA:(): (3. 41)

R =35T3(D™ M) (D, Ayy) - 6T A ¥cycy +8m(1 +p),
(3.42)
(1 +p)D =5 (k +p)NVD (sysy) == Dgp, (3.43)
DD, T +3THD NFY (D Ay ) — 5T 0 (D™ YD, 0 4)

+ 730, A ¢, 0y + 81pThy, =0, (3.44)

Roughly speaking, s* represents the angular velocity of
the system with respect to infinity, ” and i the Newtonian
plus centrifugal potentials. We further assume that the
system rotates rigidly, so that the second term in (3. 43)
vanishes.

We now impose the condition that the system possess
a regular axis of symmetry, ® where 7=0. We take as
our axis conditions that the manifold S be extendable to
a manifold with boundary :S‘, the boundary corresponding
to the axis, and that S have a regular metric %, which
agrees with %, on the interior.® We henceforth assume
that S has been so extended, and delete the carets.

Several results follow immediately from the axis as-
sumptions. First, since the Killing vectors are linearly
dependent on the axis, ¢, vanishes there. Thus, in the
absence of convective circulation, ¢, vanishes every-
where. Next, the regularity of the left-hand side of
(3. 14) requires that (3.44) be satisfied on the axis.
Thus, we need only satisfy (3.44) on some curve, bound-
ing the region of interest, with end points on the axis.
We take this to be a curve at infinity, on which (3.44) is
again automatically satisfied by virtue of asymptotic
flatness. Furthermore, since A, M, p, s#, and p are
all well-behaved fields on M, they must have vanishing
normal derivatives on the axis.®

Finally, we simplify our notation by identifying a
Greek index with each symmetric pair of upper-case
Latin indices.* Greek indices are raised and lowered

with the symmetric metric G,; defined by
a-—(AB), B~ (CD). (3. 45)

In this spirit, we write S, =s,455. The field equations
for a stationary axisymmetric, asymptotically flat, ri-
gidly rotating perfect fluid then take the form

D™MTD,2e) =T (D™3)(D,2,,)
+8nT (1 +3p)A, + (1 +p)TRYS, ],

Gup == €A(c€D)n>

(3. 46)
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(3.47)
(3. 48)

R =3T3(D™\*)(D,2,) +87(k +p),
(1 +p)iDY==Dgp.

4. THE KILLING INEQUALITIES

We now return to the question of the sign of =2y
+ Q)4 which determines the sign of the angular momen-
tum density. We assume uniform fluid rotation with po-
sitive angular velocity . The problem then is to show
that n is positive throughout the fluid interior.

Equations (3. 46)—(3.48) are the entire set of field
equations for such a system., The key equation for our
purpose results from skewing Eq. (3.46) with X; and S,
to obtain

€*#"2S,D™(71D 2, ) = 0. (4.1)
This is equivalent to
N SB D™T2D 2, ) =0, (4.2)

where

0z
N=\1q)

so that =X, N*. Also, note that =2,S*. Because N*
and S* are constant matrices, we can rewrite (4.2) in
the form

D1 (D ,n - 1D, ]=0. (4.3)
Viewed as an elliptic equation for zj)‘ln, (4. 3) becomes
T4PD™D,, (') + D™ (T A D, (37 ) = 0. (4.9

This is a well-behaved equation to which the Hopf theo-
rem!’ is applicable in the open region D bounded by the
axis 7=0 and the velocity of light curve'! $=0. Conse-
quently, each point of D has a neighborhood in which

zp'ln is either constant or does not have a maximum.

Consider the boundary of D. On the axis §™'n vanishes.
On the velocity of light curve,

Moo T 280x5 +Q20, =0,
which implies that
77:%9'-1(92)\11 - 7\00) >0,

Consequently §7n—~— = as the velocity of light curve is
approached from the interior of D. Furthermore, as-
ymptotic flatness implies that > 0 for all points in D
sufficiently far from the source. Consequently, the set
of points EC D for which zp'ln > 0 must have compact
closure. If E were nonempty, then ¥™7 would attain a
maximum at some interior points. But this would vio-
late the Hopf theorem.'?

We conclude that 1< 0 in D. Since any fluid source
must be restricted to the region D plus the axis, this
establishes the required result concerning the angular
momentum density.

Furthermore, in the region i > 0 outside the velocity
of light curve, the same argument implies that 35 > 0,
Consequently, 7> 0 throughout the space—time except
on the axis where n=0.
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Similarly, consider the Killing scalar
v=2g tEry =9 - On.,

Then v satisfies Eq. (4.4) when 7 is replaced every-
where by V. Repeating the above argument, the Hopf the-
orem then implies that v < 0 throughout the space—~time.

5. DISCUSSION

The global inequalities for the Killing scalars n and
v obtained in Sec. 4 provide fundamental restrictions on
the possible interior and exterior geometries for uni-
formly rotating fluid stars. In particular, the inequality
for 77 insures a positive angular momentum density for
such systems. There are, however, two conditions un-
derlying our derivation of this result which deserve fur-
ther investigation.

First is the condition of completeness of the space—
time as a stationary manifold and the resulting implica-
tions for the manifold of trajectories S. This rules out
not only the possibility of singularities but also the ex-
istence of black holes interior to the fluid region, as
described by Bardeen.'® The existence of black holes
would complicate the establishment of the necessary
boundary conditions on the Killing scalars needed for
application of the Hopf theorem.

Second is the uniform rotation condition 2= const. If
this were weakened to the condition 2> 0, would our re-
sults still hold? In the general case of differential rota-
tion with uniform sense, Eq. (4.2) still applies but the
steps leading to Eq. (4. 3) would no longer be valid. Con-
sequently, the arguments presented in Sec. 4 are not
applicable to this case. One might expect on the basis
of the Newtonian limit that the angular momentum den-
sity remain positive. But in the Newtonian case this re-
sult follows from strictly local arguments whereas even
in the case of uniform rotation non-local features play
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an important role in the general relativistic case. The
problem can be restated in terms of the velocity v, in-
troduced by Bardeen, 13 which measures the rotational
velocity of the fluid relative to local zero angular mo-
mentum observers. The angular momentum density has
the same sign as v, It is conceivable for differential ro-
tation with €= 0 that global inertial effects might cause
portions of the fluid with small angular velocities to be~
have as if they were counterrotating (v < 0) with respect
to the local observers.

1J, Winicour and L. Tamburino, Phys. Rev. Letters 15, 601
(1965).

2A. Komar, Phys. Rev. 113, 934 (1959).

3Because of the surface independence of the Komar integrals,
this choice does not limit generality.

‘R. Geroch, J. Math, Phys. 13, 394 (1972).

SMore precisely, we regard the upper-case Latin indices as ab-
stract indices over the Lie algebra of Killing vector fields on
M.

®B. Carter, J. Math. Phys. 10, 70 (1969).

"We scale s4 so that its component in the Killing direction
which is timelike at infinity is unity [cf. (2.7) and (2. 8)].
8B. Carter, Comm. Math. Phys. 17, 233 (1970).
91t appears that our conditions are equivalent to the usual axis
regularity conditions. However, on the axis, kg becomes a
direction-dependent tensor field on M, so that the equivalence
is not immediately evident.

10See, e.g., S. Bochner and K. Yano, Curvatuve and Betti
Number (Princeton U, P., Princeton, N.J., 1953), p. 26.

11n the Newtonian limit, this curve is a straight line parallel
to the axis. Here, we make no assumptions concerning

connectivity.

12The boundary conditions rule out the possibility ¥ 'n= const.

137, M. Bardeen, in Black Holes, edited by C. DeWitt and

B. S. DeWitt (Gordon and Breach, New York, 1973), p. 241.
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Lattice Green’s function for the body-centered cubic lattice
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We have shown that the lattice Green’s function at an arbitrary site with nearest neighbor
interactions for the body-centered cubic lattice is expressed as a finite sum of products of the
complete elliptic integrals of the first and the second kinds with real values of moduli for the entire

range of energy.

1. INTRODUCTION

A lattice Green’ s function at a lattice point (I, m, n)
for a body-centered cubie (b.c.c.) lattice with nearest
neighbor interactions is given by

A Lo

where I, m and n are zero or integers, E is a real num-
ber, and & is an infinitesimal number. Maradulin ef al.!
proved that the above function at the origin G(0, 0, 0) is
reduced to a product of the complete elliptic integral of
the first kind. In this paper, we show that G(I, m, n) for
an arbitrary point (I, m, n) is expressed as a finite sum
of products of complete elliptic integrals of the first
and second kind. In proving this, we use the method de-
veloped previously for the case of a face-centered cubic
lattice, % in which the knowledge of a group of the

Green’ s function G(2p, 0, 0) (p =0 or an integer) is suf-
ficient to determine the rest of G(l, m, n) by successive
applications of two recurrence formulas. From (1.1),
G(2p, 0, 0) is real for |E|>1 and is complex for |E|<1.
However, by extending the procedure of analytical con-
tinuation it is shown that G(2p, 0, 0) is expressed in
terms of the complete elliptic integrals of the first and
the second kind with real values of moduli for — < E

< oo,

coslx cosmy cosnz
—ib - cosx cosy cosz’

(1.1)

G(l, m,n)

2. RECURRENCE FORMULAS

For a cubic lattice, nonequivalent lattice sites are in
a portion of 1/48 of the entire space, and it is generally
possible by successive applications of two recurrence
relations for the Green’ s function to determine the whole
family of G(I, m, n) in terms of G(2p, 0, 0)’s for a zero or
positive integer p. 2

For a b.c.c. lattice the first formula holds for
G(I, m,n)’ s connecting the nearest neighbor sites and
is given by
GUH1,m+L,n+1)+GUI-1,m-1,n-1)

+GUl+H1,m+tL,n-1)+GI-1,m—1,n+1)
+GUl+l,m=-1,n+1)+GUl-1,m+1,n=-1)
+Gl-1,m+1,n+1)+GI+1,m—=1,n-1)
=8EG(I, m, n) ~ 86,6 00,0, (2.1
where ;) is Kronecker’ s delta.

The second formula holds for Eq. (1. 1) on nine lattice
sites which lie inside and on the edges of a square
formed by lines joining the 2pth and the 2p + 4th sites
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along the ¥ and v axis on the (0, 0, 1) plane. This recur-
rence relation enables one to express any G(2I, 2m, 0) in
terms of G(2p, 0, 0)’s for p <!, and the derivation is sim-~
ilar to the derivation for the f.c.c. lattice, as described
in Ref. 2,

Assume |E|>1, and we integrate (1.1) over z to get

G(21, 2m, 0) —szdd

cos2lx cos2my
Y BT cos’x cos®y)

172

-—2[ dx cos2IxF,(E, x), (2.2)
where
Ful(E, %) :jo‘ dy(Ez —cz(iz::lcjizoszy)l /2* (2.3)
Next, we introduce an integral
FulE, x) = fo" dv cos2my[ E? -~ cos®x cos?y [t /2, (2.4)
which is written in terms of F,(E, x):
fulE, x) = E°F,,(E, x) c‘fz" Fou(E,x)+F, (E,x)
+2F_(E, x}]. (2.5)
For m #0 we integrate (2. 4) by parts, so that
O I =

After combining (2. 2), (2.5),
terms, we get

2(4E% - 1)G(2, 2m, 0) = G(2L + 2, 2m, 0) — G(2L - 2, 2m, 0)
=-3(1+1/2m)[G(21 + 2, 2m +2,0) + G(2L - 2, 2m + 2, 0)
+2G(21, 2m +2, 0)] - (1 = 1/2m)[G (2L + 2, 2m - 2, 0)
+G(21-2,2m ~2,0) +2G(21, 2m - 2, 0)]

and (2. 6) and rearranging

=0, (2.7
For m=0, we calculate directly from (1. 1);
4 T T
G(2, 2, o):_?/ f dx dy[ E: - cos®x cosPy /2
o Jo
+(4F® - 1)G(0, 0, 0) - 2G(2, 0, 0). (2.8

The integral on the right-hand side of (2. 5) is expressed
in terms of the generalized hypergeometric series,

1:'[[dxdy[Ez--coszxcoszy]”2
s Jo
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B e [, 0,0
=~ b s g n ()]
(2.9)
By use of the formula®
oFala, c—a, ic;c, e +1;2)
=[Fila,c~a,icti; 1= LVI=2) P, (2.10)

and the Gauss’ transformation for ,Fi(a, b, ¢;x), we get
for I

1=22E{[K(ko) P — 2K (k) E(ky) + 2 E(k () JF, (2.11)
with

RZ=1_1(1-1/E)/2, (2.11")
Then, G(2, 2, 0) is given by
G(2,2, 0) = (4E2 - 1)G(0, 0, 0) - 2G(2, 0, 0)

-—%—ZE{[K(kO)]Z ~ 2K(k) E(ky) + 2[ E(R) 4. (2.12)
3. CALCULATIONS OF G(2p,0,0) for |£ |>1

From (1.1), we have
1 cospr
G(2p, 0, 0) == fo L WA T gotr coday T . (3.1

Integration of (3.1) over y leads to

1" costy
G2, 0,0 = ﬂEﬁ dx cos2px 3y (%; ) 1;"ET> .
3.1)

By expanding ,F(3, 1, 1; cos?x/E®) in a power series and
integrating over x term by term, we get

__ ( ) ( ) 4 2n
G(2p, 0,0) = wEZ"(T)?‘(—l—)LEr"J dx cos2px cos®™y
15 (=17 <2p P\ v etr (Dpr
—Ert)(zf) ) » >2 (1) Fz(z; np-r+3
1,p-v+1; 1/E%, {3.2)
Next, we show that ,Fy(%, 3, p—7+3; 1, p—7r+1; 2)

(p — =0 or a positive integer) can always be expanded
in a finite sum of products of simple hypergeometric
functions ,Fy(a+3, b +4, ;1 ~ 5V1—z) with integers a,
b, and ¢. We start w1th an identity which holds for
3Fo(3, 5,0 +35;1,p +1;2) with p a postive integer,

3Fz(%,l§)p+l;lyp+1;2)
ZJ q3FZ(z;zyp_s—'1p"S Z)

+I‘(p+1 T(g+% r(p qg-13%)
[TOFTe +HF

[P+ PPTn+p-—qg-12)

V[T + DT +p +1)

% (3.3)

]

q
2" On+s+1),
s=0

3
il
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where ¢ <p and

(VT[NP - s— 4P
P T -9+ %)]T*J‘

a-

xZJ (7+s>(p_27_23-1)-1-1:-%—:_’;—:-%.

Validity of (3.3) and (3. 4) is readily proved by induc-
tion. Now, if we put p=2m and g=m -1 in (3.3), we
get after some calculations

(3.9

3F2 (3, %, 2m+351,2m+1;2)

_ZJDS m-13F2(%: %’ ZWL—S—-%;I, 2m—s;z)

Tim +1)\3 1
+( r(}) - ) [T(@m +HPT(m +1)22m

2m
x5 (221) T(a+H)T(2m ~a+1)
a=0

XgFpla+d,2m=a+i,m+3;2m+1,m+1;z). (3.5)

Similarly, for p=2m +1, and g=m, Eq. (3.3) is
written as

aFold, 3, 2m+ 351, 2m +2;2)
:Z,@Dﬁj"m“ aFold, 5, 2m=s+ 141, 2m—s+1;2)
P

+[ L(m +%>T T(m +3)
T(2m +3)| [TE)P(m +1)22m1

2m+1

35 (") rta+ rem-a+3

><3F2(a+§,2m—a+2,m+1 2m+2,m+1;z)., (3.6)

Then, by successive use of (3.5) and (3.6), we can
reduce ,F,(z,%,p+3;1,p+1;2) to a linear combina-
tion of jFy(v +14, Zq r+3,q+L;29+1,g+1;z2) and
sFo(r+ 3, 2q - r+2,q+2,2q +2,q9+1;z), where g and »
are zero or positive integers satisfying 29 - v+ > 0,
Furthermore, those generalized hypergeometric func-
tions are reduced to a sum of products of a simple hy-

pergeometric functions. By use of (2,.10), we get
sFo(r +3,20~v+4,g+5529+1,9+1;2)

[Fl('r+2’2q T+ (1+172 2\/1_2)]2, (3.7)
and we also have
3 (r + 3, 352042, +1;2)

=[Fi(r+3,2qg-r+1,qg+1;1 - LVTZ)P

2q—7’+%,q+

+l
+< . +2> ZF(r+3,2g-7r+3,g+2; 1 - LVI-2) 1
(3.8)

The relation (3. 8) is easily obtained by applying Gauss’
transformation of the simple hypergeometric series to
the formula derived by Burchnall and Chaundy.* Finally,
we note that F(a+3%, b +4, ;-2 for integers a, b, and
¢ is reduced to a linear combination of K(ky) and E(k,).

To illustrate, we give below the explicit expressions
for G(2p, 0, 0) for p=0, 1, 2, 3 calculated by our method
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FIG. 1. The values of % in the complex plane.

described above:

G(0, 0, 0) = (4/72E)[K (k) I3, (3.9)
41—k 1 2
G(2,0,0) _?EEEL <K(k0) -1o52 E(k0)> , (3.10)
_9p2 2
G(4,0,0) :W%EE ((z — 3k DKk, ~ 2—31:-1-?3050—) E(k0)> ,
(3.11)
_ 4 4(k2 - 2))
G(s,0,0) S ZEREA =k [(1 -k +_15_kor— K(kg)
8(kt—Fk2+1) 2
(Tl&zﬁ’?o”k;z)_’ 1) E(ko)] , (3.12)

where &, is given by (2.11').

4. ANALYTICAL CONTINUATION OF G(2p,0,0) FOR
[E1<1

The Green’ s function G(I, m, n) represented by (1.1)
has a nonvanishing imaginary part for {E|<1. Notice
that the real and the imaginary parts of G(I, m, n) satisfy
the following relations with respect to the change in sign
of E, namely,

ReG(l, m, n, E) =ReG(l, m, n, — E)(~ 1)1*mn

and (4.1)
ImG(l, m, n, E) =1ImG(l, m, n, — E)(— 1)'*™™",

so that it is sufficient to evaluate G(l, m, »n) for 0< E
<+, The two recurrence relations in Sec. 2 are valid
for all values of E, applying analytical continuation to
G, m,n) s.

The expressions for G(2p, 0, 0) derived in the preced-
ing section are valid for 1 < £<+«, In order to obtain
G(2p,0,0) for 0<E <1, we extend the procedure of an-
alytical continuation®'® to transform K (k) and E(k,)
having real modulus %, for E > 1 given by (2.11") into
K(q) and E(g) with real modulus ¢ for 0 < E<1. By ap-
plying a transformation,

zFI(%’ t3 1; koz) =(1- k()z)$1 /zzFl(é; £4,1; koa/(koz— 1)),
(4.2)

we get K(k;) and E(k) for which the modulus #, =%,/
vEkZ-1lis on a line along the negative imaginary axis
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for E>1 and on a circle of unit radius for 0<E<1in
the complex %y plane, as shown in Fig. 1. When & is a
complex number with |2 | =1, it is possible to map &,
into a line along the real axis starting from the point
greater than unity in the complex ¢ plane by the
transformation

q=2Vky/(1 +ky). (4.3)
The functions K(k;) and E(k,) are accordingly trans-
formed to

K(ky) ={1/(1 + &) 1K (g)
and

E(ky) = [(1 + &) E(g) + (1 - k) K(a) ]. (4.4

In applying the above transformations, care is to be
taken to put

(E-cl2=(E-c)'’? for E-¢> 0,
and (4.5)
(E=c)'?=<i(c=E*'? for E-c<0,
when we take the limiting values E—¢0 as 6 -0 for 6> 0.
Furthermore, K(q) and E(g) with ¢ > 1 are expressed in
terms of K(1/q), E(1/q) and those with the complemen-
tary modulus 1/¢'=(1~1/¢%"/% as
Elq) = (1/g)[K(1/q) - iK' (1/q)]
and
A ,1) ( 1 (1) 1 ,<1>]
Elg)=q |E{~)+iE{-) - {1~ K=)=-i=K|[-]]|.
(@) q[ (C]> (q ?) a)” @ \q
(4.8)

Finally, by combining (4.2), (4.4), and (4.6), we write
K(k,) and E(k) in terms of K(1/q), K'(1/q), E(1/q), and
E'(1/q) as

-0l )

and

Elk) =572 {(1 ) [E@ ik G)]

2
+3l(1- B2 41+ B R + B2

- (1_ E)llle(%)— [(1 +E)1/2

+(1- E) /Z]K’(l/q)}}, 4.7

where

1/¢=4Q+EP2+ (1= E}/?], (4.7

Clearly, 1/q is real and smaller than unity for 0< E<1.
Therefore, by simply replacing K(ky) and E(k) by the
expression, (4.7) and (4.7’) together with Eq. (4.5) in
the relevant coefficients involved in G(I, m, n) in the pre-
ceding section, we can evaluate G(I, m,n) in terms of the
complete elliptic integrals of the first and the second
kinds with real moduli for 0 E<1,

5. SUMMARY

We have developed a general method to express the
lattice Green’s function (I, m, ) at an arbitrary site

Michiko (noue 811



(1, m, n) for b.c.c. lattice as a finite sum of products of
the complete elliptic integrals of the first and the second
kind with real moduli for the entire range of values of
energy. The present method is particularly useful for
high-accuracy numerical evaluations of G(I, m, n) and
can be extended to evaluation of the lattice Green’ s func-
tions for non-cubic symmetry.

Noteadded in proof: Since this paper was written, the
author has learned that G.S. Joyce had already shown
that G(l, m,n) given by our Eq. (1.1) was expressed in
terms of the complete elliptic integrals of the first and
second kind for |E£/>1, and that he also derived the an-
alytical continuation of G(0, 0, 0) for |E|<1 [J.Phys, C1,
1510(1971) ; J. Math. Phys. 12, 1390 (1971)]. The author
is grateful to Professor S. Katsura for pointing out the
papers of Joyce.
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We prove that a projection of the solutions to a linear functional equation of the Fredholm type with a
compact kernel, projected into the Cini-Fubini subspaces, converge strongly to the solution in the whole
space, Here either the whole sequence converges for all nonsingular points of the functional equation with
at most one exceptional point, or by selecting at most two infinite subsequences we can obtain
convergence for all nonsingular points. We then prove that the diagonal Padé approximants to the inner
product of the solution with another element converge. For certain kernels of trace class, the numerator

and denominator separately converge. As applications of these results, we prove the pointwise
convergence of the Pad€ approximants to a wide class of meromorphic functions. We also prove the
convergence, for decent potentials, of the Padé approximants to the scattering amplitudes for
nonrelativistic quantum mechanical scattering problems. The numerators and denominators of the Padé
approximants to the partial wave scattering amplitudes for single signed potentials converge separately to

entire functions of the coupling constant.

1. INTRODUCTION AND SUMMARY

In this paper we discuss the relation between Padé

approximants and the solutions of linear functional
equations, Our discussion is substantially different in
approach than the classical matrix theory of continued
functions! and different in results as well. Our study
had its genesis in an effort to remove a number of un-
necessary restrictions in the work of Garibotti and
Villani? on the convergence of Padé approximants in
nonrelativistic quantum mechanical scattering theory.

Since Chisholm? first considered the solution of in-
tegral equations by Padé approximants, the field has
developed in two directions. On one hand, there has
been considerable study of the definition and properties
of Padé approximants to matrix formal power series,
as Chisholm originally had considered. For a recent
review, see Bessis. ! The alternative approach was to
consider the Padé approximants to the matrix elements
separately. It is this latter approach that we shall take.
Tani® and Nuttall® soon realized that the matrix element
of the solution to an integral (or more generally a lin-
ear functional) equation when properly projected is
exactly a Padé approximant to the solution to the equa-
tion in the whole space. In the scattering theory con-
text, the proper projection is the Cini— Fubini one. ’

In the second section of this paper we review, ina
more general setting, the relationship between Padé
approximation and projection in Hilbert space as it re-
lates to the solution of linear, functional equations of
the Fredholm type.

In the third section we review some of the known
properties of the trace class of compact operators. In
the fourth section we prove that the solutions to proper-
ly truncated Fredholm equations with a certain subclass
of the trace class of kernels converge strongly to the
correct solution, Furthermore, the numerator and de-
nominator to the [M - 1/M] Padé approximants separate-
ly converge to entire functions as M — =,

In the fifth section we consider general Fredholm-
type equations whose kernels are only assumed to be
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compact. We again prove strong convergence of a pro-
jection of the solutions to properly projected equations.
Either the whole sequence converges everywhere not a
singular point of the functional equation with at most
one exceptional point, or by selecting at most two in-
finite subsequences we can obtain convergence for all
nonsingular points, The convergence of the Padé ap-
proximants, to the matrix elements is then immediate,
but the numerators and denominators do not necessarily
separately converge, This result proves a modification
of a theorem conjectured by Chisholm., *

In the sixth section we consider a wide class of mero-~
morphic functions which can be associated with func-
tional equations with compact kernels, We prove conver-
gence for the Padé approximants in the same pointwise
sense as in the fifth section. This result proves a modi-
fication of a theorem conjectured by Baker and
Gammel. ® It also improves (for a narrower class of
functions) Nuttall’s results? which proved convergence
in measure (or capacity, Pommerenke!?) for the whole
class of meromorphic functions. For a more restricted
class we prove numerator and denominator converge
as well,

Finally in the last section we treat nonrelativistic
scattering theory. For decent potentials we prove con-
vergence of the Padé approximants to the scattering
amplitude for all real, physical momentum plus for
short-range potentials for a strip about the real axis.
In addition, we prove for single-signed potentials con-
vergence for the partial wave scattering amplitude in
the same region, where the numerator converges and
the denominator converges to the Jost function. This
last result extends the results of Garibotti and Villani?
for real momentum.

2. THE PADE APPROXIMANT AS THE EXACT
SOLUTION IN THE CINI-FUBINI SUBSPACE

We are concerned with the solution of the functional
equation

f=g+ 1 Af, 2.1)
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where f is an element of a Hilbert space // and A is a
linear operator whose properties we shall detail latter,
1t has been known for some time, Tani’ and Nuttall, 8

in the context of scattering theory that the Padé approx-
imants® in A to (h,f) are the exact solution to the trun-
cation of Eq. (2, 1) in the Cini—Fubini’ subspace where
he 4. We repeat these arguments here in a2 more ab-
stract setting to free them from a number of unneces-
sary restrictions.

Let us introduce the elements

¢i=A""g, @j=(A)""h, 2.2)
where A' is the Hermitian conjugate of A.
Let us further define the NXN matrix
Rys= (9} 95) = (A", A g) . 3)
=th, A" gy =0,
If det|R;;| #0, we can define the operator
Pas 2 0B, 9. 2.4)

We can verify easily by direct computation that P4 =P,
that is, Py is an idempotent. Further, since Py¢; =¢,,
the range of Py is the space spanned by the ¢, and no
larger than (2.4). Hence, by known results,'! Py isa
projection operator on the space Sy spanned by the ¢,.
It may happen that P, is an oblique, rather than an
orthogonal, projection, Then ||Pyll >1. The operators
Py define a nesting sequence of spaces as PyP,=P,P,
=Py, if M <N,

Let us now consider the truncated equation
fv=g+ APy AP, . 2.5)

By construction, the solution of (2. 5) must be of the
form

N
fy= ,Zf a; 9, (2.6)
By direct substitution we get
N N
Z} a,cpj=g+>\PNjZ:J a;Ag;; (2.7)
= =

to obtain a convenient set of equations, we may take the
inner product of these equations with the elements ¢;.
If we use the definitions (2. 3) and (2.4), we obtain the
equations

N
J-,Z’; A543 = My, 50) = Wi, 2.8)
If we introduce the N XN matrix
U= Wiaguz = Mgagy (2.9)

and the adjoint matrix V;; composed of the first order
minors of U, then we may write the solution of (2. 8) as

fzv=(iv) i ‘PiVijw/-i)/ (det|U;;1).

i=1 =1

{2.10)

Now, it follows directly from Eq. (2. 9) that, as a
function of A, the coefficient of each ¢; is a rational
fraction whose numerator is of degree at most N~ 1
and whose denominator is of degree at most N. This
solution is possible as, for A=0, det|U;;| =det|R;;1#0
by hypothesis.
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Of particular interest in the rest of this section is
the inner product
N N

(h, fN):<‘='El for Wiy Vu"-’y-l) (det[U”[).

@.11)

Next let us consider forming the [N~ 1/N] Padé
approximants to the Liouville—Neumann series to the
solution of (2,1). The Liouville—Neumann series is

f=g+AAg+NA%g + WA g 4o, 2.12)

If we take the inner product of f given by Eq. (2.12)
with some element h, we define a formal power series

(2.13)

where we have used the definition (2. 3). The defining
equations for the [L/M] Padé approximants!® to a formal
power series, s(z), are

$(2) Qu(2) = Pr(z) = Oz ™),
@u(0)=1.0,

where @) is a polynomial of degree at most M and P,

is a polynomial of degree at most L. If we apply these
equations to the calculation of the [N - 1/ N) Padé approx-
imant to (1), we obtain, after a little manipulation of
the Cramer’s rule solution of the linear equations (2. 14),
the Nuttall compact form®!? result

[N—I/N]=(§ fN; W V,-,-wj.1>/ (det| Uy )

i=l j=1
=(h, £y). (2. 15)

Thus, provided detiw;,;.21 #0, we have shown that
the (N - 1/N] Padé approximant to (h,f), where f satis-
fies (2.1), is identically equal to (h, fy), where f, satis-~
fies the truncated equation (2. 5), of finite rank. Hence,
in order to study the convergence of the Padé approxi-
mants, we may replace the difficult procedure of Padé
approximation by the more easily controllable procedure
of projection.

(h, £) = (\) = wy + Awy + A2wg + Nowg+2 0 e,

(2.14)

Now, with regard to the restriction det|w,, ;] #0.
If this determinant for a given N vanishes, then the set
of N elements ¢; is not linearly independent in the
space Sy spanned by the elements ¢j. Since this deter-
minant is also the determinant for the Padé equations,
the possibilities have been extensively studied. ¥ The
case must be that either (h,f) is a rational fraction of
finite degree (zero is specifically included in this case),
or there exists an infinite number of N’s for which that
determinant is different from zero. When the determi-
nant vanishes, the Padé approximant equations are
either consistent or inconsistent. When they are con-
sistent, the Padé approximant is unique, 13 though not
the numerator nor denominator separately, and it is
equal to a Padé approximant of lower degree. We will
not treat this problem further here since we are assured
that either a finite order Padé approximant is the exact
function 2()) or that there exists at least an infinite
subsequence of [M - 1/M] to which we can, without loss,
confine our attention.

The results given above can be extended to any se-
quence [M+J/M}, J= ~1, of Padé approximants as a
nesting family of subspaces can be defined for it and a
modified equation
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f=A*1g+ A Af (2.186)

associated with it, by the elementary properties of the
Padé approximant, 2

3. TRACE-CLASS OPERATORS

Since the properties of trace-class operators (see,
Kato!!) are not generally well known among physicists,
we will review some of those that we need here, First
suppose that the operator A is compact. That is to say,
for every sequence of elements {f,,} with the property
that |[f,]l <C, then the sequence of elements {Af,} con-
tains a convergent subsequence of elements {g,,,}. The
convergence is in the sense ||g;~g,ll ~0asj and & go
to infinity.

It follows by well-known theory!* that the operator
A'A =T is compact, self-adjoint, and nonnegative
definite, Furthermore, it has at most a denumerably
infinite number of eigenvalues. Thus we may write

T, = afyy, (3.1

where the ¥; are the orthonormatl eigenvectors and we
take a; > a;,1> 0. The trace norm of the operator A is
defined as

lall= Zf Q. (3.2)

1=

The trace class is all those operators of finite trace
norm. It follows easily that ||aAll; =1 a|||All; and that
[IAll; =0 and equals zero only if Af=0 for all f in /. In
the study of the properties of this norm, it is conven-

ient to introduce the canonical expansion of A. First
define

¥ =AY/ a,. (3.3)

The ¥; can easily be shown to form an orthonormal set
of elements. Then, we have the canonical expansion

AT Yoy, ). (3. 4)

Since the trace norm is sometimes difficult to evaluate,
it is convenient to bound it. Let us consider ||ABJ|,,
where A and B belong to the Hilbert—Schmidt subclass
of compact operators, defined by

A, - fl) ol <o, (3.5)
Then by using the canonical expansion

AB=20 9ivi(9, ), (3. 6)
we have by (3. 6)
B

:Z‘-\’ Vi =i2 (¢}, ABy;) :,-E (A'gi, Bo,)

<2 4%l B

<@ Al 20 | By 1

<[la']; | Bl.=]Al; | B]., (3.7)

where the properties of the inner product, the
Cauchy —Schwarz inequality, and the basis indepen-
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dence of the Hilbert—Schmidt norm have been used.
Clearly any operator of trace class is also in the
Hilbert—Schmidt class, It is also true that any opera-
tor of trace class can be factored into two operators of
Hilbert—Schmidt class. To see this result, introduce
the operator

[A] =20 #0208, ), (3.8)

which has the property |A{?=T. As the ¢;>0, we may
take the square root of |A] in an obvious way. Further

A= {Zj ‘Pf(ll’f, zpj)) ai(‘pj’ ):U’A|7 (3' 9)

where as i; and §; are orthonormal sets, U is unitary.
By factoring A=(UlA1'/2)(1A]'/?), we then have both
factors of Hilbert—Schmidt class, if A is of trace class.
Finally, we note that it can be shown'! that

la+B],<[a],+[Bl..

There is one further inequality which we will need. It
is

(3.10)

|AB|, <a,@A)B], < ||al, B],,

which can be proved by use of (3.7) and factoring AB
=AUI|B|*/2|B|!/2 g0 that

|AB[, < [au[B]/2], | [B]*/*],
<a,(A0)| [B]/?]2=0,(A0)||B],, (3.12)

but as o, (AU) =«,(A) we have (3.11). If we apply (3.11)
to A*, we have

lax], < (]A] ).

Next we see that for A of trace class that the trace
is a well-defined function of A. We define

tr(8) =2 (¢,,Ap,)

(3.11)

(3.13)

(3.14)

where ¢, is any complete orthonormal set of elements
in //. Using the ¥, defined in (3.1), we can now show
that the sum in (3.14) is absolutely convergent, for

Z (¢, A0)| =20 | (¢,,A%0)|
:1Z: IJE (%;‘/’ﬂ(d’,;y%)l
< l@u9)! ), A0
S;(? l(fpi,w,)lz) 1/2(? I(wj,AT ‘Pi)Iz) 1/2

=2 o,)=]lAl, (3.15)

or

[trd)] <2 (o, A0) < | A, (3.16)

for any operator of trace class and any orthonormal
family. Since the sum in (3.186) is absolutely conver-
gent, the usual arguments can be applied and we con~
clude that tr(A) is independent of the basis set.

We conclude this section by defining the determinant
D(\)=det|I+x A| =1imD, (), (3.17)
N=ow

where I is the identity and A is of trace class, and by
showing that D(\) is an entire function of A.
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We may write the definition
D, (\) = expitr,[In(Il + 1 A)]}, {(3.18)

which is an identity for small enough X, where tr,(X) is
a partial trace over the first N elements of an arbitrary
orthonormal set. To give meaning to this definition, we
expand the logarithm in a power series in A. By use of
inequalities (3.13) and (3.16) we may bound this series
term by term by

Jer, (ma@+2 8= 2 = (] [A]LY,

=

which converges absolutely for || <||All]!, Thus at
least for small A, the function Dy()\) is an analytic func-
tion of A, uniformly in N, We will now show that in fact
Dy()) is uniformly bounded in N for all A,

(3.19)

Following Dunford and Schwartz!® we may write, at
least for [A[<[jAll;! where the relations hold term by
term in j,

|Dy(A)|%= |dety |I-2A[]?
=dety| (I~ 2*AT)(I- 1 A)|
=exp[ |22 try(ATA) - tr y(\*AT + 2 A))

xdety | (1 - 2*AN(1 - 2 A)], (3.20)
where we have used the definition
dety |1+ B| = exp{trs[- B+1n(I+B)]}. (3.21)

In the case (I+B)=|I- 2A|% In(I+B) is well defined

for all x since as A is of trace class it is also bounded.
As noted above, we can evaluate the trace using any con-
venient complete orthonormal basis, If B is Hermitian
and nonnegative definite, then we choose the eigen-
vectors of the truncation of B as our basis set. Then,

if B; >0 are the corresponding eigenvalues,

tr[- B+1n(I+ A B)]
=24 [-B;+In(1 +B,)]<0

1

(3.22)
since In(1 +x) — x is monotonically decreasing for x = 0
with a maximum at x =0.
Thus we obtain the inequality from (3. 20} and (3. 22)
i 2
|Dx) | < exp(A[* A+ ] [A]D) (3.23)

uniformly in N, From inequality (3. 23) it is a simple
matter to derive from Cauchy’s integral formula for the
coefficients

N
Dy(\) =27 dy, N (3.24)
=t
the term by term bounds
.. 2L ;
dw, ;| <[P exp | Al + 2 AV (3. 25)
We can now see that
(3. 26)

N-
exists and is an entire function of A, The argument is
that for any fixed » we can, by Eq. (3.25), given any
€> 0 find an M(€) such that

M
| Dy = 23 dy, M| <e. (3.27)
j=1
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However, by Eq. (3.18) every dy, ; is a polynomial func-
tion of Try(A*), 1<k <j, which by (3. 16) must converge
to a limit as N—, Thus as M is independent of N we
deduce that (3.26) holds for any finite A and that, as the
limiting coefficients must obey (3. 25), the limit is an
entire function of A, It is plainly sufficient that the basis
set used in the definition spans the range of A for the
result to be unique,

4. CONVERGENCE OF THE SOLUTION OF THE
TRUNCATED PROBLEM FOR TRACE CLASS
OPERATORS

In this section we examine by Fredholm methods
for trace-class operators (Sec. 3) the strong conver-
gence of the solutions £y to the truncated equation (2. 5)
in the Cini— Fubini subspace to a limit f. and show that
this limit satisfies Eq. (2.1). This result will then im-
ply the convergence of the Padé approximants, In this
section we will need the condition that ||Py APl be
uniformly bounded for any sequence of N’s that we con~
sider. We do not know a convenient way to express this
condition, and so we will actually treat a less general
case in which it must hold. We shall assume in this
section that the spaces defined in Sec. 2 are equal, i.e.,
Sy=S%. This assumption implies that Py is an ortho-
gonal projection, and Py=P}, ||PAi=1, If A=A' and
h=g (of Sec. 2), then §y=9% directly from the defini-
tion (2. 2). A more general condition which will assure
the equality §y= §% is that if A is expressed in terms
of the infinite set of orthonormal basis vectors e;, the
first N of which span {y for all N, then A is represented
by a tridiagonal matrix. In other words, given g=h as
the starting vector, the upper Hessenberg form of A is
tridiagonal.

In order to make this investigation, let us introduce
the orthonormal basis x; for the Cini—Fubini subspace
Swv=S4% introduced in Sec, 2 (it is the space spanned by
the elements A*~!g, i=1,...,N). We then resolve the
operator Py APy in this space as an NxXN matrix (it
may be a smaller space, as pointed out in Sec, 2, but
we may restrict our attention to the N XN case):

A= AXy), 4,7=1,...,N, (4.1)
Then Eq. (2.5) becomes
N
fx= 20 b;X;,
i=1
N
b= (X;,8) + X 27 Ay by (4.2)
k=1

The Fredholm solution of these equations is directly
given, ' provided

Dy(A) =dety|8;;— 24, #0 (4.3)
by the formula
=83 20 1, D, a0 /D400 @.4)
as g lies in {y by construction, where
Dan)-Au= 1 5[50 5
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Ap Ay Ay
A 3 Ap Ay A
21 I, m=1 Amk Aml Amm

(4.5)

- 000
°

Naturally the terms in A", 2= N, vanish identically, in
conformity with Eq. (2.10). The definition (4. 3) agrees
with that of Eq. (3.18). That (4.4) is a solution of Eq.
(2. 5) may be verified by direct substitution through the
usual arguments. We next wish to show that the opera-
tors Dy, ;()\) are uniformly bounded in N.

We have not yet specified which basis set we wish to
choose for the ;. We can select this set as we wish
without loss of generality. We choose to define the y;
by

Tyx;= (C‘;N))2 X;i Ty= (ngAf PL)(PNA Py), (4. 6)
the eigenfunctions of the analog T of Eq. (3.1) in the
Cini—Fubini subspace. Analogously to (3. 3) and (3. 4)
we have the canonical expansion

PyAPy= EX; N)(Xu ) (4.7

where ¥} is also an orthonormal set. Then we have the
inequality for the matrix elements 4,,

N
anl < (% 14,407)

n 1/2
(B 1o e e agm,

To establish that Dy, ,(}) is a bounded operator, we
need the result of the Cauchy—Schwartz inequality

1/2

4.8)

N

2 N
<20 || 23 |Anl? = |0]P(ef™)
kel k=1

N
25 Aply
k=1

(4.9)

by (4.8). We are now in a position to apply Hadamard’s
determinant inequality

@y Gy °°° Ay

Gy 299 *°° ayy n /. ARV
det | : . -, l < {2 |ay)

o . o . i=1 \ j=1

Ay Ay **° Qpy

(4. 10)
to Eq. (4.5), acting on an arbitrary h of unit norm in

Sw. Thus, using (4.9), we have

N
ZE Dy, (M Ry,
k=

v A
<a ) _1_2[(‘1(1\!) +IA ‘ 172
1=1
(N) I l 172
N N
S e a1
x[(a;V) + A, |?+ + A, |22

X[(apY + |Apg |24 [Apy [2]H 2 4000, (4.11)

If we now apply (4. 8) to the remaining matrix elements,
we obtain

N
2D v, (X)) Ay
B=1
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RS [1 1Al 9272 Z) a
j 1 1=1

YLy ST Y (B
+—7 3 27 af 27 o] 4o
2! 1=1 m=1

2
ca, (1+ 20 gpaf B g ).

2! (4.12)
as the characteristic values o; are monotonically in~
creasing as functions of the subspace size. Thus the

square norm implied by (4.12) is

IDseonl< Al (1443 227 Al

IM 33/2 |]A|]2+> (4.13)
and thus Dy{)\) are a sequence of uniformly bounded
operators in N for any A, provided the series (4. 13)
converges, But as |[All; is finite (which makes ||A]l,
finite also), this convergence follows immediately by
the ratio test. That the operators Dy(\) converge in

the norm follows directly, as we can show by standard
arguments that for j <J the coefficients of A’ tend uni-
formly to limits (N — »); by selecting J large enough
we can make 3., a'j as small as we like, which suffices
to prove that ||[Dy(A) - D,(0)]hll =0 as M, N—«, for
all h, ||hj =

It is then easy to show [D(x) # 0] that the fy converge
strongly to a limit f., as we have already shown in the
previous section that the determinant Dy()) converges
to a limit D(\). That the limiting function satisfies the
original equation (2.1) follows [D())# 0] directly as it
does term by term in A, and the square norm of the re-
mainder can be made arbitrarily small by taking enough
powers of X since the bounding series in (4.13) con-
verges absolutely for all A,

Thus it follows immediately from Sec. 2 and this re-
sult that the sequence of [N~ 1/ N| Padé approximant to
g =(g,f)=(g,f.) converges for all A, D(A\)#0, and
furthermore the numerator and denominators converge
separately to entire functions of A. When D(\) vanishes,
we expect a pole in the Padé approximant, Since D())
is entire, it has only a finite or denumerably infinite
number of zeros with no limit point in the finite A plane.
In the context of scattering theory which we discuss in
a latter section, D(}) is the Jost function, as Garibotti
and Villani? had previously shown,

5. CONVERGENCE OF THE SOLUTION OF THE
TRUNCATED PROBLEM FOR COMPACT
OPERATORS

In this section we assume only that A of Eq. (2.1)
is compact, rather than restricted to a portion of the
trace class as we did in the previous section. We also
assume (5.11). In the previous section we showed that
the solution fy of the truncated problem (2. 5) converged
strongly to the solution and the Padé numerator and
denominator converged separately to entire functions.
Here we will prove that either the projection /2% of the
fy converges strongly to the solution of (2. 1) for all
finite A not a singular point of (2. 1) with at most one ex-
ceptional value of A, or there exist two infinite subse-
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quences, for one or the other of which the projection of
fy converges strongly to the solution of (2.1) for all
finite A not a singular point of (2. 1),

From the general theory! of Eq. (2.1) for a compact
operator we know that there are only a finite or denu-
merably infinite number of singular values of A for
which Eq. (2.1) fails to have a unique, bounded solu-
tion. These singular values do not have a limit point
in the finite X plane, Suppose A is not a singular value
of Eq. (2.1). Let us first suppose, with at most a finite
number of exceptions, that all of the solutions of the
truncated Eq. (2.5) are uniformly bounded. Then, re-
calling (2.1) and (2. 5), we have

f=g+2rAf, fy=g+APyAPfy. (5.1)

Let us introduce the orthogonal projection operators
Py and P} which project onto the spaces §y and §¥.
One may verify directly the properties

pfvPN:pfv, PNpN Zpiv (5.2)

from the definition (2.4) of Py, as long as det|R,;| #0.
By multiplication and subtraction we derive from (5.1)
and (5.2), by use of PLA=PL AP,

Pt =Pty =(P.g-Pye) +xPLA(PLE = Pyfy)
FAPLI=-PAL, A PLAPLO-PL)E
F(PL=PYAL, =2 PLA(PL = PO,

(5.3)
If [|,]l is uniformly bounded for all, then we have:
(i) The first term on the right-hand side of (5. 3) tends
to zero as N—=, (ii) The third and fourth terms are
zero identically. (iii) The last two terms tend to zero
as A is compact by standard arguments.'® Thus under
this assumption (5.3) reduces to

Lmal(PL = P;fy) =1 A(PLE =P 1)]=0, (5.4)

Neoo

and thus, as A is not a singular value of (2.1), we con-
clude by the uniqueness of the solution to

d=0+xAd (5.5)
that

lim | Pty -Put]|=0,

Ne

Lim (h, Py £y) =1lim ( Pyh, £y) (5.6)

N~ o N+ o

=1im (h, fy) = lim [N - 1/N]= (b, f)
N> o Ne o
as Pyh=h, for any sequence of N’s for which |fy|| is
uniformly bounded.

Next we must consider the question of the existence
of a sequence of N’s for which [|fy|| is uniformly
bounded. In order to do so, it is helpful to discuss the
structure of PyAPy acting on §y. First, by definition
(2.2), AP, g; is in §y when i< N-1, and so for these
elements the left-hand P, acts like 2;. Thus if we in-
troduce the orthonormal set of elements e; defined by
the requirement that {e;,j=1,...,N} span Sy, any effect
of the possible obliqueness of the projection Py in this
situation is felt only on elements in the direction ey.
Thus we may write
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PyAPy=PyAPyY +2ypulen, ¥) (6.7

for any ¥ in §y. The element, & y, is necessarily in

S~ and is taken to be of unit norm. The magnitude of
the last term is given by py> 0. It is to be noted that
there may only be a finite number of e;. This case cor-
responds to the case where a finite order Padé approxi-
mant is the exact solution, and, as the convergence
question does not then arise, we shall assume we are
not treating this case.

Now, suppose there is an infinite sequence of fy such
that || £5 ||~ =. For this sequence define dy=£y/||fyll of
unit norm. For these elements, (5.1) becomes, by
using (5.7),

dy =g/l fxll + X PyA Pydy+ 2 aypxley,dy),

which, as PyA Py is a compact operator and X is ex-
plicitly assumed not to be a singular value of (2.1), may
be rewritten as

dy=[I- APNAPN]A[ g/l iyl + 1 g von(ey, dN)]-

Now as ||dyll =1 and || glI/ll £yl =0 by assumption, we
must turn our attention to the second term. By (5.2)
and (5.7), we have

(5. 8)

(5.9)

tim | Phewpx] =0, (5. 10)
where  was selected as ey, To see this result, we
multiply Eq. (5.7) on the left by P% and use (5. 2) to
eliminate Py, Then by taking the inner product with ey
we get Eq. (5.10) from the compactness of A and the
fact that the e; are an orthonormal set. As we need not
consider at this point the possibility py— 0, as that
would immediately preclude, by (5.9), ||[dylj=1, we con-
clude from (5. 10) that

lim || Pen|=0
Ne

also. Thus, as ||sy]| =1, it must be that the projection
of e into §%— 0 in norm. We now assume that

lim inf|| Py A PyAey|=o0.
Thusg, in the limit as N— < there is a subsequence for

which we may set A=0 and g=0 in (5.9) and conclude,
from the normalization condition on dy and ey, that

(5.12)

(5.11)

lim ||dN_y~N ” :0,
Ne

lim Apy(ey,2y)=1. (5.13)

N-
An explicit calculation in terms of dy =aey + bey,
(4, cy) =0, and condition (5.11) forces the error in
(5. 13) to zero, even in the case py— .

Since the only dependence of (5.13) on 1 is that explic-
itly exhibited, for the particular sequence considered
Eq. (5.13) can hold only for a particular value of X and
is a contradiction to the assumption that || f5 || — < for
all other values. For those other values which are not
singular values of (2.1), the arguments of (5.1)—(5. 6)
imply convergence, Of course, there may be other se-
quences of N’s which correspond to other values of A.

We may now summarize our results in the following
theorem.

Theorem: Let A be any closed, bounded region in the
complex A plane not containing a singular point of Eq.
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(2.1). If fy is the solution of Eq. (2.5), P% is the ortho-
gonal projection onto the space (% spanned by the ele-
ments ¢, i=1,...,N, of Eq. (2.2), and (5.11) holds,
then either a finite order £ is exact, or

m |2 =Pty =0, (5.14)

where the limit is over all of the infinite number of N’s
for which Py exists, I3 o7 for each X in A for which

(5. 14) fails, there exists an infinite subsequence of N’s
for which (5. 14) holds for every other A in A.

By Egs. {£.15) and (5. 6), Eq. (5.14) directly implies
the convergence of the [N~ 1/N] Padé approximants. The
two cases allowed by this theorem are: (a) The entire
sequence of fy satisfy (5.14) everywhere in A with at
most one exception, or (b) by selecting at most two in-
finite subsequences of fy, we may obtain convergence
at every point of A,

If we make a stronger assumption, then we can prove
convergence of the entire sequence, fy. Let us assume,
instead of (5.11) that

Lim || (1~ P) Py | =o.
This condition holds automatically if for example A is
Hermitian, or the upper Hessenberg form of A is tri-
diagonal, as discussed at the beginning of Sec. 4. As-
sume that || fy]| are not uniformly bounded; then there
must exist a subsequence d, = £y /|l £yl for which,
as 1y ol —~ =, we have

d,— APy Ad, — 0, (5.16)

Now since A is compact, there is a subsequence of the
d,, d, such that

(5.15)

lim A Ad,, =d. (5.17)
By Eq. (5.2), (5.16), and (5.17)
lm Py A, = Him Py d = Phd=d (5.18)
nee © me ©
as condition (5. 15) implies ¢, D ¢.. Now
Lim [[dy = Phim &y | <1im [ (1= Prgwy) Preas | (5.19)
me me ©

as [|[d,ll =1. Thus by (5.15), (5.18), and (5.19) for the
subsequence d,,, we have

limd, =d (5. 20)
or by (5.17)
d=0+2Ad, (5.21)

which implies, as A is not a singular value of (2. 1),
that d=0, but ||dll =1 which is a contradiction. There-
fore, it must be that (5. 15) implies that || £|| is uni-
formly bounded and we obtain convergence by the argu-
ment (5, 1) to (5. 6).

If we only assume (5.15) to hold for a subsequence,
then, for that subsequence, the lIf,ll is uniformly
bounded and convergence is again obtained.

The results of this section prove a modified version
of a theorem conjectured by Chisholm® a decade ago.

Nole added in proof: An intermediate assumption be-
tween (5.11) and (5.15) would be that A is compact and

lim infll @=Py)Pyl|=0 <1. (5.22)
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As arguments (5.2) through (5. 6) are valid for these
assumptions, we need further analyze only the case
where /£, |l - < for all N for which the f,, are defined;
otherwise we could find a bounded, and hence conver-
gent, subsequence in the sense of (5.14). Thus we may
consider a subsequence for which both (5, 16) and (5. 22)
hold. By multiplication by /9,(,(,,), we may rewrite (5. 16)
as

Py oy Gy =X Pi 3 P iny Ay~ X Ph oy (P v arer = Prvioy) Ad,,
(5.23)

where use was made of the fact that as d, € §y,,, then
Ad, € Sy (4y.1- The right-hand side of Eq. (5.23) tends to
zero, by the compactness of A and {4, ||=1. Now, by
the triangle inequality and (5. 22) we have

1P Poke]| > [ Pk ~ [|@=Pi) Pk
- 18] -l a-PoP,

Pull= @ =0y |Pykll.
(5.24)

By the compactness of A, we may select a subsubse-

quence d,, of the d, with property (5.17), where d= §,

necessarily. Consider now by (5.23), (5.24), and the
compactness of A

0=1im [P (s Pyt (@n =2 Ad,)|
2 (1 - 0’) }ni‘l'g “py(m)(dm "kAdm) “
=(1-0)lim [[d, -1 Ad,]

_ (1-o)ld,li
REEY SR

since A is not a singular value of A, 0<1, and ||d_[l=1.
But this is a contradiction., Therefore (5.22) implies
that there exists at least a subsequence of £; which are
uniformly bounded; hence by (5. 6) those [N —1/N| Padé
approximants converge.

>0 {(5.25)

6. CERTAIN MEROMORPHIC FUNCTIONS AS
SPECIAL CASES

In this section we apply the results of the previous
sections to prove the convergence of the Padé approxi-
mants to a certain class of meromorphic functions,
Consider any function, regular at the origin and mero-
morphic with only simple poles inthe whole complex
plane, which is bounded on a series of contours C, which
tend to infinity. Then!” there exists a representation of
it of the form

F@)=f(0)+ (_ba_ - zn_)

n=l \@p— 2 ay,

:f(0)+§> (i‘ b,,a;i'"‘) z",

m=1 \ n=1

6.1)

where we suppose that the a, are ordered, {a,,;l= la,l,
and that 3 b,a;? converges by the existence of f/(0). In
terms of the vector g and matrix A

Ay=0/a;, 8=0)"a!, h=gf, (6.2)
we may write the equation
f=g+zAf (6.3)

and verify directly that
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fz)=f(0) +z(h, 1).

Since as f(z) is meromorphic, there can be no point of
accumulation of the @, in the finite complex plane; there-
fore, 1/la, |— 0 and hence A is a compact operator.
Here when we have (5.11), then, by the results of the
previous section that if R is any finite, closed, bounded
region in the complex z plane not containing a pole of
f(z), then either a finite order [N—-1/N] Padé approxi-
mant is f(z) exactly, o the entire sequence of [N - 1/N]
Padé approximants (those which exist) converges every-
where in R, oy for any point in R for which [ 1/N
fails to converge there exists a subsequence of the

[N~ 1/N] Padé approximants which converges at every
other point of R. Therefore, either the entire sequence
of [N- 1/ N] Padé approximants converges everywhere
in R with at most one exception, or by selecting at most
two infinite subsequences we may obtain convergence at
every point in R, This result proves a modification of

a theorem conjectured by Baker and Gammel® over a
decade ago, I the a; are real and b; > 0, then A=A,
g=h, and we have {y={} so that the entire sequence
must converge, This case is the Hamburger moment
problem.

(6.4)

The case where multiple poles occur is dealt with by
a variant of the above method. First note that the NXN
matrix identity

n+l

11 e=¢ 1
01 «on 1
'U'""‘ig ¢« o e °
00 -1
1) () == O
0 1 (B o (%
sea (aNV+2
BT ©.5)
0 0 0 =+ 1

where (§) is the usual binomial expansion coefficient.
The power series expansion for

N
Z}A/u—zv 6. 6)
J=
is formally generated by the expression
(h, 2 z"U™'g),h=(a,0,0:°0), g;=A,/a.  (6.7)
n=0

By including such NXN blocks U/ a; for Nth order poles
in place of 1/a; in the definition of A, we may reproduce
the higher order poles without destroying the compact-
ness of A,

One may either, as e*=1limy. (1 —x/N)"¥, work out
the application of the theory of the relationship of com-~
pact operators to the convergence of Padé approximants
by a limiting form of (6. 5), or directly as

FE)=1+nJ % f(y)dy (6. 8)

has the solution f(x ) e, The operator j dy is compact,
as it has || jfdxll; = % over the range 0 <x y<1. Thus,
the Padé approx1mants to ¢* converge, as is well known
from the work of Padé.'? Since the sum of two compact
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operators acting on disjoint spaces is again compact, we
can deduce that in addition the sum of any meromorphic
function plus a finite number of exponentials is again
represented by a compact operator and hence if (5.11)
holds has convergent LN/ N] Padé approximants. Since,
by the invariance theorem'? Padé approximation is in-
variant under linear fractional transformation, any func-
tion which is representable as (A + Bf)/(C + Df)

(AD - BC # 0) with f of class (6.1) plus a finite number of
exponentials again has convergent [N/N] Pade approxi-
mants. It seems likely that the class of functions to
which these results can be applied can be greatly ex-
tended. The entire -function examples of Gammel and
Wallin'®!° show that we cannot prove convergence of the
entire sequence of Padé approximants for the whole
class of entire functions.,

If we restrict the class of meromorphic functions
given by (6. 1) by the further requirements that 3, 1/la,!
converges, the poles are simple, the a, are real,
and the b; >0, then A given by (6. 2) is of trace class,
and by Sec. 4 the Padé numerators and denominators
separately converge in addition to the approximants
themselves, Edrei® has very recently also shown con-
vergence of the numerator and denominator separately
for this same special case, but over a wider set of
Padé approximants.

We note in passing the interesting case of ¢®. Padé!®
showed that for the [M/M] Padé approximant that as
M~

Py~et/2 Qu—e™/?, 6.9)
Furthermore, since 1/ +e%) is of the class (6.1) as
C, can be taken as a square contour (z =x +2y), x,¥
=+ 2mn, we have by the results of this section and in-
variance the convergence of the [M/M] Padé approxi-
mants as described above, The convergence of the nu-
merator and denominators separately is not established
as the poles are at z =+ (2n+ 1)1 so that Y%, 1/la;! di-
verges logarithmically as N— = so that A of (6. 2) is not
of trace class, even though Tr(A)=0. It may be that
the trace-class condition and our other conditions can
be somewhat weakened for the convergence of the Padé
numerator and denominator,

7. QUANTUM SCATTERING THEORY

In this section we shall consider nonrelativistic,
guantum mechanical scattering by a fixed potential
source. This scattering is governed by the Schrddinger
equation which is

— VEp(r) + AV (x) P(r) = P y(r),

where v° is the Laplacian operator, ¥ is the wave-
function, r is a three-dimensional vector, A is the
coupling constant, V(r) is the potential energy, and P’

is the energy. To complete the description of the scat-
tering problem, we must specify the boundary conditions
for (7.1). The standard ones are that at large distances
i should look like an incoming plane wave. That is,

Ur) =

where k is the wave vector of the incoming wave and
= |klr/|r| is thought of as the wave vector describ-
ing the outgoing wave. One may derive from the bound-

(1.1)

explik° 1) — (1/477) exp(k’v) T(K', k), (1.2)
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ary conditions and Eq. (7.1) the Green’s function equa-
tion. It is

Y(r) = explik - ) - xf exp(iklr=r'1)

dr|r-r’|
x V(") p(r’)dr’, (7.3)
which we may write symbolically as
P=@— 2GV. (7.4)
The quantity of physical interest is the scattering
amplitude
T, k)= | exp(-ik’ 1) V(r) $(r)dr =r(Vx, ).
(7.5)

In order to use the results of the previous sections to
discuss the convergences of the Padé approximants in

A to T(k’, k) we must show the kernel is a compact ope-
rator. Instead of concerning ourselves with this general
case, we will content ourselves with the well-known
conditions for the Hilbert—Schmidt class ||A||2 <o,
which implies compactness.

First, let us recast Eq. (7.4) slightly, as the kernel
is not Hilbert—Schmidt as it stands, by introducing

£=Vi/%y, g=V'/2g, h=(V'/?'x. (7.6)
Then we have, multiplying Eq. (7.4) by V1/2,
f=g-AV2IGV!/2f, T®,k)=(@,1), (7.7)
where V172 is any square root of V. The Hilbert—
Schmidt norm is then
1
_lvizayi/s2l?_ ,
e vinevisfi-oky [ [ arar ven)
exp(— 2vir—-r’| ’
—i——g—lr o | v, (7.8)
where v=Im(2). Also |lgll, and | z||; are finite if
J dr | v(r)| exp(@|vr|) <<, (7.9)

where for || 2|([,, the Im(®’) replaces v. Following
Scadron et al.,*! we may rewrite (7. 8) in the momentum
representation

oo f g LV@!" tgn-i(q/z v)

: f dqﬂ%lm (7.10)
for v= 0, where
U@) = [ exp(-iq- 1) V(r)| dr. (7.11)

The implication is that for ¥=0 (7. 9) and (7. 10) are
finite for decent potentials where V(r) is less singular
than iri™*¢ e€>0, as Ir| —~ 0 and goes to zero faster
than Ir1=*° ¢>0, as Ir| —e, For v+0, it suffices to
impose (7. 9) and the condition that V(r) be less singular
at the origin than 1r!*2*¢, > 0.

Thus we conclude from Sec, 5 that if V(r) satisfies
the above conditions of being short ranged and not too
singular at the origin and for reasonable choices of
@ and x so that (5.11) or (5.22) hold, that the [M/M]
Padé approximants in X to the scattering amplitude
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T(k,k) converge for all %, k' in a strip around the real
axis determined by (7.9). By converge, we mean here,
as in Sec. 5, that either the entire sequence converges
when X is not a singular value except for at most one
value \,(k, k'), or we may obtain convergence everywhere
(fixed %, £’) by selecting at most two infinite subse-
quences. In the special case of forward scattering where
k* <0 and V() is of fixed sign, the kernel of Eq. (7.7)
can be chosen to be Hermitian, As we have remarked
previously, in this special case S, =S} so that we can
conclude convergence of the entire sequence.

Next we will treat the partial wave scattering ampli-
tudes, Since the partial wave decomposition reduces the
general case to block diagonal form, the partial wave
kernels are automatically still compact, and so all the
above results still apply. We get in fact, a slight loosen-
ing of the restrictions on the potential when we impose
spherical symmetry in order to study the partial wave
scattering amplitudes. In the case of a single-signed
potential we can prove in addition the separate conver-
gence of the numerator and denominator, The denomina-
tors converge to the Jost function. This result places
the result of Garibotti and Villani® within our general
framework,

If we expand in partial waves

$(r) =25 (21 +1) P,(cosb) 4, (r)/kr, (7.12)

then Eq. (7.3) becomes, if V has spherical symmetry,
the uncoupled set of equations®

O () = kv j, (k)

- X[ " gl ) VO b0 dr, (7.13)

where

rs oo
rE (7.14)

b

&1, v ) =kry (k) By (RY'),
=kvy'j (kv R (RY), ¥ <¥

is the Green’s function. By using known inequalities?®?
for the spherical Bessel functions we may bound

Clexp[(lv | = v) 1 ]r,
1+1kl7,

lg,r,v")| < (7.15)

through the whole complex % plane, where 7, is the less-
er and 7, the greater of + and +',

We will now proceed to show that, for decent poten-
tials, the kernel of an equation closely related to (7, 13)
is of trace class and so the /th partial wave scattering
amplitude

Ty (k)= et [[7 5 (kr) V(r) () v ar (7.16)

has [M/ M) Padé approximants in x» whose numerators
and denominators converge. First we slightly recast
Eq. (7.13) as

V)t 2y, () = Vi) /2 kafjl (k)
A f T Pt

xXVir )“2 w,( Ndr',

) Vo)
(7.17)

where we take any square root of V(r) for the present.
I V(r)= 0, we will later mean V(»)!/?= 0 also, and if
V({r) <0, we will later mean iV(r)1/2 <0, Then we factor
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the kernel as

K, 7") = (V)2 716 (1 + 7))
x[r e (1 +7) 0 g, (v, 7’)
X (1 497)760 (37)=1+e]
X[ (1 +#7)* v(#)1 /2.

By the first part of inequality (3.11), we have for
v=Im(k)=0,

| K (r, )|, S(max (| V) |2 +1f)5*5)> 2
0=y

(7.18)

X [t ey} et Corlr Y e ey (7.19)

where bound (7. 15) has been used. Now it is elementary
to show that the potential independent term in (7.19) is
a Hermitian, positive definite operator, so that its trace
norm is just its trace. Direct calculation shows this
trace to be finite, if ¢, 56> 0. Thus by considering the
other factor in (7.19), we see that if V(#) is better be-
haved than 7% at 0 and o the kernel of Eq. (7.17) is of
trace class. Thus as the kernel is necessarily compact,
we have, for v=0, again the convergence results ob-
tained above, For v different from zero, we must im-
pose the normalization condition at infinity
ST ve) | exp@lv|#)dr <= (7.20)
in order to prove the convergence.

Now, to apply the results of Sec. 4, we need to show
that §y=%. Garibotti and Villani? have shown the equi-
valent of this result for a single-signed potential and %
real. We retain the restriction to a single-signed po-
tential, but generalize to nonreal k. First, for real %,
we write out (7.14) explicitly in terms of its real and
imaginary parts as

g1, ¥y =Ry [ §, (k) ny (Ra!) e
+if (k) (e},
=kyv'[§,r") n, (R7)
+ij, (k7)§, (k")],

v,

(7.21)

' <r

It is to be noticed that the real part is Hermitian and
the imaginary part is purely one-dimensional. In fact
we may write, for a single signed potential, the struc-
ture of the kernel of Eq. (7.17) as

K(r,»)=H+(/k)g®, ) (7.22)

where H is Hermitian and g is the inhomogeneous term
in (7.17). Then, constructing the ¢; of (2. 2), we have

@ =8, ¢1=Hg+i/k) ¢yl ]
@ =Hg+ (/) o1l o2+

so that the space §y is plainly the same as that gene-
rated by H alone. An analogous argument shows the
same result for (4. Thus the upper Hessenberg repre-
sentation of % in terms of the orthonormal basis e;
which spans the §y is tridiagonal. Since for the study

of the analytic continuation scattering amplitude, we
may simply analytically continue the kernel in this
representation, and as the analytic continuation of zero
is zero, we find that the kernel stays tridiagonal. Hence,

(7.23)
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we conclude that 5= %, and so the results of Sec. 4
apply. Thus, under the same restrictions on the poten-
tial as given above [near (7. 20)] we conclude from Sec.
4 that the entire sequence of numerators and denomina-
tors converges, We remark that, for k pure imaginary,
it follows directly from (7. 21) that g,(», 7’} is real and
so Hermitian. As V(») is of a single sign vV g, vV may
be chosen as Hermitian, and so we verify directly that
the upper Hessenberg form is tridiagonal, in agreement
with our analytic continuation argument.

That the Padé denominators converge to the Jost
function (see Newton?® or Goldberger and Watson, % for
example, for a definition of the Jost function) follows
trom the work of Sec. 3. As the [M/M] Padé are the
exact solutions to a sequence of truncated problems,
their denominators are given by

limDy(I- xA)=D({I- 1 A),
M o
which is one definition of the Jost function.
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Experimental uncertainties in the problem of the unitarity equation
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In this article the question of how experimental uncertainties affect the construction of the scattering
amplitude from the differential cross section and unitarity at a fixed energy is examined. It is shown that
in most cases in which the solution can be found by the method of Newton and Martin, the problem is
“well-posed” in the sense that the solution depends continuously on the data. A new proof is given of the
fact that if the differential cross section is nearly constant and small enough, there is a unique solution of
the problem. Some estimates for the scattering amplitude and other functions of interest are given.

1. INTRODUCTION

The main objective of this article is to show that the
problem of determining the scattering amplitude from
the differential cross section and unitarity at a fixed
energy is “well-posed” for spin-zero elastic scattering
under conditions which allow the integral operator
which expresses the unitarity to be inverted.

A well-posed problem in the sense of Hadamard is a
functional equation which, in some class of functions,
has a unique solution which depends continuously on any
given data, Historically, this notion was first in-
troduced in connection with initial-value problems for
elliptic partial differential equations, Here we will con-
sider the behavior of solutions of a Hammerstein-like
nonlinear integral equation under perturbations of the
kernel of the linear part of the integral operator, be-
cause in this problem the kernel is obtained directly
from the data, namely the differential cross section.
For the sake of economy, we will call the problem de-
scribed in the first paragraph of this introduction the
problem of the unitarity equation. Accordingly, the
problem of the unitarity equation will be said to be well-
posed in the function space X and for the class g of
differential cross sections if:

(1) To each differential cross section G in (; there
corresponds a unique scattering amplitude F in X which
satisfies the integral equation of unitarity and | F| =G;

(2) if G, is a differential cross section which is close
to G in the topology of G, then there corresponds to G,
a unique scattering amplitude F; in X which satisfies the
integral equation of unitarity, |F,| =G, and F; is close
to F in the topology of X.

As always, uniqueness is taken in Newton’s sense of
“essential uniqueness” as in Ref, 1.

This problem of continuous dependence of the solution
of the integral equation of unitarity on the data, i.e.,
the differential cross section, is an interesting one be-
cause the differential cross section is obtained from
measurements made with the aid of actual instruments
and is therefore known only approximately. In previous
treatments of the problem of the unitarity equation (in-
cluding Refs, 1—4) it has been supposed that the differ-
ential cross section is given with “infinite accuracy.”
We will show that in many cases such a supposition is
justified because the problem is well-posed.

Section 2 of the article is preparatory. In it we re-
write the unitarity integral equation in such a way as to
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eliminate the need for dealing with the inverse sine
function, which appears in all previous works on this
equation, In this section we also obtain some simple but
useful estimates on the imaginary part of the scattering
amplitude and on some other related functions. In Sec. 3
we complete the program of showing the well-posedness
of the problem of the unitarity equation in cases in which
it is possible to invert the integral operator of unitarity
by the Banach contraction mapping principle. In Sec. 4
we develop some results about branching of solutions of
abstract equations of the form # — KN(u) =0, where N is
a nonlinear operator and K is a bounded linear opera-
tor. In Sec. 5 this material is applied to the problem of
the unitarity equation. Our results are principally for
the case in which the scattering body or potential has
spherical symmetry, although we will also indicate
some results under less restrictive hypotheses. In con-
clusion, we obtain a new proof that if the differential
cross section is nearly constant and small enough,
there is a unique scattering amplitude that corresponds
to this cross section and satisfies the unitarity integral
equation.

We will now give a brief review of the background of
the problem of the unitarity equation. This will also
serve to exhibit the notation we will use. By the
“unitarity equation” we mean the nonlinear integral
equation

47 ImF(ny, ny) = [ F(ny, n) F(n,, n) d(n), (1.1

where S is the unit sphere in IR®, n, Ny, and n are unit
vectors in S, and F is a complex-valued function on
SXS which is proportional to the scattering amplitude.
The scattering body or potential is supposed to possess
inversion symmetry, so that F(ny,n,)=F(n;,n,). % The
problem of determining the scattering amplitude from
the differential cross section and unitarity is then that

of finding those solutions of (1. 1) which also satisfy
|F|=c, (1.2)

where G is a nonnegative function on $XS$ which is
proportional to the differential cross section,

Equating real and imaginary parts in (1.1), we obtain

47 ImF(ng, ny) = [ [ReF(n;, n) ReF(ny, n)

+ImF(n;, n) ImF(ny, n) | d$2 (1.19)
0= js [ReF(n;, n) ImF(n,, n)
— ReF(ny, n) ImF(n;, n)]dQ. .17

It is well-known that (1.1") is identically satisfied by
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any integrable complex-valued function of the real
variable n; - n,, and so in the case of a spherically sym
metric body or potential, Eqs. (1.1) and (1.1') are
equivalent. We shall concentrate primarily on this case,
although we shall also give some results for the case in
which the scatterer has only inversion symmetry, In
this case, F will depend on n; and n, independently, and
(1.1”) will no longer be identically satisfied. Our re-
sults for this case will be confined to those which we can
obtain by continuing to take (1.1’) as the unitarity condi-
tion; in other words, by supposing that (1.1) and (1.1")
are still equivalent, (1.1"”) then represents an additional
necessary condition to be satisfied by F if it is to be a
solution of (1.1), For some further remarks about this
situation, see Ref. 4.

2. THE UNITARITY CONDITION
If we write F=Ge®",

sing(ny, ny)

then from (1. 1’) we obtain

2.1)

where H(ny, ny, n) =[47G(ny, n,)]"'G(n;, n)G(ny, n). One way
to attack (2. 1) is to look for fixed points of the trans-
formation /)j, defined on a function space X, by

M{@) g, ny) =siny [ H(ny, 0y, n)
xcos[@(ng, n) - ¢(ny, n)]dn}.

= [(H@y, ny, 1) cos[e(ng, n) - @(ny, n)]d,

(2.2)

This has been done, and results were obtained by New-
ton and others by using the Banach contraction mapping
principle, We will show in the next section that, under
the most general conditions known which allow (2. 1) to
be solved in this manner, the problem of the unitarity
equation is well-posed in the sense we have indicated in
the Introduction.

Before doing this, however, we will rewrite the uni-
tarity equation in a way which will enable us to avoid
dealing with the inverse sine function. The advantages
of this become more apparent in Sec. 4, but for the
sake of consistency we will make the change now and
work with one form of the equation throughout the whole
article. Assume Ising|<1, and write F=G[(1 - u?)!/?
+iul, where u=sing in the polar form F=G exp(i¢).
Then (2. 1) becomes

u(n,, n,) = fs H(n,, n,, n)&(u(n,, n), u(n,, n))de, (2.3)

where ®(x, v) =(1-x)1/21 =922+ xy for v, ye[-1,1],
and the positive square root is chosen. For |singl<1
the two equations (2.1) and (2. 3) are completely equi-
valent because if ¢ is a solution of (2.1), then u=sing
is a solution of (2. 3), and if «# is a solution of (2. 3), then
¢ =sin™u is a solution of (2.1).

Temporarily we will denote the right-hand side of
(2.3) by T{u)(ny, n,):
T(u)ny,ny) = js H(ny, ny, n)@(u(ng, n), u(n,, n))d2. (2.4)

We devote the rest of this section to obtaining some
estimates on the imaginary part of the scattering am-
plitude and on functions of the form 7T'(x).

Proposition 2.1: Let F:SXS— € be square-integrable
in the measure d,2 =dQ2Xd$ and satisfy Eq. (1.1). Then
| ImF(ny, n,)| < max{ImF(n,, n,):j=1, 2}
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Proof: From (1. 1) and the Schwartz inequality,

47| ImF(ny, n,) |
< (fs | Fng,m) [2d)/2( [ | F(ny, n) |> aq)! 2
<max{ [ [F(n;,n)[?de:j=1,2}
<max{4r ImF(n;,n,):j =1, 2},

In the spherically symmetric case this inequality
gives us even more information, because then Imf(n, - ny)
< max{Imf(n, *n;):j=1,2}=Imf(1). Thus in this case, if
f is a square-integrable solution of (1. 1), them Imf at-
tains its maximum at the point x =1, that is, in the
forward direction.

We shall continue the practice of denoting the quanti-
ties F, G, and H in the spherically symmetric case by
lower-case letters f, g, and & respectively.

Proposition 2.2: Let u:SxS~[-1,1]. Then G(n,, n,)
X T(u)(ng, ny) < max{G(nj7 n,)T(u)(n;,n,) ij =1, 2}-

Pyoof: To prove this, begin with Eq. (2.4) and use
the Schwartz inequality as in the proof of Proposition
2.1,

Again in the spherically symmetric case we obtain
the further information g(n; - n,))T@)(ny - ny) <g(1)T(@)(1)
for every n; and n, in S. Thus the product of the differ-
ential cross section with a function in the range of T
attains its maximum value over [~ 1, 1] at the point
=1, the forward direction.

3. SUCCESSIVE APPROXIMATION

We will suppose the differential cross section G is
continuous. Let Q(H)(n(, ny) = [¢ H(ny, ny, n)dQ, m(G)
=min{Q(H)(ny, n,) : 0y, ny € S}, M(G) = max{Q(H)(ny, n,) :
n,n,c S}, and

My(G) = (1/20)M(M — m)?[1 = 2mM +m? - M% + M4
xmax{ [;G(n;,n)dQ2:n e S}

We will continue to write m and M instead of m(G) and
M(G) if there is no possibility of confusion. The most
general conditions known under which Eq. (1.3) [and
therefore also Eq. (2.3)] can be solved by using the
Banach contraction mapping principle are given in Sec.
3 of Ref, 4 and in Ref, 6. We will show that under these
conditions the problem of the unitarity equation is well-
posed, as previously described.

Theovem 3.1: Let ny=[$(v17-1)]'/2~0.6248. Let
X = C(SXS) with |[x]| =max{ix(n;,n,)| :n;, n, € S} and let
G, be a positive function in X satisfying M(Gy)=p,—7
for some 1> 0. Then there is a unique solution #; in
X of Eq. (2.3) which corresponds to G, by (1. 2), and
for each €> 0 there is a 6 =8(¢, Gy) > 0 such that for each
G in B(G,, 8) ={G = X 1 [|G - G,|| < b} there is a unique
solution # in X of Eq. (2.3) which corresponds to this
G by (1. 2), and |ju—ull <e.

Proof: Select o< ]0,1[. Since G;,> 0, the map G
— M(G) is continuous at G;, and so we can choose §;
>0 so that if G € B(G,, 5;) then M(G) <y, — an. Then by
Theorem 3.2 of Ref. 4, the existence and uniqueness of
a solution u of (2. 3) corresponding to such G by (1. 2) is
assured. It remains to show that « is close to u,.
Letting
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Hy(ny, ny, 1) = [47G, (ng, 1) "' Gy (ny, )Gy (nz, m),
we obtain
|u(n1,n2)—u0(n1,nz)|
= | fs H(ny, 1y, n)& ((ny, n), u(ny, n)) d2
= J s Hyng, ng, m)@ atg (g, 1), 2y, 1)) 42|
< | [s Hylny, n, )@ (u(ny, n,), u(ny, )
- ®(uy(ny, n), %y (ny, n))]dQ
+ [ | Hy(ny, ny,m) — H(ny, mg, m) |
x | @ (u(ng, ), u(ny, m))| 42
< || s Ho(+, % m)@ (-, n), u(x, )
- ®ug( -, n), uelx, A)] 4l
+ [ [ Hytny, my, 0) - Hng, my, m) | 492
<Co”“‘“o” + ”Q(lHo"Hl)”y

where ¢, = 2M(Gy)*[1 = M(Gy)*1/2 <1 since M(Gy) < .
Now choose € > 0 and 8 < §; so that if |G- G|l <8, then
HQUH,— HDIl <(1-cyle. We then have |lu - ul

< egllu = ugll + (1 = cy)e, so that finally |l — uyl| <€, which
completes the proof,

This theorem shows that the problem of the unitarity
equation is well-posed in the space C(SXS) and for the
class of differential cross-sections ( ={G e C(SxS):

G >0 and M(G) <y} It is also possibie to show that the
problem of the unitarity equation is well-posed in the
space L*(SxS,d,) and for the class of differential cross
sections G, ={G € C(§XS): G >0, M(G) <1, and M(G)
<1}, This is proved using Theorem 2 of Ref. 6. The
estimate in Theorem 3.1 above is modified for the use
of the L3(SXS, Gyd,)-norm instead of the maximum
norm, However, we cannot obtain the result for the
class of differential cross sections {G e L}(SXS, d,R):
G>0a. e, M(G)<1, and M,(G) <1} because the map
G~ M(G) is not continuous in the topology of LZ.

To summarize, what we have shown is the following:
If G, is a continuous differential cross section for which
M(G,y) < g [or M(G,) <1 and My(Gy) <1], then there is a
unique scattering amplitude F; which corresponds to
G, by (1.2) and which satisfies unitarity in the form
of Eq. (1.1’). Furthermore, this is true for any
continuous differential cross section G which is suf-
ficiently close to G, in the uniform topology, and the
scattering amplitude F corresponding to G by (1. 2) and
(1.1%) is close to F, in the uniform topology (or the L’-
topology, respectively). So if G, is the differential cross
section as measured by the instruments, and if the in-
struments are fine enough, then the true cross section
is (uniformly!) near the measured data G, If in addi-
tion G; satisfies either of the above conditions, then the
true scattering amplitude is near the scattering ampli-
tude F constructed from G, by unitarity via the Banach
contraction mapping principle.

4. THE EQUATION v - KNfu) =0

Let X, Y be Banach spaces, let K be a bounded linear
operator from ¥ into X, and let N be a nonlinear map
from X into Y. In this section we will obtain some re-
sults for equations of the form u— KN(u) =0, principally
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concerning the branching of solutions of this equation as
the infinite-dimensional parameter K is varied. In the
next section we will use this material to study the prob-
lem of the unitarity equation. In this problem the mea-
sured data G enters into the kernel of K in a continuous
fashion and so a change in G amounts to a perturbation
of K. This is the motivation for considering the above
branching problem.

Proposition 4.1: Let X, Y be Banach spaces and U be
a subset of X which has nonempty interior. Let N be
a bounded not necessarily linear map of U into ¥, and
suppose N is C! on an open subset D of U. Let K,
e/ (Y, X), the Banach space of bounded linear maps
from Y into X. Suppose there is a solution #; in D of
the equation # — K N{x) =0 for which 1 is a regular value
of KyN'(u;). Then there are positive numbers p,; and »
such that for every K in B(K,, p,) there is a unique solu-
tion uy in B(wy, 7) of the equation u — KN(x) =0, Also, 1
is a regular value of KN'(xy), and u, depends continu-
ously on K in the sense that for each €> 0 there is a
5 =5(¢, Ky) > 0 such that whenever |[K — K|l <8, then
Mg — 2yll <e.

Proof: Define z: [ (Y, X)XD—X by z(K,u)=u— KN(u).
Then z(KO,uo) =0. The Frechet partial derivative of z
with respect to the first argument at (K, u,) is the map
2y(K,y, uy)H =~ HN(y), and the Frechet partial derivative
of z with respect to the second argument at (K, %) is
the map 7 - K N'(«;). Since 1 is a regular value of
K N'(y), 2,(Ko, 1)t is in / (X, X), and so we may apply
the implicit function theorem (Ref. 7, Theorem 4) at
(K,, uy). We get positive numbers p, and 7, and a map
u: [ (Y,X)— D such that u(K;) =u,, z(K,u(K))=0 for
each K in B(K, p,), and there is no other solution be-
sides u(K) which is contained in B(uy, ¥). Put 2, =u(K).
Then 1 is a regular value of KN'(u,) for each K in
B(K,,p,), and since « is C! on B(K,, p,), it follows that
uy depends continuously on K., This completes the proof.

Proposition 4.1 is the main tool used in the next sec-
tion for investigating questions about continuous depen-
dence of the solution of the unitarity equation (2. 3) on
the data G, It says that there is no branching of the solu-
tion at any of the points (K, uy) for K ¢ B(K,, p,), and
hence the solution varies continuously with the data as
long as the data is close to the data of K,. However,
it should not be inferred that this theorem precludes the
existence of any other solutions of - KN(u) =0 for K in
B(K,,py), K#K,. For example, for some K, in B(K,, p,},
K, #K;, there may be a solution u#4 in U satisfying
[lex = 14yll = 7, If now EC D is a closed set containing u,,
we will show that, under certain conditions, uy is the
only solution of z(K,#)=0 in E for K in B(K,, p;}, where
Py < py may depend on E. A modification of this result
will have application to the problem of the unitarity
equation in the spherically symmetric case.

Definition 4.2: If E is a subset of U=domain(N), we
denote by n(E, K) the number of solutions in E of z(K, u)
=0.

Note that n(E, K) is a nonnegative integer, or may be

+oo,

Theovem 4. 3: Suppose u; is the unique solution of
z(K,, u)=0 in U=domain(N) and that «, e D, Suppose
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that 1 is a regular value of z,(K,%,), and that there is
an ne 0, p,] for which

C,={uc U:z(K,u)=0 for K B(K,,n)} (4.1)

is relatively compact. Let EC D be a closed set con-
taining #,. Then there is a positive number p;, which
may depend on E, such that if K€ B(K,, py), then n(E,K)
=n(E,K;)=1.

Proof: First of all, if E C B(u,,r) (from Proposition
4.1), then n(E,K)=n(E,K;)=1 for K € B(K,, p;), so that
py=p, works. Suppose E is not a subset of B(x,, 7). Then
by Proposition 4.1 there is a positive number 7<% such
that if Ke B(K, 7), then n(E,K)= n(E,K,)=1. Suppose
there is no such p, as claimed. Then for every p< ]0, 7]
there is a K, € B(K,, p) with n(E, K,) = 2. In particular,
there is a sequence {K,}5.; € B(K,, 7) with K; = K, in
L(Y,X) and n(E,K,) = 2 for each j. From Proposition
4.1 we have the sequence {u,}7.; = {u(K;)}}.; € Bug, 7),
with u; —u,, accounting for one solution, for each j.

Let {u}}fﬂ be a sequence composed of other solutions of
u=K;N(u) in E. We have {#¥}7, C C,, and since C, is
compact, there is a subsequence {u]*t}:';l converging to
some #*< E, Since llu¥ - uyl> ¥ for each j we have u*
#u,. Since 2z is continuous and z(K;, u}) =0 for every j
we have z(K, u*) =0, so that n(E, K;) = 2. This contra-
diction completes the proof.

5. APPLICATION TO THE UNITARITY EQUATION

Let X=C(SXS) and Y =C(SXSXS), For uj,uyc[~1,1],
let ®(uy,uy) = (1 —ud)/2(1 —u3)!/* +uuy, choosing the
positive square root., Let U be the closed unit ball in X,
Define N: U—Y by

N()(ny, ny, ny) = ((ny, ng), u(ny, nj)) (5.1)
for ue U, Given a positive G X, define K</ (¥, X) by
Ky(mny,ny) = [47G(ny, nz)]-1 fs G(ny, n)G(ny, n)y(ng, ny, n) dS2

(5.2)

for vy € Y. Then the unitarity equation (2, 3) may be ex-
pressed as
u — KN{(u)=0, (5.3)
For any uc U,
8N(u;h)(ny, ny, ng)

= [u(ny, n3) - u(ng, ng)[1 - u(n,, n3)2]1 /2[1 - u(ny, 113)2]"1 /2]

Xh(ng, ng) + [(ny, ng) = u(ng, ng)[1 - 2e(ny, ny)* ]/
X [1 - u(nb n3)2]-1 /z]h(n2’ ns)

is the Gateaux variation of N at « in the direction Z.
Select b; <1 and let A=B’(0,b))={uc X: lun,ny) | <by,
n;,n, e S} For uc A, h— 0N(u;h) is linear and continu-
ous, so that we have 5N(u;i) =DN(u;k), the Gateaux
derivative. Furthermore, if #,#’< A, we have

| DN(u;k) (ny, 0y, ny) — DN(u’;2) (ny, 1y, 0g) |
<2(1= 852 |hing, ny) | + |R(ny, ng)|]
[ |u(nyg, ng) ~ ' (ny, ng) | + |2e(ny, ng) — ' (my, m3) |1,
and go
oW ;) = DN@; ) | < 81 =972 |~ '],
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giving DN(;-)=N'(u), the Frechet derivative of N at
u (see Ref. 8, Sec. 1). Thus N is C! on any ball B(0, b)
where b <1,

We will now state a basic continuous dependence re-
sult for Eq. (5.3), and later turn to the more compre-
hensive results we can obtain by imposing the additional
restriction of spherical symmetry.

Theovem 5,1: Suppose G, € X is positive, K, arises
from G, by (5. 2), and %, is a solution of the unitarity
equation - K N(u) =0 in B(0,b), b <1, for which
I-K(N'(u,) is regular. Then there are positive numbers
1,7 such that if G< B(G,, n) there is a solution u; in
B(0, b) of Eq. (5.3) with data G, and this solution is uni-
que in B(u,y, 7). For each €> 0, there is a 6=208(¢, Gy) >0
such that if 1G— G,li<d, then llug —uyli<e.

Proof: This result follows directly from Proposition
4.1, noting that [|1K - K|l < |Q(1 H~ Hy!)ll, since

& ~ &y [| = sup{ ||y - Koy || [lv]| =1}
=sup{|| [ ((47G(ny, ny) ]G (ny, n)G(ny, n)
- [47G,(ny, ny) 171G, (ny, n)G,(ny, n))
xy(ng, ng, a2 v =1}
<sup{ [ |H(ny, ny, n) - Hy(ny, 0y, n) | dQ:ny, 0y e S
= lQ([H-H,D].

Since G — H is continuous at G; and H— @(H) is continu-
ous at zero, we can choose 7> 0 such that if [|G - G|
<7, then ||[K - K|| is small enough so that Proposition
4.1 may be applied. This completes the proof.

Remarks: (1) Since G, is positive, min{G,(n,, n,):
ny,n, e St=y,>0. 7 is chosen so that 1 <y,.

(2) We can recover part of Theorem 3. 1 from this
theorem by making the observation that if [[K;N’(u)l|
<1, then - K N’(x,) is invertible. This is because if
we try to make [|[K,N')}| <1 for all u< B(0, b), we are
led to impose the condition M(G) < u, [or M(Gy) <1,
M,(G,) <1], which is the condition under which we can
solve (5. 3) by the Banach contraction mapping principle
(see, for example, the end of Sec. 2 of Ref. 1). How-
ever, this does not give the full result of Theorem 3.1—
the statement about uniqueness in the whole space is
unavailable. However, Theorem 5.1 might be more
widely applicable because I~ K N'(i,) may well be in-
vertible under conditions other than ||K,N" () <1.

We turn now to the spherically symmetric case for
continuous functions, where we will get better results
by adding some conditions and taking advantage of the
spherical symmetry. Recall our practice of using
lower-case letters in this case. We will show that if
#y € interior(domain()) is the unique solution in
domain(N) corresponding to the data g, by (1. 2), then,
for g from a certain class of functions and sufficiently
close to g;, the solution #, corresponding to the data g
by (1.2) will also be unique in domain(N). We use the
change of variables (5) of Ref. 1. Let X=C[-1,1] and
Y=C(-1,1]x[-1,1]), Thenfor uc X, lul <1, and
vel,

N@)(y, z) = 2((y),u(2)), (5.4)
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f hix,y,2)v(y,2)dydz, =1<x<1
E(x)

Kv(x) = (5. 5)

1 1 B
2g(x)L g0)glxy)vly, xy) dy, x==1
where

h(x,v,2)=g(9)g@)[27g(x) (1 - x* = y? = 2% + 2xyz)! /2]

and E(x) is thé interior of the ellipse on which 1-x%—3?
~2%2+2xyz =0, The unitarity equation is then (5. 3) again.

Theorem 5. 2: Suppose g, < X is positive, Kye/ (¥, X)
arises from g, by (5. 5), u, is the unique solution in do-
main(N) = B*(0, 1) of u— KN(u) =0, lugi<l, I-KN"(ug)
is regular, and there is a 8 <1 for which 8g,(*)= % [1
Xg,(t)? dt for every x € [-1,1]. Then there is a positive
number 7, such that if g B(gy, n,), there is a solution
u#, of (5.3) corresponding to the data g by (1.2), and u,
—~u, as g —~g;. Furthermore, #, is the only solution of
(5. 3) with data g in all of domain(N).

Proof: We only need to prove the uniqueness part,
because from Theorem 5,1 there is an 5> 0 such that if
g< B(gy,n), then there is a solution %, of (5. 3) which has
all the other required properties.

Let B; € 18, 1[ and choose 7, <7 so that for each
xe[-1,1], Bg)= 3 [} g@)?dt for every g< B(gy,n,).
Now select ¢y and b so that {|ull <c; <b <1 and §; <cy
<b<1, We have domain(N) =B’(0, 1); put D= B(0, ) and
E=B’'(0,c,). We will show first of all that if g< B(gy,n,),
then u, is the only solution in E of (5. 3) with data g.
This proof is modeled on that of Theorem 4.3, but a
modification needs to be made since the set (4.1) of
Theorem 4.3 is not, in general, relatively compact be-
cause « — KN(«) is not a compact map. However, in
compensation we have that, for all # < D satisfying (5. 3)
with data g, there is a C >0, independent of u, for
which

fu(xl) - u(x2)|

<C[|xg = |1/2] 122|124 g(x) = glxy) |, (5. 6)

for x¥ <x% <1, This follows from (4.22) of Ref. 3,
the remarks following (2. 3), and the mean value
theorem.

Suppose that in every ball in X about g, thereisa g
[with corresponding K, by (5.5)] such that n(E, K) > 2,
Then there is a sequence {g,}}.; (with corresponding
{K,}t71) with g; ~ g, and n(E, K,) > 2 for every j. Note that
K;,~Kyin/ (¥,X). For uc E, write u =vw where w(x)
=(1-x%"1/2 and write Z(K, v) =vw — KN(vw). Note that »
solves Z(K,v) =0 if and only if # =vw solves z(K, u)=0.
Let {x,}7.; be the sequence of solutions {x, -1 from The-
orem 5.1, and let {u;*},'-';l be a sequence composed of other
solutions of (5.3) in E. Put v¥=(1/w)u*. Then from
(5.6), for x2<xf<1,

lo¥(e,) = vF(xp)]
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=|(1= @) 2uFry) - (1= 2D % 0¥ (xy) |
<| (=2 - (=2 1= B[R ) - uf (x) |
S|(1_x%)1/2_; (1—x§)1/2|+C[‘x1—xZ|1/2

+ |gstcy) = g5(x) |1,

and
|v¥(z) - v3&) | = | (1 - 2%t ()|

<ci|1-4*|%, z=%1.

Since g;—~g, in C[—1,1], the set {g,}7; U {gy} is equi-
continuous, Therefore, the set {11’}‘}}°=1 is equicontinuous;
being a subset of E'={ue X : lu(x) 1< (1 =x¥%c,} it is
uniformly bounded. Thus there is a subsequence {v},}7;
converging uniformly on [-1,1] to some v*< E’, But

7 is continuous on L (¥, X)X E’ (since we L'[- 1, 1]), and
so u* - K N(u*) =0, where u* =wv*, Alsou*c E and
u*#u, since #; is bounded away from %, independently
of j. Thus n(E, Ky) 2 2, a contradiction, so the uni-
queness of u, in E is established.

Now we show that for g< B(gy, n,) #, is the only solu-
tion of (5.3) with data g in all of domain(N). Suppose
there is another solution #* (besides #,) of (5. 3) with
data g in domain(N). Then since u, is the only such solu-
tion in E, max{lu*(x)|:x e[~ 1, 1]} must be strictly
larger than ;. Say this maximum is attained at x,.
Since by the remarks following Proposition 2. 2 we have
ju(x)lgx) <u(l)g(l) for every u satisfying (5. 3) with
data g, it follows that |u*(x,)|g(x,) <u*(1)g(1), or
B glxy) <u*(V)g(l) =3 [} g(t)?dt, a contradiction. This
proves the theorem,

This theorem is primarily about continuous depen-
dence. It says that in the spherically symmetric case,
the problem of the unitarity equation is well-posed in
C[-1,1] for the class of differential cross sections
{geC[-1,1]: gx)> 3 [, g(t)* dt for every x< [~ 1,1] and
there is a unique solution #, of (5.3) in B(0,1) with data
g}, The next corollary gives a more specific result,
and gives another proof of the fact that if the differen-
tial cross section is nearly constant and small enough,
there is a unique scattering amplitude that corresponds
to this cross section by (1. 2) and satisfies the unitarity
equation,

Corollary 5. 3: If g, is identically a constant ¢ <1,
there is a unique solution in domain(N) of the unitarity
equation (5. 3) with data g,. Also, if |jg—cll <7n,, there
is a unique solution #, in domain(N) of the unitarity
equation with data g, and u, —u, as g— g;.

Proof: In Theorem 5.2, f=c works. Put 8 =(1+c)/
2, say, and choose ¢, and b as before. Trying for a
constant solution u,=d, we get

c (1 xy+ (1)1 /2012172
) wf
2r ), xy(lax?)t /2(1ag2i1 /2

(1= 22~y = 2%+ 20y2) % gz
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:c,

so that u, =c is a solution of (5.3), and Imf, =u,-c =c?,
¢ <1 is necessary for solution since |Imf;| <g,=c. For
¢ <1, u, is the only solution of (5.3) in domain(N) (by
Corollary 3 of Ref. 6). Then since [lu]| <c; <b <1,
n(U,K,)=1, and I- K;N'(u,) =I- 0=1, the resuit follows
from Theorem 5. 2,

It is interesting that this corollary gives an existence
and uniqueness result, because Theorem 5. 2 is basical-
ly a statement about continuous dependence, It applies
to cross sections which are “slowly varying,” or which
may oscillate rapidly but with small amplitude, Of
course, Theorem 2 of Ref. 6 says the same thing, and
even gives hard numerical estimates, which this
corollary does not. However, we include it to point out
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how the regularity of - K N'(x,) is exploited: It may be
possible to do this for other K, and «; as well.
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The spin coefficient formalism of Newman and Penrose is employed to obtain a direct derivation of
the most general conformally flat solution of the source-free Einstein-Maxwell equations for null

electromagnetic fields.

1. INTRODUCTION

In a previous article! it was shown, using the
Newman—Penrose? formalism, that the solution of
Bertotti® and Robinson® is the unique conformally flat
solution of the Einstein—Maxwell equations for nonnull
fields. In this article we treat the case of null fields
using the same formalism. We prove that the only con-
formally flat solutions of the Einstein—Maxwell equa~
tions for null fields are the conformally flat members
of the exact plane wave family of solutions® of the
Einstein—Maxwell equations. This result has been
stated without proof by Cahen and Leroy® who found the
above solutions by applying a limiting process to cer-

tain type N solutions of the Einstein—Maxwell equations.

2. NOTATION AND EQUATIONS

A tetrad system of null vectors (I*,n*, m*, m*),
where [*,n* are real and m", m* are complex vectors,
is defined by the relations

Ipnt=-m,m"=1
with all other inner products zero.

If F,, is the electromagnetic field tensor, then the
three Maxwell scalars are defined by

¢0 ::Fuvl“;n”’ ¢2 :Fuvﬁunv,
by =5F,, (040" +mem®).

In the case of a null field the tetrad can be chosen so
that ¢y =¢;=0, ¢3=¢ #0. In this case [* is a repeated
principal null vector of the electromagnetic field.

By a suitable choice of units the Einstein—Maxwell
field equations may be written in the form

Dap=0a0z

where &, are the complex tetrad components of the
Ricci tensor and A, B take the values of 0,1,2. In the
present case the only nonzero component of &, is

B9y = 9.

The twelve complex spin coefficients are defined by
the expressions

Li=(r+ )0, +(e+E) I m,— (@ +B)I,m, - (@+B) L,
- Tm,l, — Kmyn, +Om, m, + pm i, ~ T 1,

— Kkmn, +O0m,m,,

829 Journat of Mathematical Physics, Vol. 16, No. 4, Aprit 1975

Ny == (y+7 )00, = €+€)n,n,+ (a+B)n,m,+ (@ +B)n,m,
+Um L, T, — Am iy, — o, + om 1,
+ Ty, = TR, = NiTp T, 2.1)
My, = ALL + Tl n, - ul my,— X ,m, — ™l ~ kn,n,
PR M, + 0N, M, + (y =YY m L, + (= E) m,n,
+ (B~ a)ym, m,+ (@ - B)m, m,.

Using the facts the five complex tetrad components
of the Weyl tensor are zero and &g = ¢¢_ is the only
nonzero component of &,,, we find from Bianchi’s’
identities that

K:o‘:p:O' (2.2)

Four differential operators D, A, 6, 6 are defined
by

Dp=0¢,,0% Obp=¢, ,m*, Bb=¢,,m" Ad=0,,n"
By taking into account the conditions (2.2), the follow-

ing commutation relations (integrability conditions)
hold:

(AD-DA)p =(y +Y) Do + (€ +€) ap — 16 — 7o,
(0D-D8) ¢p={(G+B-T)Dp— {e-E) b¢,
(0A~ AB)¢p=—VUDG~ (@ +B) A + (L — y+7) b + X5,

(35-586)p=(u—L) D+ (B~ o) ¢ + (@~ B) Top.  (2.3)
Maxwell’s equations are

D¢ =~ 2¢¢, 2.4)

5¢ =(1-28) ¢. (2. 5)
Combining (2. 5) with Bianchi’s identities

5(¢p¢) =(T- 2B~ 2a) ¢,
we o_btain

bp==2ad. 2.6)

If we evaluate the commutator (35— §5) ¢ using (2. 3),
(2.4), (2.5), (2.6), and the field equations, ’ we obtain

7=0, (2.7)
The remaining nontrivial field equations are
Do - be=(€ —2€)a —Be +er,
DB- be==EB~ (a~m)e,
Dy~ Ae=Ta+mB—-(e+& y=(y+y)e,
DA=Bn=m"+(a~B) 7~ (3e—¢)x,
Copyright © 1975 American Institute of Physics 829



Dy - br=nr=(e+& u=n(@=p),
Dy—Ar=mp+Tr+(y =9) 7= (B¢ +E) v, . 8)
Ax=bv==(+) A= By=F)r+Ba+p+m v,
ba—088=0a0+pB-20B+e(pn - 1),
oA=Bu=(n =) 7+pula+B)+r(a=-3p),

V- Ap =i+ X+ (y+P) p— V= (38+a)v+0¢,
by-aB==(G+B)y—ev=Bly-y-pu)+a},

Aa - by=ev—Br+ (¥~ 1) o + By,

3. SIMPLIFICATION OF THE EQUATIONS

The tetrad rotations preserving /* as the principal
null direction of the electromagnetic field are the
spatial rotations

I* —RI¥,
n* —RInt, (3.1)

m* — et Sm,

where R> 0, S are real functions, and the null rotations
=1+,
n* —=n*+Tm* + Tm* + TTI* (3.2)
m* —m" + TIH,

where T is a complex function,

We now show that by means of a rotation of the form
(3.1) we can eliminate the spin coefficients o, 8, €, .
Under this rotation these spin coefficients transform
as follows:

1 - i=
& _ -tS z
G=e <a+2R6R+263),

~ 1 i

_eis 2
B=e (’3+2R 6R+258>,
E—Re-y1 DR+—iRDS

B 2 2 ’

1 i1l
~_ p-l —
Y=R 7+_22R AR+2RAS.

To set &, E, €, 5 to zero we must choose R and S to
satisfy

DA=~2, AA=-2y, 0A=~-28, GA=-2q,

where A =1ogR +iS. By applying the commutation rela-
tions (2. 3) to these expressions and using equations
(2. 8), we find that all the integrability conditions are
satisfied. Hence we can always choose R and S so that
a, B, €, y vanish, These conditions are preserved by
rotations for which A is constant,

Consider a rotation of the form (3. 2), Under this
rotation the remaining spin coefficients transform as

F=w+DT,

L=+ Tr+6T+TDT,

X=A+7“71+55:+TDT,

V=v+TA+Tu+TTn+ AT+ TOT + 767 + T8T + TTDT,
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We now show that by a suitable choice of T, the spin
coefficients 7, fi, A can be made to vanish. For this to
be possible, 7 must satisfy the differential equations

0=1+DT,
0=p+Tr1+07+7TDT,
0=x+Tn+8T+TDT.
These equations may be rewritten in the form
DT=-7, 6T==pn, 8T==2x

By applying the commutation relations to these expres-
sions and using equations (2. 8), remembering that now
a=p=e=y=0, we find that all the integrability condi-
tions are satisfied. Hence we can always choose 7T so
that 7, 1, A vanish. Under this rotation v becomes

D=v+ AT,

The presence of the ¢>$ term in the tenth equation of

(2. 8) ensures that T cannot be chosen so that =0. The
vanishing of 7, p, and A is preserved by rotations satis-
fying DT =6T=8T=0.

Thus v is the only nonzero spin coefficient, and from
the expressions (2. 1) we find

Uy =0, my,, =01,

which imply that both [, and m, are gradient vectors,
i.e.,

Ly SU o, My =2y,

where u is a real function of the four coordinates and z
is a complex function of the four coordinates. Labelling
the coordinates x* (u =1, 2, 3,4), we now choose coordi-
nates such that u=x!, z=x% Z=x! so that the tetrad
vectors take the form

lu = (1’ 0, Oy O)a n, :(nh Ny, Ng, n4)’
m, =(0,0,1,0), m,=(0,0,0,1),

where the components of n, are each functions of the
four coordinates.

Since v is the only nonzero spin coefficient, the
expressions (2. 1) also give

Mysp=vm,l, +vm,l,, (3.3)
which implies
Riurula1=0. (3.4)

Since only the first components of /,, is nonzero, Eq.
(3.4) leads to

Mgy b=~ Ppa = 0,

where a,b=2,3,4. This implies that the three compo-
nents »n, form a three-dimensional gradient vector with
u fixed, i.e.,

where 7 is a function of the four coordinates. We can

choose the coordinate x> =7; then 7, becomes
nu=(F,1,0,0), (3. 5)

where F is a function of the four coordinates. However,
by antisymmetrizing equation (3. 3) and putting the suf-
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fixes p, v=1,2 we obtain n, 5 — 7, { =0 which implies that
F=F(u,z,z).
4. THE SOLUTION
The metric tensor g,, is given by the expression
Guv=luny + L, — m iy, = myin,,

from which we find that the metric of the space—time
solution has the form

ds® =2 Fdu® + 2dudy - 2dz dz.

In view of (3.3) and (3. 5) the nonzero spin coefficient
v is given by

4.1)

The remaining nontrivial Newman—Penrose equations
are

Dv=3v=0, dv=0¢¢=q*u).

v=—0F .

4. 2)

The fact that ¢>7¢ is a function only of # results from the

remaining Bianchi identities, which are D(¢$)=25(¢p)=0.

Equations (4. 1) and (4. 2) lead to
F,..=0, F ;=q")
so that F has the form
F=q*u)zZ +p(u) z +p(u) Z + h(u). 4.3)
By a transformation of the form
z'=z-b
7'=r—zi—El;+c,

where b and ¢ are functions of # only and the dot denotes
differentiation with respect to «, it is possible to trans-
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form away the last three terms of expression (4. 3).
Thus the metric takes the final form

ds® =2q*(u) 2Z du? + 2du dv - 2dz dz, (4.4)
which is precisely the general solution given by Cahen
and Leroy. & The solutions (4. 4) are the conformally

flat members of the exact plane wave family of solu-
tions® of Einstein—Maxwell equations,

Note that the Maxwell equations (2. 4) and (2. 5) now
take the form D¢ =06¢ =0 and, from Eq. (2.6), we have,
in addition, 5¢> =0. These equations imply that ¢ is a
function only of u«.
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Algebraic approach of the infrared-problem for external

currents
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The infrared problem for external currents is shown to be a consequence of the nonexistence of a
particle number in the correct representation. A natural procedure for obtaining nondivergent results

is then given.

Generalized coherent states have been introduced in
the study of the problem of the electromagnetic field in-
teracting with a prescribed c-number current J (r, {).
By working in the Heisenberg picture the resolution of
the coupled field equation in the radiation gauge leads to
the relation’

aulk) =a, (k) +ijk), (1)

where j(k) is the Fourier transform on the mass shell of
the transverse part of the current. Therefore, the in-
vacuum Fock state 2 is a coherent vector state for the
out-field operator whose mean number of photons at
time [ =+ < is equal to l|J]I%:

W12 =, §) = f%{—, (k) - 1 (K. 2)

For accelerated charged particles, j(k) behaves like
1/1k1 when (k| goes to zero and the mean number of
photons is strictly infinite:  does not belong to the Fock
representation space of the out field. In this situation a
von Neumann’s infinite tensor product representation
has been introduced and generalized coherent vector
states have been rigourously defined.*:® We present in
this note a simpler algebraic approach of this infrared
problem.

Let 4 be the subspace of the one photon Hilbert space
/ such that the scalar product (f,j), f< 4, is finite. 4
is dense in*** /| and we can take for the photon field
algebra the C*-algebra A(/4], 0) constructed as in Ref.
5: A(4, 0) is the x-algebra generated by the elements
5,, £= 4, which satisfy the Weyl relation

Gfég:exp[_ i(’(f’ g)J6f+g7 (3)

where 0 is the antisymmetric real bilinear form on 4:
olf, g)=(1/20) (1, &) - (g, D). (4)

A{ 4, 0) is the closure with respect to the C*-algebra
norm which exists on A(4, o).

Now, by starting with the vacuum Fock vector state
 as initial vector state, all measurements at time
=+ can be deduced from the functional E(f) on 4:

B(f) = (Q, explid,(D]R), =4,
= exp|- 5(f, ) + 2i Im(£, j)]. (5)

This functional E (f) defines the generalized coherent
state w; on A(4, o) through the relation

w,(5)=A(f), b;5 A(A,0). (6)
The G—N-—S triplet associated with the state w, is
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(4 > 11,, ), where /. is the Fock representation space
and the representation I, is given by

11,(8,) = M 15 ) exp[ 2 Im(£, j}] (n
(Il is the usual Fock representation).

As j does not belong to / the linear form on 4:
f— (£, j) is not continuous with respect to the norm in
and the state w, is not quasiequivalent to a Fock state.®

Furthermore, the x-automorphisms corresponding to
gauge transformations of the first kind:

a95':5e,‘9f (8)

cannot be implemented in the representation 11,, i.e..
there does not exist a weakly continuous group of
unitaries such that

(0, 8,) =V I1,(5,) V52 (9)

Indeed it is easy to show that the existence of such
unitaries would imply that the representations II ; .-,
and Il are equivalent. Consequently, no infinitestimal
generator N of V,, i.e., no particle number for the
representation II,, can be found. 7 All questions con-
cerning measurements connected with the particle num-
ber (mean-value, counting probability, etc.) are then
meaningless in this representation. This is the ultimate
reason why the (incorrect) use of the Fock reprcsenta-
tion in describing these measurements leads to infrared
divergences.

However, it is possible to extract from the state w,
a noninfrared divergent Fock part. In this way let us
define a projector P, such that

(PH&K =0 iflk|<A
=f(k) if |k | = A>0. (10)
One can write
w,(B)=w (B, )-8 p,,) (1

Actually w, is the product state w} ® o?,

w} (resp. w?) being the restriction of w, to

A(P 7, 0) [resp. A((1-P,)A4,0)]. Thus the G—N—S
triplet associated with w, can be written (/1@ /%,
eI}, @'©9°), where (4, 11}, @) is the G-N-§
triplet associated with w{ (i=1, 2). The interesting fea-
ture of this decomposition is that the representation ll§
is a Fock one since the linear form on P, 4: P,f— (P,f.))
is now continuous with respect to the norm in / . Thus
for any observable A of the form A;® 1,, the mean
value in the state w;: (£, AQ)=(2%, A QY), is simply a
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Fock average. Such a situation is in particular en-

countered in considering the probability p2 that » photons

of arbitrary polarization and momenta greater than

A (A>0) and everything with momenta less than A is
radiated by the current. In this case, the observable to
be considered is A=P»@ 1,, where P2 is the projector
onto the subspace of //} spanned by the n-photons vec-
tor states with all momenta greater than A. Then

by =(, PR (12)

and a standard calculation gives the expected Poisson
distribution !

PA= o (7,)" expl=7y) (13)

Z d3k
Aw[ 21kl
Ikl =A

This result is evidently not infrared divergent whatever
is A strictly positive. If A is equal to zero, there is no

longer a decomposition of w, with a Fock component and
as already noted the previous calculation is meaningless
in the actual representation.

with

i*(K) - j(k). (14)

Let us note that the previous analysis and particularly
the decomposition (11) is still valid if one starts with
an in- Fock vector state different from the vacuum §
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(neither the representation space nor the representation
change, only ithe cyclic vector does); this enables us to
construct a scattering operator which admits a product
decomposition very similar to the one defined by Reents
in his recent paper. &

In conclusion, this algebraic approach of the infrared
problem for external current is certainly the most
natural and economical one. It permits to recover all
previous results without introducing a von Neumann's
infinite tensor product representation, and, further-
more, it rigourously stresses the fact that the infrared
divergence in the Fock representation is nothing but the
consequence of the nonexistence of a particle number
operator in the actual representation.
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NUT-like generalization of axisymmetric gravitational fields*
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The complex potential formulation of the axisymmetric problem discussed by Ernst enables us to
construct new solutions from a given one, by multiplying the corresponding potential by a unit
complex number. This rotation introduces naturally the NUT parameter in the metric. The
generalized Kerr, Weyl, and Tomimatsu-Sato solutions are explicity constructed.

. INTRODUCTION

In 1963 Newman, Tamburino, and Unti' found a family
of solutions of the Einstein equations, which contains as
a special case the Schwarzschild solution. The interest
in the NUT fields is mainly mathematical, since the
only member of the family which is flat at infinity is the
Schwarzschild solution itself,

A generalization of the Kerr field, analogous to that
proposed by NUT, was obtained by Demianski and New-
man? by means of a mathematical trick, involving a
complex coordinate transformation.

In this paper it is shown that the complex potential
formalism introduced by Ernst® leads naturally to the
NUT and to the Demianski and Newman solutions, the
NUT parameter being related.to an arbitrary phase con-
stant in the Ernst potential £,. The generalization can
be extended to any axisymmetric solution, and in partic-
ular it is given here for the Tomimatsu—Sato field,

Il. NUT AND DEMIANSKI-NEWMAN FIELDS

In canonical cylindric coordinates the most general
axisymmetric electrovac line element reads*

ds?=f"e* (dp®+ dz®)+ p? d@?] - f(dt — w d@¥, 1)

where the potentials f, ¥, w are functions of p, z. It was
shown by Ernst? that the potentials can be derived from
a complex function §,, satisfying the equation,

(Eokd — 1IVPE, =25 VEVE, (@)

where V2 is the flat space three-dimensional operator.
The equations relating f, w, ¥ to &, are

£ -1
€ 500+1 y

_ 2
Vo=t 17

2y p [&ﬂ_?i_oa_c’f]

Jp  (EEx—1F Lap ap 9z oz

ay_ p %?ﬁ»tJrag?fafo]
dz  (EtX -1 |dp 0z 8p 3z |’

f=R (3)

Im[(£ - 1)’nX V¢ ], @)

(5)
6)

where 7 is the azimuth direction.

It was noted by Ernst® that from a given solution &, of
Eq. (2), one can generate in a number of ways new solu-
tions, which, however, in general are not physically
meaningful, In particular we show that the transformation
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t=expla), (M

yields the NUT and Demianski—Newman fields for §,
corresponding to the Schwarzschild and Kerr solutions
respectively.

In prolate spheroidal coordinates (x,y) [p=4f(x? - 1)!/2
X (1 = 92)0/2; z=4kxy, k being a scale factor] the Kerr
solution corresponds to
‘EO :px + lqy ,

with p? +¢%=1. The transformation (7) together with
Egs. (3) and (4) gives

—1-2 pcosax —gsinay +1
/= (px + 12+ ¢292 + 2p(cosa — 1)x — 2¢ sinay’

(8)

2_kq (1 - y2)(gsinay - p cosax — 1)

k.
) P2t gty 1 - 2[)- sinay. (3)

Since Eqgs. (5) and (6) are independent of «, the potential
y is unchanged by the transformation (7), and therefore,

exp(27)= (p2 +¢g2%y? — 1)/p*(x® - 3%). (10)
By the coordinate transformation

x=(r-m)/k, y=cosd
the metric is mapped into the form

__72 + (a cosd - 1)?

2_ Y-t lacosd i)
ds i _2mr+at-1°

a2+ [#?+ (@ cosd - 1)?]

r?-2mr+a®-1" d(pz)
72 = 2mvr +a® cos®d - 12
1 m1r+l(l—acosf))>
T\ T 2+ (acos9 =1
% [U <2a sin®9[mr + L(l — a cos9)]
“e 72 = 2my ~ 12 +a?cos2d

X (d32 +

2

-2l coss) dcp] ,

11)

where m,l, and a are related to p, ¢, @, and % by
RP=m?+1%-a?,
p=k/(m>+I2V/2, g=a/m?+ 1)/,
cosa=m/(m2+ 1202 sina=1/(m?+1?)/2,

The line element (11) coincides with the Demianski—
Newman uncharged metric, which reduces to the usual
Boyer and Lindquist form of the Kerr metric for [=0
and to the NUT generalization of the Schwarzschild
metric for a =0,
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I1l. GENERALIZED WEYL AND TOMIMATSU-SATO
FIELDS

The transformation (7) can be applied to algebraically
general fields as well. We consider the special family
of Weyl solutions

Eo=llr+ 1)+ (x = 1°]/[(x + 1)° = (x - 1)°],

which for §=1 is the Schwarzschild solution and for
6=2, 3, 4 are the static eounterparts of the
Tomimatsu—Sato solutions.

(12)

Applying the transformation (7) and solving for the
potentials f, w, ¥, we have

F=2(x*=1)%/[(cosa+1)(x + 1)+ (cosa - 1)(x — 1] (13)

w=2kbsina y, (14)

exp(2y)= (x? — 1)%/(x% — y2)°.
For 6=1 this reduces to the NUT field.

(15)

The Tomimatsu—Sato complex potential for 6 =2
reads®

£,=(u+iv)/(m +in),
where
u=pi*+g*y*t -1, v=-2gxXy@x%-y?),
m=2px(x* 1), n=-2qy(1-y%).
The rotation (7) yields
£=[cosa u —sina v +i(sina u +cosa v)]/(m +in)
and therefore
f=A4,/B,
where
Ag=u?+ 0% —m®—n?,
B=B,+2(cosa - 1)n-2sina e,
By=(u+m)*+ (v +n)?,
N=mu+nv, e€¢=mv-nu.

(Hereinafter a subscript 0 indicates the quantities
which are unchanged with respect to the Tomimatsu—
Sato case.) The potential ¥ is that given by Tomimatsu—
Sato,

exp(2y0) =A0/P4(x2 - y2)4n

Equations (4) in prolate spheroidal coordinates yield

0 1 —y2
a—;(w—cosa We)=—Fk ( Agy ) [2(1—cosa)(na—€—ea—n>

2y oy
. an JB
+ sina Q?oé;—n—a—y‘l)], (16)
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i(w —cosa w,)=k &~ 1) [2(1 -cosa)(ng—ex—ean)

oy A ax
. on JB
+ sina (Boa— nﬁ)] s amn

where w, reads

(1-9%)
AO

+p2(x? = 1)[4x2(x2 = 1)+ (3x2 + 1)(1 = »2)]
- ¢*(px + 1)1 - y*Pl}. (18)

From Egs. (16) and (17) it can be easily shown that w
must be of the form,

1 -y
A

wy,=—2mgq {px(x® = 1)[2(x* = 1) + (x3+ 3)(1 —=3?)]

w=cosa w,+kq [2(cosa ~1)C + sina D]+ hsina y,

0
(19)

where C, D are polynomials of x, ¥ and % is a constant
independent of @, The presence of the last term in Eq.
(19) and the condition that it must reduce to the form
(14) for ¢ =0 is sufficient to show that also this metric
is not asymptotically flat. It does not seem therefore
very interesting to work out the explicit form of w,

IV. CONCLUSIONS

We have shown that the Ernst formulation of the
axisymmetric problem leads directly to the generaliza-
tions of Schwarzschild and Kerr fields given originally
by NUT and Demianski and Newman. An advantage of
this derivation is that it can be extended to algebraically
general fields as the Weyl and Tomimatsu—Sato fields,

It is obvious that the method can be applied also to
electrovac solutions. In fact, by using the results of
Ernst” it is clear that, multiplying £, by a complex num-
ber with modulus different from 1, one obtains the
charged NUT-like generalization of any given solution.

*Work partially supported by Laboratorio di Fisica Cosmica
e Tecnologie Relative del C.N.R., Milano.
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Nonexistence of dissipative structure solutions to Volterra

many-species models

Gerald Rosen

Drexel University, Philadelphia, Pennsylvania 19104
(Received 23 September 1974)

Subject to boundary conditions of practical interest, the only temporally periodic solutions that may
be admitted by a generic system of Volterra n -species reaction—diffusion equations are spatially
uniform solutions, and thus dissipative structures are precluded as solutions to Volterra n -species

models.

Considerable interest has been attached to the recent
experimental' and theoretical® studies of “dissipative
structures, ” temporally periodic but spatially nonuni-
form solutions to certain systems of nonlinear reaction—
diffusion equations. The purpose of the present com-
munication is to report a concise proof which shows that
a generic Volterra model system, ? extended in the
natural way to include species diffusion, cannot admit
a dissipative structure as a solution.

With inclusion of species diffusion, a Volterra n-
species model is governed by coupled nonlinear equa-
tions of the form

ac; .
—B}L:Divzci—i_(’ei+Bil§aijcj>Ci’ (1)

where the enumerator index / runs from 1 to n, ¢,

=c (X, [) denotes the concentration of the ith participating
molecular or biological species, D, is the diffusivity of
the ith species, &, is the (positive or negative) growth
rate constant associated with the ith species, 8;'(>0) is
the so-called equivalence number of the ith species [the
ratio of i's lost (or gained) through encounters per unit
time to j's gained (or lost) through encounters being
87'/8;*], and a,;=- o, are the (positive, negative, or
zero) interaction rate constants which describe how
rapidly encounters between the ith and jth species change
the local concentration of the ith species. It is assumed
that the system (1) admits a constant equilibrium solu-
tion with the c,=¢,= (positive constants) satisfying the
algebraic equations implied by (1)*

/ei:—ﬁglg a;;C;. (2)
For problems of practical interest the Egs. (1) are re-
quired to hold through a spatial region R (one-, two-,
or three-dimensional) with either ¢,=c, or n-vc=0 at
all points on the boundary of R, where n denotes a vec-
tor normal to the bounding surface; thus, we consider
boundary conditions such that

{cx.D=c)(nx) Ve, (x,1)=0 (3)
forallx<odR, all/ z0andalli=1,....n.

Suppose that Egs. (1) subject to (3) admit a temporally
periodic solution

c,(xA+T)=cx, D) (4)

with the period T a positive constant. Then it follows
that the functional
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o(l)= f El Bilc;—c; In{c,/c)]dx (5)
R

must also be a periodic function of ¢, i.e., o+ T) =o(f).

But Eqs. (1) imply that

d;t(t):f > B{1-E,c) (ac /o) dx
R

=1

=1

-

:f 5y B1-,c;)D, V3¢, dx (6)
R

in view of the conditions (2) and the antisymmetrical
character of the «,,’s. ® Integrating the final member of
(6) by parts and making use of the conditions (3) on the
boundary of R, we obtain

%‘i’t(—”:-f > BieDic?| Ve, |2ax =0, (7)
i=1

and thus o(/) is monotone-decreasing with time for all /
so long as any c¢; varies with x. Hence, a Volterra n-
species reaction—diffusion system of the form (1) sub-
ject to boundary conditions which imply (3) may admit
only spatially uniform periodic solutions and cannot ad-
mit a dissipative structure.

fA, Zaikin and A. Zhabotinsky, Nature 225, 535 (1970); M,
Herschkowitz-Kaufman, Comptes Rendus 270C, 1049 (1970);
A.T, Winfree, Science 175, 634 (1972); A.M. Zhabotinsky
and A.N. Zaikin, J. Theor. Biol. 40, 45 (1973).
2P, Glansdorff and I. Prigogine, Thermodynamic Theory of
Structure, Stability and Fluctations Wiley, New York, 1971);
1. Prigogine and G, Nicolis, Q. Rev. Biophys. 4, 107 (1971);
H.M, Martinez, J. Theor. Biol. 36, 479 (1972); L A, Segel
and J. L. Jackson, J. Theor. Biol, 37, 545 (1972); A, Gold-
beter and R. Lefever, Biophys. J. 12, 1302 (1972); G. Rosen,
Phys. Lett, 43A, 349 (1973); 45A, 263 (1973).
3N.S. Goel, S.C. Maitra, and E,W. Montroll, Rev. Mod.
Phys. 43, 231 (1971); F. M. Scudo, Theor. Pop. Biol. 2, 1
(1971); M. A, B. Deakin, Bull, Math. Biophys. 33, 571 (1971);
E.W, Montroll, Proc. Natl. Acad. Sci. (U.S.A.) 69, 2532
1972).
1t is well known that the existence of positive ¢; requires » to
be an even integer Ref. 3).
SFor the so-called Verhulst modification (Ref, 3) of the
Volterra model (characterized by a;;=—¢a; for i+ j and
@;; £ 0) the additional nonpositive term Zhya;le; ~¢y)? appears
in the integrands in (6) and (7), and therefore dissipative
structures are likewise precluded in the case of such a modi-
fied Volterra model.
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Symmetry of ensembles of maximum entropy
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There can be only one maximally random ensemble in a given convex-closed family of ensembles,
because the mixing of several ensembles increases entropy. Hence, if the family is acted on by a
group which does not modify randomness (entropy), the thermodynamic ensemble is invariant. This
is clear only over a finite-dimensional Hilbert space, prior to thermodynamic limits. Hence, in this
situation, strictly spontaneous breakdown of symmetry is impossible.

INTRODUCTION

My thesis will be that the literal “spontaneous break-
down of symmetry” is impossible. Nevertheless, a
slight bias away from symmetry exogenously imposed
may be greatly magnified. My context will be thermo-
dynamic. The single familiar example of ferromagnetism
will make the physical point clear, then mathematical
argument will make it general and precise.

The ferromagnetic alignment of N spin-3’s is often
cited as an illustration of the spontaneous breakdown of
rotational invariance. The aligned “state” has total
angular momentum 3 N, and hence is (N + 1)-fold de-
generate. ! The statistical ensemble in which each “z-
component” of angular momentum (- iN, —N+1,...,
+N) is equally weighted, a mixed state with entropy
In(N + 1), is however rotationally invariant, and is fur-
thermore the ensemble which has the greatest entropy
among all ensembles which can be built from this
(N + 1)-fold degenerate system. ? A pure state, e.g.,
the state with z-component of angular momentum % N,
of course has entropy 0. Hence, specifying this ro-
tationally noninvariant oriented state in place of the ro-
tationally invariant mixture involves negentropy ® or in-
formation In(N + 1), and thus constitutes an exogenous
bias. The information per spin here is N1 In(N + 1),
which approaches zero as N — «: The exogenous bias
involved is in this sense slight. In thermodynamic
limits, an entropy which like In(N + 1) is o(N), is
dropped or neglected. Hence thermodynamic limits and
discussions which set N =« tend to obscure the exogen-
eous source of asymmetry. That is a physical reason
why the dimensionality of the system’s Hilbert space in
the sequel is taken to be finite, and why no attempt is
made to battle technical difficulties so as to seek the
conclusion in more general cases.

The basic mathematical tool is #4 below: convexity of
entropy in quantum statistical mechanics. Inasmuch as
the application represents some sort of denial of the
very popular notion of broken symmetry, * the simple
mathematics is set forth in detail. Any correct discus-
sion of breakdown must in some way circumvent this
simple mathematics; the “cause” of breakdown is likely
to become better understood by examining the point of
departure from the present mathematical format.

A second purpose is to show how #4 may be derived
from #2, a lemma from measurement theory. The

proofs are fortunately so brief that all can be done here.
A reader ready to accept #4 may omit #2, #3, and #5.
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The usual context for discussions of symmetry break-
down is Lagrangian dynamics. The Lagrangian is in-
variant under a group G which acts on the dynamical
variables, whereas states are discussed which are not
G-invariant, most notably a ground or “vacuum?” state.
(The breakdown of symmetry is often achieved by an
explicitly asymmetric “infinitesimal” term added to the
Lagrangian; this is of course in line with my comment
referring to slight exogenous bias. ) The relationship
between properties of the Lagrangian and properties of
the associated physical system may however be thought
too technical to take the symmetry of the Lagranian as
a physical symmetry of the system. This philosophical
point may be an incidental motivation for studies® which
seek to find explicitly physical symmetry in solutions
at unusual thermodynamic conditions—e. g., high tem-
perature—for systems which show broken symmetry in
other conditions, for then the symmetry under G would
be more than a merely technical artifact of a Lagrangian.

In my context here there will be no reference to
Lagrangians, only to physical states of the system, in-
cluding mixed states or ensembles. Symmetry under
group G is defined by action of G on a set H of ensem-
bles: To each state P= H and each element g= G, there
corresponds a state gP = H. If the orbit {gP:g<c G} has
more than one element, then P itself is G-asymmetric,
which is the context for broken symmetry; otherwise,
gP=P, ¥ g=G, and P is G-symmetric.

The specification of a state without exogenous bias I
will take to mean the choice of an ensemble with maxi-
mum entropy consistent with the physical specifications.
By the judicious use of reservoirs, this subsumes cases
frequently described by minimizing various “free ener-
gies.” The “physical specifications” of the states will
explicitly be barred by assumption from referring to
the statistical weights, as follows: Any convex combina-
tion (mixture) of states P which meet the physical
specifications must also meet the physical specifica-
tions. This assumption, introduced as closure of H
under convex combination in #8, rules out the dodge of
specifying that, e.g., only pure states will be con-
sidered, which indeed would find the states (many of
them, all of “maximum” entropy zero), asymmetric in
the ferromagnetic example. It is also assumed that the
group action does not alter entropy. This is most likely
to be attained by having G act on pure states, then
promoting the action of G to mixtures by requiring it
to commute with convex combination.
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This argument, already given very briefly in the
Abstract, is in essence only this: The homogeneous
mixture of all the states in an orbit will at once have
maximum entropy and will be G-symmetric. Selecting
the other less symmetric states requires accepting less
than the maximum enfropy, and so constitutes an exo-
genous introduction of information. The technical
development of this idea follows, culminating in the
corollary, #8 below.

THE ARGUMENT

#1. Definition: Let f be a strongly convex real-valued
function on [0, 1], i.e., f{(x+¥)/2)> Sf(x)+ 5f(p) if
x#7y. We will be interested in the f entropy of a density
matrix P, defined as Trf(P).

The case of physical interest is, of course, f(x)
=« xlnx. Items #2—5 below are given to establish the
basic convexity theorem, #4.

Von Neumann’s “process 1” or measurement process
increases f entropy °:

#2. Lemma (von Neumann): If (E|, ... E,) is a list of
orthogonal Hermitian projections such that §,E,=/
(the unit matrix) and if § ;E,PE;# P, then
Tr (3, E,PE,)>Trf(P).

#3. Proof: Since the E ,PE, commute, they may be
simultaneously diagonalized on an orthonormal basis,
(4, u,, **). Let P be diagonal on the orthonormal basis
(vy, v,, °**). The lemma states that the f entropy of the
u-basis diagonal part of P exceeds that of P. Indeed,
the diagonal element (u | Pluy =73, (u,1v 0 (v, luy
=3, u,1vp ?p, is a convex combination of the P eigen-
values p;. Hence f((u, IPlu))Z3 I 1v)1? f(p;). Since
P is not diagonal on the u basis, it can be shown that at
least one {u, | Plu,) is a nontrivial convex combination of
the p,, whence the inequality holds at least once. Hence,

P FUu I Plu))> T f0) T, (0 lu) (wlvy=T,; f(p;). QED

#4 Theorvem (Convexity of entvopy): If P, £ are non-
negative Hermitian matrices, 0SP=1, 05321, and
P#%, then Tr f((P+32)/2)> 3 Trf(P)+ 3 Trf(Z).

#5. Pyoof: If PL =2P, diagonalize: P=diag(p,, p,, ***),
¥ =diag(0,, 0,, ***), with p,#0, for at least one i. Then
the result follows by summing f((p, +,)/2) z 2f(py)
+3f(0;), with the inequality holding at least once. This
establishes the commutative case.

If Pz 22P, let (E,, E,, +*) be a list of one-dimensional
orthogonal Hermitian projections with § , £,=1I, which
diagonalizes (P +Z)/2. Thus

P+3 EPE;+ E;E;
2 :Z,) 2 '

Then
P+
Trf( 5 E)
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:Trf(ézi) E.,PE, + g; E,ZE)2LTr f(2 E,PE)

+§Trf(Z) E,ZE)

follows from the commutative case, since 3,E,PE, and
2:E,ZE,; commute. Furthermore, P~ ,E PE, isa

von Neumann measurement process, and P+ E PE ;
otherwise, P and (P+ %)/2 would commute, contradic-
ting PZ# ZP. Hence Tr AAP)< Trf(},E PE,). Similarly,
Trf(Z)<Tr f(3,E,ZE ). Hence Tr f((P+X)/2)> ; Trf(P
+3Trf(Z). QED

The physical point related to the impossibility of sym-
metry breakdown without even slight exogeneous bias is
now easily achieved through a series of obvious
corollaries.

#6. Covollary of #4: P, = as before, P+Z. If Tr f(P)
=Tr f(Z)=S,, then Tr f((P+Z)/2)>S,.

#17. Corollary of #6: In any set of ensembles closed
under convex combination, there can be no more than
one of maximum f entropy.

#8. Covollary of #1 (Symmelry of the ensemble of
maximum entvopy): Let H be a set of ensembles closed

under a “symmetry group” G and under convex com-
bination; i.e., there is a group G whose elements g

act on the H ensembles, gP=H for every g= G and
P=H, and any convex combination of elements of H be-
longs to H. Furthermore, let the f entropy be preserved
by these G transformations. Then the ensemble P, of
maximum f entropy is G-symmetric, i.e., gP,=P,

for all g=G.

POSSIBLE FUTURE DEVELOPMENTS RELATED TO
MEASUREMENT THEORY

The introduction of a small biasing term in the
Lagrangian is a generally familiar device for producing
breakdown. Here, other devices, which may seem more
deserving of the qualification “spontaneous, ” are
suggested.

The most obvious device, but one which may be dif-
ficult to use, is to explore all ensembles at a fixed
small nonzero negentropy from the equilibrium en-
semble. In such an approach information would be
acknowledged, yet without specifying the nature of the
bias.

The ferromagnetic example suggests a description in
terms of easy polarizability or of long-range corre-
lation. More generally, one may explore correlations
between two successive measurements. This suggests
that appropriate intrinsic “quadratic” matrix elements
be related to the breaking of symmetry by an exogenous
bias.

The topic of breakdown of symmetry is commonly in-
troduced by noting that in the ferromagnetic example
the alignment is automatically evident to an observer
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living within the sample, without any imposed bias. Yet
discussions of Maxwell’s demon show that internal ob-
servers may not function without some negentropy. 3
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The method of moments is applied to pairs of linear permutable self-adjoint operators 4 and B in a
Hilbert space {{. An approximate expression for the diagonal matrix elements of the operator (1 —
wAd — zB)™!, where w, z are complex numbers, is taken as a guide to the definition of rational
approximants from general formal power series in two variables. Starting from an operator
convergence theorem in a certain Hilbert space, we prove the convergence of our approximants to
analytic functions of two complex variables with the integral representation G(w,z) = ff do(a,B)
/ (1 —wa — zp), under suitable restrictions on the positive measure o(a,B). The same
approximation scheme can also be applied to the diagonal matrix elements of the operator [(1 —

wAd) (1 — zB)]"!, leading to a different rational approximant which we prove to converge to
functions with the integral representation a(w 2) = ffdo@B) /(1 — wa) (1 — zB). In both
cases the convergence is uniform on appropriate compact subsets of C?. The extension to the

n -dimensional case is straightforward for both approximants. The connections with a standard

variational principle are also briefly discussed.

I. INTRODUCTION

In the past few years the technique of Padé approxi-
mants (PA’s)!™® for the approximate summation of power
series of one complex variable has been looked at with
some interest by physicists as an effective tool for many
quantum mechanical and field-theoretic models whose
solutions are only available in the form of a perturbative
series. We recall that, given the formal power series
f2) =3,f.2", the [N/M](z) PA is the rational function
P,(2)/Q,(z), where Py(z) and @,(z) are polynomials of
degree N and M, respectively, such that Py(2)/Q,(2)
=yNHg 2"+ 0(z¥¥*Y), A simple closed expression is
available for the [N/M](z) PA and it can be shown that
the PA’s have some significant formal properties, e.g.,
if N=M they are invariant under homographical trans-
formations both of the variable and of the function. The
PA’s converge uniformly on compact sets to extended
Stieltjes functions, i.e., the functions g(z) of the form
2(z) = [Zodo(t)/1 - 2t where o{f) is a positive measure
with finite moments p,= [[o"do(f) not too fastly increas-
ing with #; moreover, in a suitably generalized sense,
they converge to meromorphic functions. 4 Unfortunately,
the extension to the multidimensional case is not
straightforward. In fact, the simplest generalization of
the usual definition of the PA’s, even in the case of two
variables only, does not, in general, determine uniquely
a rational approximant: additional constraints must be
provided. To this problem, very interesting alternative
solutions have been recently proposed. In one of
these®'® the constraints are chosen in such a way that the
many variable approximants retain the main formal
properties of the usual PA’s. In spite of this the study
of the convergence properties is not easy and, up to
now, only generalizations of de Montessus theorem are
available.” For another kind of approximant® the con-
vergence to holomorphic functions has been proved un-
der the stringent assumption of uniform boundedness of
the approximants themselves.

In this paper, we would like to indicate a different
approach to the construction of many-variable rational
approximants starting from the following remarks. Con-
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sider a linear self-adjoint operator A and a vector f on
a Hilbert space//. Let 32, 2"(f, A") be the Neumann ex-
pansion (not necessarily convergent) of the diagonal mat-
rix element (f, (1 - 2zA)f). Then, for every N= 0, the
[N/N+1](z) PA for this series coincides (a) with the
matrix element (f, (1~ z4,)"}f) where A, is the (N +1)-
rank operator obtained at the Nth order in the approxi-
mation scheme known as the method of moments®'’; (b)
with the stationary value of an appropriate functional on
a certain finite-dimensional subspace of #/ .1 Therefore,
we suggest generalizing the PA to the multidimensional
case by starting from the definition in terms of the meth-
od of moments rather than from the usual definition;
more precisely, we suggest that the direct extension of
the method of moments to the operator (1 — wA - zB)™!
with A and B linear self-adjoint permutable operators
should be taken as a guide to the definition and justifi-
cation of two variable rational approximants. As a re-
sult, although some formal properties of the usual PA’s
are lacking, we still have the same connection with the
method of moments (and the variational method). This
enables us to give, for a relevant class of functions, a
convergence proof which is both simple and of practical
use since it involves only assumptions about the analytic
properties of the functions to be approximated rather
than about the behavior of the approximants themselves.
Furthermore, our approximants have a simple explicit
expression in any order of approximation.

We shall not study here any application of our approxi-
mation scheme, but let us just remark that a natural
field of application should be the approximate summa-
tion of the perturbative solution of quantum mechanical
and field-theoretic models with more than one coupling
constant. However, whether the physically interesting
models fulfill all the requirements of our convergence
theorem, is a question which requires further study. It
is also worth mentioning that there are classical special
functions which, for a particular choice of some of the
defining parameters, have the integral representation
required in our convergence proofs, i.e., the two-
variable Appel hypergeometric functions and their »-
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variable generalizations, the Lauricella functions.'? The
numerical computation of such functions is therefore
another possible application of our approximation pro-
cedure which, in this case, provides a direct generali-
zation of the classical Jacobi continued fraction expan-
sion of the Gauss hypergeometric function ,Fy(1, 8, 7, 2).

In Sec. II we consider the method of moments for a
pair of self-adjoint permutable operators A and B and
we give the “approximate” expression for the matrix
element (7, (1 - wA — zB)f) where f is a suitable vector
of the Hilbert space. From this we obtain a rational ex-
pression which can be associated with any double power
series. In Sec. III we prove a convergence theorem for
operators in a Hilbert space and we use this result to
state in Sec. IV a convergence theorem of our approxi-
mants to functions of two complex variables with a well-
defined analytic structure. In Sec. V we present the tri-
vial extension to the n-dimensional case; the connection
with a standard variational principle; and another kind
of approximant, suggested by the application of the meth-
od of moments to the operator [(1 - wA)(1 - zB)]?

il. THE METHOD OF MOMENTS

Let A and B be two linear self-adjoint permutable
operators with domains /) (A) and /) (B) in the Hilbert
space /. Then there exists a dense subset ¢ of vectors
of // which are quasi-analytic'®"** for both A and B. Let
fe @™ be such that

fp-q,q:AP-qufy p:();"'y ";p’ (1)

are linearly independent vectors for any N. Then, the
vectors {f, & generate a sequence of [(N +1)(N +2)/2]-
dimensional Hilbert spaces #/yC#/ and the related ortho-
gonal projection operators Py. Let us consider the
equation

(1-wA—zB)p=F )

N, ¢=0,--

where w and z are complex numbers. For any {w, 2}
such that the operator R(w, z) =(1 — wA — zB)? exists and
is bounded, the solution of Eq. (2} is

¥=R(w, 2)f. (3

In order to obtain an approximate solution of Eq. (2), let
us consider the following equation in the finite-dimen-
sional subspace /y:

N p
IPNZZZ) aP,GfP-q,q' (7
p=0q=0

By substituting (7) into Eq. (4) and then taking the scalar
product of both sides successively with f,_s s (=0, 1, -

N;s=0,1,---#), we arrive at a system of linear equa-
tions for the @, , and finally we obtain
ye iz
Yy =222223 24(MPp v, sFres, A" BY, (8)
p=0q=07r=0 s=0
where
Fr-s,sz(f’ Ar-sBsf), (9)

(MN)p ,q;r,serw-q-s,pw— WFpi»r+1~q-s,q+s- Zvarq-s 12 +S+ly

p,’r:O:"'"’N: q:0"° SZO,"",?’.

° ’[)’
If we project Eq. (8) on the vector f we obtain the sim-

ple expression

(f; oy) =, Rylw, 2)f) = 27_/ Z/EFP.., q(MN)p,q,r s'ros,s

#=0g=07r=0s=0
=FIMF, (10)
with obvious definitions for the column matrix F, its
transpose Ff,, and the matrix My. The corresponding
matrix element of the operator R(w, z) has the integral
representation

(f, R(w, 2)f) = f[d(ﬂ E(a, B)/)

1-wa-28 (11)

where E(a, 8) is the spectral family associated with the
self-adjoint permutable operators A and B.

In Sec., II we prove the strong convergence of Ry(w, z)
to R(w, z) in a subspace of A for {w, 2z} in a suitable do-
main and, as a consequence, the convergence of §, to
¥ and of (f, ¥y) to {f, ¥). Since in the latter case we have
a rational approximation converging to an analytic func-
tion of two complex variables, we are naturally led to
introduce for any formal double power series

. +
Glw,z)=2, (m n) G ™2" (12)
men m
the rational approximant Gg(w, z) by the formula
Gy(w, 2) =GRQFG, (13)

T N
where Gy, G, and @y are a column matrix, its trans-

(1-wAy—zB)y=f (4)  pose, and a matrix defined in terms of the coefficients
where Gonon DY
Ay=P,AP,, B,=P,BP,. (5) (Ga)oa =G s
The solution of Eq. (4) is Qo asr,s= Cora-s.avs = Wprstamsavs = 2 Cprrus,grons  (14)
gy =(1-wAy - 2By f=Ry(w, 2)f (6) py7=0,...,N, q=0,...,p, s=0,...,7.
for {w, z} such that R, (w, z) exists and is bounded. Since Let us write explicitly Gy(w, z) and G,(w, 2):
o B O sy by e s
' ' '
Go0=wGy 4= 2Gy,y Gy 0—wGy,0—2Gy Go1=wGy 1 =2Gy o™ |Gy
Gy(w, 2) = GO,OGI,OGO,l G1,0 - sz,o— ZG1,1 Gz,o - wGa,o - ZG2,1 G1,1 - WG2,1 - ZG1,2 G1,o
Goa =Gy 1= 2G5 Gy 1= wGy 1 = 2Gy 5 Gy o= Gy 3 — 26 4 Gy (15)
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It is convenient to notice that this rational approximant
has some obvious formal properties, e.g., Gy(w, z) is
real analytic if G(w, z) is a real analytic function of w
and 2 and it is symmetric in w and z if G(w, z) is. One
may also notice that the approximant to a factorized
function does not in general factorize and that no simple
analog of the homographical covariance properties of the
Padé approximant seems to hold.

Finally, it remains to be investigated whether the
Gy(w, z) might also be defined by matching their power
expansion to that of G(w, z) according to some definite
prescription.

1. SOME RESULTS ON OPERATOR CONVERGENCE

In this section we shall extend some results of Refs.
9 and 10 where the case of a single self-adjoint operator
has been studied. Let [ ; be the linear manifold of all
finite linear combinations of the vectors {f,, 4 defined in
Sec. II. The closure of /; is a Hilbert space //,C#.1¢
Consider now the restrictions A’ and B’ of the operators
A and B to [ ; and their closures A’ and B’, Since f is
assumed to be a quasi-analytic vector for both A and B
then, by the Theorems 4 and 6 of Ref. 13, A’ and B’
are still self-adjoint permutable operators on Hf, and
from now on we shall simply call them A and B. These
operators and the related ones Ay =PyAPy and By
=PyBPy define in 1, the operators T (w, 2) =wA + 2B,
T y(w, 2) =P, T(w, 2)Py, R(w,z)=(1-T(w,2))", Ry(w,z)
=(1 = Ty(w, 2))™* where {w, 2}  C* is a pair of complex
numbers. For simplicity we shall occasionally drop the
{w, z} dependence from our operators. Let us also
stress that, throughout the paper, by operator conver-
gence we shall always mean strong operator conver-
gence. T is a normal maximal operator and, since it is
closed, ! it is the closure of the operator wA’+zB’. T,
is a bounded operator and, in general, it is not normal.

In order to prove that Ry(w, z) converges to R{w, z)
on /{; we need some information on the behavior of
Ty(w, z) as N—~<, which is given by the following:

Theovem 1: Ty(w, z) -~ T(w, z) in [ ;, uniformly with
respect to {w, z}.

Pyoof: Any vector g/ ; can be written as g
= T A ATTBY, T N> M +1 then Ty(w, 2)g =Py (wA
+2B)Pyg=(wA +2B)g=T(w, z)g. Of course the conver-
gence is uniform with respect to {w, z}.

Let us now recall that 6(6), the closure of the numer-
ical range18 of a linear bounded operator O is a convex
set containing the spectrum o(0O) of O. 19 ¢ O is a normal
maximal operator (not necessarily bounded) ©(0) is the
convex hull of ¢(0), i.e., —O(—O) is the smallest closed
convex set containing o(O). 2} Theorem 1 and the follow-
ing theorem enable us to prove that Ry(w, z) - R(w, z) in

Ly.

Theovewm 2: For all {w, z} such that the point 1 is at a
positive distance d from O(T(w, z)), R{w, z) and Ry(w, z)
exist as bounded operators and satisfy the bounds
IR(w, 2)I <d™t, IR,(w, z)Il < 8 where 6™ = max{1, d}.
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Proof: Since 6(T(w, 2)) is the closed convex hull of the
spectrum of a normal maximal operator, the point 1 is
at least at a distance d from the spectrum itself, and
therefore the operator R(w, z) exists and is bounded. If
£+#0 then R(w, 2)g+# 0 and we can consider the normal-
ized vector h=R(w, z)g/I1R(w, z)g!l. By assumption

_I(R(w, 2)g, 8) | gl
0<d< |(h T, )b -1 = IR(w,2)g®  TR(w, g’

Therefore, #R(w,z)lI<d™l, A similar result also obtains
for Ry(w, z) from the remark that | (%, Ry(w, 2)h) |

< URj(w, 2)NAyh® + 1hi® where R(w, z) is the restric-
tion of Ry(w, z) tofy, Wali=1, hy=Pyh, and hi=(1

- Py)h. Since @ 4(Ty) < 6(T), where 64(T)) is the numer-
ical range of Ty in/iy, then IR} (w, 2)I <d™, Therefore,
IRy (w, z) 1< % = max{1, d1}.

Next, a lemma will be used to extend the convergence
from / ; to the whole space //.

Lemma 1: Let O(w, z) be a linear bounded operator de-
fined on a Hilbert space // and depending on the two
complex variables {w, zt. Let {Oy(w, 2)} be a sequence of
such operators, uniformly bounded with respect to N.
If, for a given{w,z}, Oy(w, z) —O(w, z) on S(w, z) where
S(w, z) is a dense subset of //, then Oy(w, z) - O(w, z)
also on//. If, for all {w, z} in a domain A< C?, (a)

O(w, z) and {Oy(w, )} are uniformly bounded, (b} §
=$(w, 2) does not depend on {w, z}, (c) Oy(w, 2) -~ O(w, z)
on § uniformly in A, then Oy(w, z) ~O(w, z) on/{ uni-
formly in A,

Proof: Consider a fixed {w, zf. Then for all g /i there
exists a sequence {g,} € S {(w, z) such that g, g.
Therefore,

(O (a0, 2} = O(w, 2N gll <0y, 2){g - g
HO(w, 2)(g = g +(Oy(w, 2) = O(w, 2)) gl
< 2M(w, 2)llg = g, |l HI(Ox (w, 2) — O(w, 20 g,ll,

where 10(w, z)I<M(w, z), 110y(w, 2)1<M(w, z) for all N,
Let us fix n, in such a way that llg—g, /I< €/4M(w, z).
Since g, € S (w, 2) and Oy(w, 2) = O(w, z) in § (w, 2), we
can choose N¢(w, z) such that /(Oy(w, 2) — O(w, 2))g,,
<e/2 tor all N>N.(w, z). Then the first part of the theo-
rem follows. If, for {w, z} c 4, the operators are uni-
formly bounded, the set § =§(w, z) does not depend on
{w, z} and the convergence is uniform on §, then M, #,,
and N, do not depend on {w, z} and the convergence is
uniform on 4.

Before applying Lemma 1 to our case we need the
following:

Lemma 2: T 1€ p(T{w, z)), where p(T(w, 2)) is the re-
solvent set of T(w, z), then §y(w,2)=(1—T(w, 2)) L;isa
dense linear manifold of /7. Moreover, for any finite
{w, z} and {«’, 2"} such that 1 p(T(w, 2)) and 1
cp(T(w’, 2"), §,(w,2) coincides with § (', z").

Proof: By assumption (1 — T'(w, z))? exists as a bound-

ed operator on ﬁ‘f. Therefore, any vector & <—;1L4f can be
written as i=(1- T)g with g=(1=T)?h. Since /, is
dense in//; and T is the closure of an operator with do-
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main [ 4, there sts a sequence g,—g with g.el s such
that 2,=(1- T)g,—~h. The second part of the theorem is
proved by a direct check that any vector in § ;(w, 2) also
belongs to S ;(w’, 2’) and vice versa.

We can now state the main theorem.

Theovem 3: Let A be a domain of C* such that the
point 1 is at a positive distance d from 6(T(w, z)). Then,
for {w, z € &, Ry(w, z) converges strongly to R(w, 2) on
#4, uniformly on any bounded subset I' T A

Pyoof: For a fixed {w, z} € A, let R(w, 2)gbe in [ 4

IRy (w0, 2) - R(w, 2))gll=|IRy (w, 2)(T 4(w, 2)
— T(w, 2))R(w, 2)gll
< IR y(w, N(T y(w, 2

From Theorem 1 we have that Ty~ T in/; and from
Theorem 2 that Ry(w, 2)Ii< 8 Therefore, Ry(w, 2)
—R(w, z) on § 4w, z)=(1 - T(w, 2))L ;. Since, by Lemma
2, S(w,z) is dense in#y, it follows that Ry(w, 2)

-~ R(w, 2) on zL/f. To prove uniform convergence let us
remark that Ty(w, z) ~ T(w, 2) uniformly with respect to
{w, 2} and that, for {w,z}eT, §,;=S(w, z) does not de-
pend on{w, z}. It follows that Ry(w, z) — R(w, 2) in S,
uniformly in I'. By Lemma 1 we conclude that R,(w, z)
- R(w, z) on the whole /{;, uniformly in T,

- T(w, z))R(w, 2)g!.

IV. CONVERGENCE OF APPROXIMANTS FOR
DOUBLE POWER SERIES

In Sec. II convergence theorems have been formulated
for operators in an abstract Hilbert space. Let us now
turn our attention to the approximant Gy(w, z) defined by
Eq. (13) starting from the formal double power series
(12) associated to a function of two complex variables
G(w, z). Under suitable hypotheses we can prove the
convergence of Gy(w, z) to G(w, z), by reducing the prob-
lem to the Hilbert space problem considered in Sec. III.

For this purpose let us restrict to the class of func-
tions with the following representation in some domain
of C*?

do(a, B)

G(w, z)‘ffl o — 7B

where o(a, 8) is a bounded positive Radon measure in
R? and the formal (not necessarily convergent) double
power series expansion

(16)

— [m +
=[N 6 wmen (1)

m,n
nn n

G(w, z)

exists, i.e., the moments G, =[] a™8"do(q, B) are
finite. The class of functions with the integral represen-
tation (16) may be considered as one possible generali-
zation of the extended Stieltjes functions to the case of
two variables.

Let us define the subset ©,(w, z) of the complex 7-
plane
6,(w, 2)={t=wa +z28{a, B} c =} (18)
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where Z, is the convex hull of the support of o{a, 8) in
R?. We can state now the following convergence theorem
for the approximants Gy(w, z) defined by Eq. (13):

Theovem 4: Let A be a domain of C? such that the
point 1 is at positive distance d from 6,(w, z). I
2;=0(G2m,0)-1 fem = e, E;o(co,zn)-l /2n— e, and {w,z} € 4,
then G, (w, z) converges to G(w, z) as N—~=. The conver-
gence is uniform in any bounded subset I' C A,

Pyoof: Let L ,(R%, 0) be the Hilbert space of the func-
tions on R2 square integrable with the measure ola, B).
Con51der the multiplication operators & and B defined by
agla, B) = agla, B) and Bg(a, B) =Bg(a, B). They are self-
adjoint permutable operators in /. Z(R?‘ ) and the con-
stant vector u(a, B)=1is qua51—ana1yt1c for both @ and
B by assumption, since !I&™3"u!I%= ffaz"'Bz" do(a, B)
=Gyy,2n. Therefore, the operators & and B and the vec-
tor u(a, B) satisfy the same hypotheses as A, B, and f
cons1dered in Sec. III Clearly, G(w,z)= (u (1-wa
- zB)" u)U and Gy(w, 2) = (1, (1 - wéy — 2By) u),, where
dy and 3y are defmed like Ay and By by Eq. (5). Fur-
thermore, it is easy to see that 6,(w, z) =6(wa +zB) and
the theorem follows from Theorem 3.

Instead of assuming the integral representation (186),
we could as well start from the series (17). In this case
sufficient conditions for the double sequence {Gm,,} to be
a determined moment double sequence have been given
in Theorem 10 of Ref. 13. {G, i must satisfy a certain
positivity condition and both the sequences {Gm of and
{GO .} must satisfy the Carleman criterion:

Sme0(Gam,0) 3™ == and 3((G, 5,) " /2"= . Since the posi-
tivity condition is necessary for {Gm ,} to be a moment
sequence, the two starting points are equivalent.

V. GENERALIZATIONS AND FINAL REMARKS

The extension of our results to any number of self-
adjoint permutable operators A, A,, -+, A, is straight-
forward. The operator T® =2z;A; + 2,4, + -+ .+ 2,4, is
still normal maximal and we can repeat all the consi-
derations of Sec. III, ending up with convergence theo-
rems which generalize Theorem 3. The structure of the
matrix element (7, Ry(zy, 2, - - -, 2,)/) still suggests an
approximation scheme which can be used for any func-
tion of p complex variables given by its formal multiple
power series expansion

G(z1, 25, <+ 2p)
In fact, we can still write the expression
Gy(2y, 23, + <, 2,) = GRQy) Gy, (20)

where the vector Gy and the matrix @, are now defined
by

(GN)nl 1000 NP = G"i'"Zmr"ﬁwH

Mp 4T
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1(QN)n1,'",n’;m1,---,m =G

ty 1] =np*MY M Ny Mg+ 1My wMG 4u e s y My * My —iZ-iZ‘G

nl:os”',N’
mI:O,""yN,

oo, Ty, np:(),...,

cey My,

[

my=0,..0,Mmy4.

As in the p =2 case the convergence properties of
Gy(zy, 29, -+ +, 25) to G(24, 25, + + -, Z,) can be obtained from
the study of (f, Ry(zy, 2, «  +, 2,)/).

Since Ry(w, z) converges strongly to R(w, z) on the
Hilbert space#;, we can also apply the method of mo-
ments to the equation

(1-wA-zB)p=g (22)
where g is any vector in ;. Then
(g: RN(w 4 g) L/ZJZ-IL/ E r-s, s(MN r s,p,qu-q,q
r=05=0p=0q=0
=ET*M}E (23)

where the matrix M is defined as in Eq. (10) in terms of
the matrix elements (f, A™B") only, while the column
matrix E is

men,n

Epn,n=(f, A""Bg). (29

Although Eq. (23) does not seem relevant for the study
of approximants to a general power series, the freedom
in the choice of the generating vector f can be used to
improve the approximation in purely Hilbert space prob-
lems. In fact, a simple variational formulation is avail-
able for the approximation procedure we have been dis-
cussing. More precisely, consider the functional

J= (g1 ¢)+(¢,’ g)—(¢', (1-WA"ZB)¢) (25)
and choose the following natural ansatz:
=00 15 anA™BY,
m=0n=0 (26)
N m
¢'=2 2 anA""Bf.

=0 n=0

3
3

Then the stationary value J of J with respect to the pa-
rameters {a,,,} and {a},,} coincides with formula (23). J
can still be made stationary even with respect to the
choice of the vector f. 2 The extension of these consider-
ations to the n-dimensional case is immediate.

In Sec. II, instead of starting from Eq. (2), we could
as well start from the equation

=01 -wA)(1-2B)3y. 27

All convergence theorems of Sec. III hold with obvious
modifications for the normal maximal operator T'y(w, 2)
=Py(wA + 2B — wzAB)Py and a simple sufficient condition
for 1¢6(T(w, 2)) is in this case that both Imw # 0 and
Imz #0. Therefore, we are led to consider functions of
two complex variables with the following integral
representation:

do(a, B) =, m_n
G(w, z)= ff(l—wa TeTa) ”%:()Gm'nw z
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(28)
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n=ngdmy Mgty Ny ongtmy=Mmg 6 o e e e s ng=ngi] *Ms=Msi1 0} 540

ae ,np'vmr\ﬁ“,,

(21)

Iwhere, again, o(a,8) is a positive bounded Radon mea-
sure in R? and G, . are its moments. For these func-

tions we introduce the approximants
GyQ5 Gy (29)

which differ from the approximants G,(w, z) defined in
Eq. (13) only for the matrix §, which now reads

CN;N(w, z)=

(QN)P PR Gxnr-q-s,q 5= wGp«f‘r-q -s¢1,q+s

(30)

If the Carleman condition is satisfied for both the se-
quences {G,, ¢ and {G, .}, we can repeat the proof of
Theorem 4 and conclude that GN(w z) G(w z) at least
for both Imw+#0 and Imz +#0, Again the convergence is
uniform in compact sets of C%.

- ZGpw-q-s,q+s+1 + wchvr-q-sﬂ LS+

Also for these approximants the extension to the n-
dimensional case as well as the variational formulation
are straightforward.
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We consider initial-boundary value and boundary value problems for transport equations in
inhomogeneous media. We consider the case when the mean free path is small compared to typical
lengths in the domain (e.g., the size of a reactor). Employing the boundary layer technique of

matched asymptotic expansions, we derive a uniform asymptotic expansion of the solution of the
problem. In so doing we find that in the interior of the domain, i.e., away from boundaries and away
from the initial line, the leading term of the expansion satisfies a diffusion equation which is the

basis of most computational work in reactor design. We also derive boundary conditions appropriate to
the diffusion equation. Comparisons with existing results such as the asymptotic and P, diffusion
theories, the Py approximation, and the extrapolated end point condition for these approximations

are made. Finally the uniform validity of our expansions is proved, thus yielding the desired error

estimates.

1. INTRODUCTION

We consider the motion of neutrons traveling through
a material medium, In their travels the neutrons may
collide with the nuclei of the medium, they may be ab-
sorbed by the nuclei, or they may cause fissions thus
giving birth to secondary neutrons. The neutron distri-
bution is a solution of the transport equation, *** some-
times referred to as the linear Boltzmann integrodif-
ferential equation, and appropriate initial and boundary
conditions.

Though initial boundary value problems for the trans-
port equation are simple in form, their solution poses
numerous difficulties. Indeed, solutions for only a very
few problems are known. Therefore, one seeks approxi-
mate solutions to these problems. Alternatively, one
may formulate approximate theories and then seek solu-
tions of the approximating problems. That is, instead
of considering the mathematical model consisting of an
initial boundary value problem for the transport equa-
tion, one considers a new mathematical model, general-
ly simpler, whose solution, it is hoped, is close in
some sense to the solution of the transport problem.

One of the most important and widely used such ap-
proximate theories is diffusion theory. Its formulation
has been based on ad hoc physical assumptions such as
Fick’s law which states that the gradient of the neutron
flux is proportional to the neutron current. The result-
ing model is then an initial boundary value problem for
a diffusion type differential equation for the neutron
flux. It is found that in practice diffusion theory often,
though not always, yields good working results. If one
wishes to determine the accuracy of this “approxima-
tion,” and indeed the relation of diffusion theory to
transport theory, it is appropriate to ask the following
questions. In what sense is diffusion theory an approxi-
mation to transport theory ? When is this approximation
valid ? What are estimates of the error ? Finally, how
can one improve on the results of diffusion theory ?

It should be mentioned that there have been other at-
tempts to derive diffusion theory from transport theory.
One such approach involves an expansion in the Legendre
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polynomials P,(cos8). When the expansion is truncated
at Py, the result is referred to as the Py approxima-
tion.' 8 In particular, the P, approximation leads to a
diffusion equation for the stationary (time independent)
problem. This is referred to as the P;-diffusion ap-
proximation. However, the P, approximation for the
time dependent problem does not lead to the diffusion
(parabolic) equation but rather to the telegraphers (hy-
perbolic) equation. Then it is argued that the velocity
approaches infinity and the mean free path and absorp-
tion cross section both approach zero in such a way that
the diffusion equation results in the limit. It is then
hoped that the Py approximation (N > 1), which describes
the behavior of the first N +1 Fourier coefficients, pro-
vides an improvement on diffusion theory, which de-
scribes the behavior of the first two Fourier coefficients
(the flux and the current). We note that the coefficients
in the Py approximation satisfy a system of coupled
equations whose number increases with N. Further,
boundary conditions appropriate to the Py approximation
have not been derived. Rather, two different sets of

ad hoc conditions due to Marshak® and to Mark? are gen-
erally employed, though their validity has not been es-
tablished and no error estimates for them are known.

Another approeach to diffusion theory involves the use
of Fourier transforms to obtain integral representations
of the flux for constant coefficient stationary problems
in infinite domains. An asymptotic expansion of the in-
tegral for points arbitrarily far away from the boundary
then leads to a diffusion equation.?'® However, the dif-
fusion coefficient in this equation, which we call the
asymptotic diffusion equation, is different from the co-
efficient in the Py-diffusion equation. Under the addi-
tional assumption that the average number of secondary
neutrons produced per collision is close to one, the two
coefficients approach one another. In each of these ap-
proaches the questions posed above remain unanswered.
Furthermore, we may inquire about the basis for the
use of this approximation in finite domains.

Finally, Pomraning, ® and Pomraning and Clark’ em-
ploying a variational formulation with the Legendre
polynomials P, as trial functions, have also obtained the
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diffusion equation. They also derive boundary conditions
from the variational formulation.

In this paper we answer the questions posed above by
a systematic formal derivation of diffusion theory from
transport theory. Specifically, we show that diffusion
theory for the distribution function itself, and not mere-
ly its first few Fourier coefficients, emerges as the
leading term of an asymptotic expansion of transport
theory in powers of two small parameters € and 5. Here
€ is a2 measure of the ratio of the mean free path (in-
verse of the scattering cross section) to a typical length,
e.g., the size of a reactor, in the problem. The param-
eter 0 is a measure of the ratio of macroscopic to mi-
croscopic velocities or alternatively the collision and
observation time scales. When these two parameters
are related in a definite manner, diffusion theory re-
sults. Higher order terms in the expansion then pro-
vide correction to diffusion theory, thus yielding the de-
sired improvement.

We then consider boundary value problems for the
time independent transport equation, and show how to
derive boundary conditions appropriate to the approxi-
mating diffusion equations. Among the problems consi-
dered are problems in inhomogeneous media, for which
exact solutions are not available. We derive uniform
asymptotic expansions of the solutions of these prob-
lems. In so doing we find that diffusion theory holds in
the interior of the domain. The diffusion boundary con-
ditions are obtained by matching the boundary layer ex-
pansion to the interior expansion. We establish rigor-
ously the validity of the formal expansions for certain
classes of boundary value problems.

Our derivation, in addition to adding unification and
clarification, has several advantages over the other
schemes mentioned above. The polynomial expansion
will arise naturally in that the dependence on the angular
variable is derived rather than assumed as in the Py
approximation. Moreover, our derivation is valid for
problems in inhomogeneous media with sources. In ad-
dition, the higher order terms in the expansion satisfy
a system of uncoupled equations, in that they depend
only on already computed lower order terms. This
yields computational simplification in obtaining correc-
tions to diffusion theory. Furthermore, our method does
not appear to be restricted to special geometries.

Thus, for example, extensions to higher dimensions
follow in a straightforward manner.

Finally, for a specific boundary value problem, we
present comparisons with other methods, of the numeri-
cal value of a certain constant, called the extrapolated
end point, which is a measure of the diffusion boundary
condition.

2. THE FORMAL EQUATIONS

To simplify the presentation, we consider the one
group transport equation in a homogeneous, isotropic,
source free medium with slab symmetry. Other prob-
lems may be treated by similar methods, Thus we seek
a solution of the initial boundary value problem governed
by the integrodifferential equation
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Hel, 1, T) F b, ) + 00X, 1, 7)

_————C*(’;)"(x) f Ix, 1, T du’ =0, 2.1
0<x<d, —1<ps<l,
subject to the boundary conditions
(0, p, ) =ff (1, 7) for u>0, (2.2)
d, 1, T) =11, 7) for <0 (2.3)
and the initial condition
W, 1, 0)=g*(x, k). (2.4)

Here ¢(x, 4, 7) denotes the neutron distribution function,
i.e., the probable number of neutrons at position x at
time T traveling with speed v in direction g =cosf. o is
the total macroscopic scattering cross section, and the
function c*(x) is the average number of secondary neu-
trons produced in a collision.

3. ASYMPTOTIC ANALYSIS

We introduce the nondimensional variables 7, {, €,
and b by defining

n=x/d, (3.1
t=o7/d, (3.2)
€=1/ad, 5=v/v, (3.3
a* =o(x) /0. (3.4)

Here 0 is a typical scattering cross section of the prob-
lem, and v is a typical macroscopic velocity, e.g.,
d/(1 unit of 7). We assume that € and 6 are small pa-
rameters, i.e., the mean free path is much smaller
[O(¢)] than a typical elngth in the problem, and the mi-
croscopic time scale 1/6v of collision is much smaller
[O(€8)] than the macroscopic time scale 7 of observa-
tion. Alternatively, the macroscopic velocity is much
smaller [O(8)] than the microscopic velocity ». In terms
of the nondimensional variables the Eqs. (1.1)—(1. 4)
become

€ (n, 1, L€, 0) Feupy(n, 1, t e, 0) +almyp(n, u,t;e, o)

a(me(n, €) {* 0<n<«i1
_%Lw(n,u”[;€,5)du':0{ n ,

-1lsus<1
(3.5)
#(0, 1, t5€,8)=£f(1, ) for p>0, (3.6)
¥, 1, te, 0)=fo(1,8) for <0, 3.7
¥(n, 1, 0, €, 8) =g(n, 1. (3.8)

Here a(n) =a*(nd), c(n)=c*(nd), f;(k,1)=rf(u,dt/v) and
g(n, uy=g*(vd, ). We assume that 5==0(¢). Thus we
assume that 6 = Ke with K a constant, and that ¢ and ¢
are represented asymptotically by

V2, i, € (3.9)
i
and

e~2 (e, (3.10)
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Note that we have allowed ¢ to depend on €. We shall
show that choosing the coefficients cy(n) and ¢;(n) ap-
propriately will lead to diffusion theory.

We note that Eq. (3.5) is of singular perturbation
form, so that the expansion (3.9) cannot in general sat-
isfy the prescribed boundary conditions (3.6) and (3.7)
nor the initial condition (3. 8).% Thus, there will be
boundary layers near 7=0 and 7=1 and an initial layer
near {=0. The representation (3. 9) is to be valid in the
interior of the domain and not in the boundary or initial
layers. Inserting (3. 9) and (3. 10) into (3. 5) and equating
the coefficient of each power of € separately to zero, we
obtain a recursive system of equations for the determi-
nation of the functions ¥ (n, i, £):

1
L OEa[po_%/ zp"du']:o, (3.11)
-1

Ly =7;= = upi? +“f‘1% _:atr"*’du'-Kw{'z

(G=1,2,3---). (3.12)
From (3.11) we see that §° is independent of i, i.e.,

¥, 1, 1) =", 8) (3.13)
and that

co(m=1. (3.14)
Equation (3. 12) with j=1 implies that

W, 1, =9, O +9n, ) (3.15)
where

P = (= 1/a)ys’ (3.16)
and that

o(m)=0. 8.1
Equation (3. 12) with j=2 implies

F(m, 1, 1) = 23(n, Hp® + 33, O+ P, 1), (3.18)
where

2= (= 1/a)dy, (3.19)

P=(- 1/, (3.20)

172+ 3c,0" — (3K /)y = 0. (3.21)

Employing (3. 16) and (3. 19) in (3.21) we obtain

1 1 00 a0 31( 00
—I= + - Y =0
( ) 3Calp P 't .

AL (3.22)
Equation (3, 22) is a diffusion equation. It is homogene-
ous since (2.1) was homogeneous. Clearly if (2. 1) con-
tained an O(¢) source, (3.22) would be inhomogeneous.
We note that (3. 16) is an asymptotic statement of Fick’s
law. Thus the leading term in the expansion of the dis-
tribution function ¥ satisfies the diffusion equation. We
note that (3. 22) was derived under the conditions (3. 14)
and (3.17), i.e., that the system must be close to cri-
tical. No conditions are put on ¢; (j > 2). Conditions
(3.14) and (3.17) are necessary for a nonzero flux to

be maintained in the interior of the domain, in the ab-
sence of a source. (With a source present, it is possi-
ble to have nonzero flux in the interior even if ¢ <1.
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This problem has been treated by the authors.)

To obtain improvements on diffusion theory, we can
calculate higher order terms in the expansion for .
Thus proceeding as above, we find that

K
l(l },0) +3c2¢1°_371—w§°:_ 3¢9, (3. 23)
T

a\a

Continuing in this manner we find that ¢’ is a jth order
polynomial in ¢ with coefficients ¥™* depending on 7 and
t. The leading term 9% satisfies the homogeneous dif-
fusion equation. The functions §'° satisfy inhomogeneous
diffusion equations, whose inhomogeneous terms have
been determined at an earlier stage in the recursive
scheme. The functions ™ (j> k> 1) are derivatives of
the functions " (» <j). Note that the dependence of ¥
on {4 is derived rather than assumed and the equations
for the functions ¥** are completely uncoupled.

Now the functions 3** are not determined until bound-
ary and initial conditions for them are specified. In the
following section we show how to derive boundary con-
ditions for the stationary diffusion equations which are
obtained by setting K =0 above, by performing boundary
layer analyses near 7=0 and 7=1. We shall not consi-
der the initial layer problem since in fact, problems of
reactor start-up are much more complicated than the
linear problem we consider. Indeed, during start-up
the problem is nonlinear in that o depends on ¥ and is
further complicated by the fact that ¢ changes in time.
Finally, during start-up the power level is sufficiently
low that statistical fluctuations must be taken into
account.

4. BOUNDARY LAYER ANALYSIS AND THE
DIFFUSION BOUNDARY CONDITIONS

To determine boundary conditions for our diffusion
equations it is necessary to perform boundary layer
analyses in the neighborhood of the boundaries n=0 and
n=1. Then the required boundary conditions are ob-
tained by matching the boundary layer expansion to the
interior (diffusion) expansion. We consider the boundary
layer at 7=0. The analysis near 77=1 is obtained in a
similar manner.

We introduce
=h{n) = f"]" a(t)di,

(4.1

so that the time independent transport equation becomes

euﬂ)ﬁd?—i(%i-e—)f:idu':o, 4.2
where

W, w5 e)=p(h(8), 1 e) (4.3)
and

(k@) =c(n™()5 0. (4.9
Now we employ the stretching transformation

v=¢/e (4.5

{for the boundary layer at n=1 [ =¢,= [Sa() dt], we
employ the transformation z = (¢, - £)/e} in (4.2) to ob-
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tain the boundary layer equation for p(v, i ;€) =J(eL, i ; €)
as

p . 1
€
upy+p——c(€§’ )flp(v, piedu’=0,

0gy<oo’ (4.6)

We note that the coefficient ¢ in this equation is slow-
ly varying and assume that p and ¢ are given asymptot-
ically by

—1=spu=<1,

Py ;s €) ~Z_)Dpj(y, pye 4.7
and
cley, ) ~1+2; ¢(ev)e’ =1+ ¢,(0)e® + O(ed). (4. 8)
=2

Inserting (4.7) and (4. 8) into (4. 6) and equating the co-
efficient of each power of € separately to zero, we ob-
tain the following system of equations for the recursive
determination of the functions p’(y, u).

1 1
Mp"EupSJfPO—Efl p'du’=0,

0$J1<DO, ._1SI,LS1’ (4.9)
Mplzo’ (4. 10)
Mp? =R; (j=2) (4.11)

where R; depends on p’...p"" and on the function ¢ and
its derivatives. The functions p’ must also satisfy the
boundary conditions at n=0, namely,

p%0, u)=A(u), K>0,
p’(0, u) =0, L>0 (G=1).

A similar expansion can be constructed at { =%, (n=1),
which will satisfy the given boundary condition at that
end.

(4.12)
(4.13)

We note that the operator M defined in (4. 9) has con-
stant coefficients. This fact is the basis for the use of
the constant coefficient half plane problem [cf. (4.9)] in
asymptotic diffusion theory. The solution of (4. 9) is
given by (Ref. 9, see Ref. 10 for a proof of the validity
of this solution)

Py W) =ay + 0y~ 1)+ [T AWI$, (1) expl-v/v) dv,
(4.14)

where

+8(v — )1 - v tanh?v],

9o (1) =3P (4.15)

Vo u

The representation (4. 14) is an eigenfunction expansion
of the solution of (4.9) where P denotes the Cauchy prin-
cipal value and 6 the Dirac delta function. The functions
1 and (y ~ &) are classical solutions of (4. 9) and corre-
spond to the discrete spectrum of the transport operator
while the functions ¢,(u) exp(~y/v) are a one parameter
family of singular or distributional solutions, which are
the contribution of the continuous spectrum. The con-
stant a; and b, as well as the function A(¥) will be de-
termined by the boundary condition at y =0 and the
matching condition as vy — <, Clearly, the diffusion ap-
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proximation contains no growing exponentials, so that

the matching condition implies that
A()=0 for v<0. (4.16)

Employing (4. 16) in (4. 14) and applying the boundary
condition (4.12) at y=0, we have

Ay=a,—bou + fole(z/)¢,,(u)du, @ >0, (4.17)

We multiply (4. 17) respectively by v(¢t) and ¢,.(u)v{(u)
to obtain

SR ARy (W) di=agy® = byt (4.18)
and

folf(u)zpu:(u)*/(u) du:b"%'}'uA—f/(f—’)y(V')N(u'). (4.19)
Here

v(u)=-2)§—‘_‘u—) (4. 20)
with
X(z)zl_}z exp%fo1 u,l_z tan” 5= :%nh_lu,)dn',

(4.21)

Y= [ wirp) di, (4.22)
and

M) ({1 - anh o +”ZT”2) (4.29)

To obtain (4. 18) and (4. 19) we have made use of the
orthogonality relations

Jrouwy(w) du=0 (4.29)

and

t ¥(v) r
fo Do) Py (W¥ () dp =——=N¥)o(v - v). (4.25)
Indeed, it was to enable us to use these orthogonality
relations that we showed (4. 18) without completing the
matching at that point. Equations (4.18) and (4,19) may
be solved for a, and A,(v) as

1
a(,:é“;yu— +$oj:f(u)7(u)du (4.26)
and
b 2.0 1
Ao(V):zy(lf;jNy(y) +Y(U;JN(V)[0f(u)%(u)w(u)du. 4.27)

Thus far the constant b, is undetermined. We shall now
determine it by completing the matching procedure. To
do so we assume the existence of a domain of overlap in
which both the boundary layer and interior (diffusion)
expansions are valid. Then by comparing the expansions
at a fixed value of 77 (or equivalently £) we obtain the
matching conditions. We first consider the behavior of
0%, 1) as y —= since (4.5) implies that v — = for fixed
7nas € ~0. Thys as y —=, p’(y, 1) behaves like

P, 1) | w=ag +by(v - ). (4.28)
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Now we examine the behavior of the interior expansion
for { fixed in the neighborhood of {=0. We recall that
the leading term of the interior expansion is given by

Pm, 1) =39"(n) (4.29)
which is a solution of (3.22) with K=0,

1(1
Z(E 3())" +3c,9" =0,

or, equivalently, using (4.1), as a solution of
Yge + 3¢9 = 0.

Near £ =0, 9°(¢) behaves like $°°(0). Thus the match-
ing condition implies that
ay,="%0) (4.30)
and
by=0. (4.31)

Equations (4. 30) and (4. 31) with a, given by (4. 26) yield
the leading term of the diffusion boundary conditions.

We now proceed to the next term p*(y, &) in the bound-
ary layer expansion. Since Eq. (4.10) is the same as
(4.9), we have that

oy, 1) =ay + by(y — p) + fol A (V)¢ (1) exp(=y/v) av.,
(4.32)

The boundary condition for p! is now zero, so that fol-
lowing (4. 28) and (4. 29) we find that

ay = byt /¥ (4.33)
and

A ) == b3 /29 (V)N). (4.34)
The behavior of pt(y, 1) as v ~ = is given by

oMy, 1) | e=ay +by(y - 1. (4. 35)

The interior expansion is given by
$E, 1) =P(E, B) + gk, 1) +O(e?)
=) + e[ %8 + (D u] + 0(ed). (4.36)

Near {=0, it is given by
P%0) + €[31°0) + $°(0)y + (O ]+ O(eY). (4.37)

Employing (3. 16) with K =0 or its equivalent in terms of
¢ which states that
=g
B(E, 1) [e=g=3"(0) + €[3*°(0) + P°(0) (y — 1) ] + O(€?). (4.38)
Matching the O(¢) term to p*(y, ) | . implies that
a, = $*%(0) (4.39)
and
by = 4¢°(0). (4. 40)

Thus the leading terms of the boundary conditions
appropriate to diffusion theory are given by
1
w°°(0)=a0:;nf Awv(p)du (4.41)
o

and
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0 bﬂ’l Y 0
U (0)=a1=—7},'1r =v e (0). (4.42)
Using (4. 22) and (4. 20) and formulas (1), (23), and
(16a) in Ref. 9(pp. 125,138, 171 respectively), we can
evaluate v’ and ! as

Y= [lr(wdr=1 (4.43)

and
1 1 3 1 “Z

Y :fo wy(p) du:ij(: mdu:(o,ﬂm), (4. 44)
so that (4.41) and (4. 42) become
#9(0) = ﬁ A du=3 A )y (4. 45)
and

#0(0) = 7' 9g°(0). (4. 46)

In terms of the original variable x, these boundary
conditions are

VopAw)
0 X{(=-u)

(0 =—§— dp (4. 47)

and

#9(0) =24 40().

0 (4.48)

The boundary conditions at the other end point x =4, are
obtained by symmetry considerations as

1
) =5 fo B g (4.49)
and
P == vd i () (4.50)

a*(d)

We note that the boundary conditions at each end point
involve the local scattering cross section, i.e., a*{0)
and a*(d). The function X(- 1) appearing in the boundary
conditions is tabulated (see, e.g., Ref. 9). Higher or-
der terms in the boundary layer expansion can be cal-
culated in a similar manner. Then by matching these
terms to higher order terms in the interior expansion,
higher order terms in the diffusion boundary conditions
can be calculated.

5. THE ASYMPTOTIC EIGENVALUES

In the above problem, we have assumed the existence
of a unique solution, i.e., that we are not at an eigen-
value [following standard practice, we set ¢(;¢€)
=x(€)E(n) with () appropriately normalized; then X is
the eigenvalue parameter] of the problem. This implies
that, (3.22) with K=0, (4.47), and (4.49) have a uni-
que solution, Equivalently, this means that the matching
can be performed. Of course, at an eigenvalue, this is
not true. The asymptotic eigenvalues are clearly given
by A=1+ €% +2,€% + O(e*). Then to first order we seek
nontrivial solutions of the diffusion equation (3. 22) with
K =0 subject to the homogeneous boundary conditions,
given here in terms of the variable 71 as

P°0(0) = ¢*°(1) = 0. (5.1)
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Letting #(n) and v(n) be a basis for the solution space of
(3.22) with K=0, we see that the eigenvalues are ob~
tained from the conditions

au(0) +pv(0) = 0,

au(1) +80v(1)=0. (5.2)

This yields a countable number of discrete eigenvalues
%, [obtained from c,(n)], which we denote by AJ. A sim-
ilar condition on A4 is obtained by considering the next
term in the expansion. Thus, given A,=21j, we seek sol-
utions of (3. 23) with K=0, with boundary conditions
$*%0) - (0) 9°00) = 9 %(1) + == ¢"(1) = 0. (5.3

Thus A;=)] are determined in terms of A7 from the
conditions

au(0) +Bv(0) =+(¥'(0), va’(1), A3, %),
Cﬂl(l) +BU(1) = s(z[),o,o(O), znbi[’)!o(l)’ )“gx )‘3)9

where the right-hand sides are functions of the variables
indicated. From (5.2), it follows that the right-hand
side must satisfy an orthogonality relation in order that
solutions of (5.4) exist. This condition determines X,
=27 in terms of A;. For the constant coefficient problem,
the asymptotic eigenvalues are given by

72/3 + 0(e®).

(d

(5.4)

A=ct=1+ %2 (5.5)

6. THE UNIFORM EXPANSION

We have obtained expansions in the interior and bound-
ary layer regions. We now construct a composite ex-
pansion which is to be uniformly valid throughout the
region. To do so we add together the separate expan-
sions and subtract those terms which the two expansions
have in common, so that they are not counted twice.
These latter terms are precisely the terms of the bound-
ary layer expansion which were matched in the overlap
region, i.e., the terms pl. of the boundary layer ex-
pansion which did not approach zero as y became infi-
nite. Thus the N term uniform expansion is given by
(6.1

%bxrn”:ZPN +py — Py | o

The leading terms of our uniform expansion are given
by
gt =g +0°0) - p°6) | < +elvt(n)

+pgttm +p () - p'(3) | o) + 0(e?

=3%(n) + [' AV, (1) exp(-y/v) dv

+ [ By ¢ (1) exp(= (1= 3)/v +e[#*2(m)

+uytt () + [P A )0, (1) exp(-y/v) dv

+ [ A,0)0,() expl= (1= )/v) dv] + 0(e?,

(6.2)

where ¥°°(n) is a solution of the homogeneous diffusion
equation (3. 22) with K =0 and the boundary conditions
(4.47) and (4.49), ¥*°(n) is a solution of the inhomogene-
ous diffusion equation (3. 23) with K=0, and the boundary
conditions (4, 48) and (4.50), and $''(n) is given by

(3.16). The functions 4,(»), By(v), A;(¥), and B,(v) are
given by
851 J. Math. Phys., Vol. 16, No. 4, April 1975

1
AO(V):WL‘ AW, (L) ¥(p) du, (6.3
1
BO(”):—y(u;)N(v)fo &= W, (W¥(k) du, (6.4)
_ LR (V)
A=) a0 (©.5)
and
2 00
(v) = do (1) (6.6)

T 2¥(VN(Q) a(1) ’
while ¢,(x) is given by (4. 15).

We shall now prove that the formal expansions ob-
tained are in fact uniformly valid. First, we state a
positivity result which will be useful in the analysis of
these problems.

7. APOSITIVITY RESULT

Theovem: Let ¥(x, i) be a solution of

€/ng—;f+a(9€)¢) C( a(xf J)x whdu +S(¥ “)
xe(0,1), ue[- 1,1],
90, u)=fp), u>0, (7.1)
Wd, n)=g(w), <o,

with 0<c(x) <c<1land alx)=a>0. Let S, f, g be contin-
ous nonnegative functions. Then ¢ is nonnegative, This
theorem was essentially stated in Ref. 11 where plausi-
bility arguments for its validity were given. Those argu-
ments can be made rigorous in a straightforward man-
ner and therefore shall not be presented here.

8. PROOF OF VALIDITY OF THE ASYMPTOTIC
EXPANSION
We consider the problem
1- 2= 1 , ,
L= e, +p- Lm0 C"‘”f $e, 1) du’ =0,
-4

(8.1)
(0, p) =f(u),

(1, uy=glw),

with €(x) = ¢! > 0 throughout [0, 1]. [Clearly, the problem
with €=3;.,¢;(x)e’ can be treated with no additional
difficulty. ]

>0,
k<0,

Employing the methods described in the previous sec-
tions, we can construct N term interior expansmns
Yy ~2;-0¥’ €’ and boundary layer expansions p ~YY p’¢’
for the above problem. Then an N term uniform expan-
sion P§*'f can be constructed as described in Sec. 6.

We define the error Ry as

Ry=¢- lpun“—d)‘[w)v_"pn—pn‘n]- (8.2)

The expansions ¥y and py have been construeted so that

LRy=0(e""), (8.3)
Ry=0on Q={X=0,u>0;X=1, u<0}
with all the coefficients in the composite expansion uni-
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formly bounded. We wish to show that R, = O(e"*!), We
write (8.3) as
LRy=€""M(x;€), Ry=0 on . (8.4)

Next we write (8.4) in terms of the constant coefficient
operator / ;.

1—62 0 1
LORNEE“J’(RN)1+RN-———( ) C)J.IRNd#’

2 1
=€y +;—(c°—- E(x))f Rydp'=S(x;e),
g

Ry=00n Q. (8.5)

where ¢’=max; 1,¢(x). Let S$'=
the solution of

maXgg,y4151 and let I' be

L,T=8" T'=0onaQ. (8. 6)
It then follows from our positivity result that

TF+Ry=0 (8.7
or

|Ry| =T (8.8
pointwise, so that

max |Ry| < maxT. {8.9)

0,11 [o,11

To bound I', we consider the function W=I - 8%/¢2¢"
and find that

LW=0, W==8"%€*"<0on Q. (8.10)
The positivity result now implies that
W<0 (8.11)
or
I <8%/e3c?, (8.12)
so that
s° 1 N1 e, . _
< < +—(c’=
max‘RN|<ZgEU<EZEU—31§)]({E ‘]W‘ 2(6 C(X))
1 | 1 —
X ‘f RN dﬂl |] S—*zz‘-n- [€N+1M
Y
+e?max(c’ - e(x ))max{RNl (8.13)
0,11 £0,11
where M = maxgg,;,!Mi. Thus
MVt
max|Ry | <—r € =0(e"Y),  (8.14)

¥ —maxg, 41" —¢(x)

since maxg ;1= 2(v)1 is <c' [recall ¢’ = maxc(x)].
Now, the estimate in (8.14) can be improved by noting
that

2
RN:RN+2+ZJ EN*-k(d}N#Z +pN*k_pN*k‘n)‘ (8. 15)
k=1
Thus
2 .
|Ry! < Ryop |+ 25 " [N ¥ 4" oV L (8.16)
k=1

Now | Ry, | = O(e"*!) by (8.14) and the second term in the
right-hand side of (8.16) is alsc 0{e"*!) since the co-
efficients in the expansion are uniformly bounded. There-
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fore, there exists a constant K (independent of x and €)
such that

|Ry| < Ke¥, (8.17)

9. THE EXTRAPOLATED END POINT CONDITION

We shall now show how the notion of the extrapolated
end point condition is related to the boundary conditions
derived above. We recall that the flux ®(n) is defined as

o(n;€) =3[ ¥, 4, €
1 fl{d)()()
=9"(n) + ey*'(n) + O(e). (0.1

We note that ¢ satisfies a diffusion equation since all the
#* do. We would now like to derive boundary conditions
for ®. We expand the right-hand side of (9.1) in a Taylor
series about #=0 obtaining

ap

) +elvt'(m) + pptt(m) |+ O(ed)} dp

®(n; €)= ¢"(0) +32°(0)n + O(n?) + €y *(0) + O(em) + O(€?).
(9.2)

Now we employ (5. 3) in (9. 2) to obtain

B(n ;€)= *°(0) + 1*(0)n + O() + 1 (o) )+ O(em) + O(€?).

(9.3)

We set
n=€n, (9. 4)

so that
B(em, ; €) = $°(0) +<w2°(o>[ ﬁ,)]m(e% (9.5)

A condition on ¥°°(0) has already been derived in terms
of the prescribed function f{1t), namely

poo=3 [ E 0.6
however, #3%(0) is not known. Therefore, choosing

ny=~v'/a(0), (9.7)
we find that

¢(€n0;€):%1:5{_(_uu))dp+O(€2). (9.8)

Continuing in this manner we can obtain corrections to
7, by expanding in a series in €, and choosing the co-
efficients in the series so that ¢ satisfies the same
boundary conditions as %, The value of 1 so determined
is referred to as the extrapolated end point. Thus to
leading order, the extrapolated end point n=¢mn, is given
in terms of ¥ by

- €'y‘d
a*(0)

—ed(0. 7104)
T ax(0)

Xp=€n,d= 9.9
This defines the usual extrapolated end point condition.
We note that this condition involves the local scattering
cross section a*(0). The condition at the other end will

be
1
eytd €d(0.7104)
= * = .
x,=d (@ d+ ) {9.10)
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Improvements on these conditions can be obtained by
retaining more terms in the asymptotic expansion of the
solution and employing them in (9.1) and the equations
that follow. We note that the above formulas are valid
even for inhomogeneous media (@3 1) with capture
(¢c#£1). It is clear from the above and from (4. 8) and
(4.11) that variations in a(n) and c(n) affect the extra-
polated end point at O(e?).

We shall now compare our extrapolated end point with
that obtained by other methods, for a specific constant
coefficient problem, since not all the other methods are
capable of treating variable coefficient problems. The
problem we consider is the Milne problem, which is the
problem for a homogeneous, noncapturing (¢ =1),
source free medium occupying the half space ¥ > 0, with
boundary condition (0, 4) =0 for u > 0. The source of
neutrons is considered to be at infinity. This problem
is exactly our boundary layer problem (4. 9) subject to
(4.12) with () =0. Further, since c=1, all the func-
tions p/(y, 1) =0 (= 1) so that p(y, 1 ;€) =p°v, ). Final-
ly, since we are in a homogeneous medium a*=1. Thus
the extrapolated end point is given, to all orders in ¢,
by

- xy=¢€d(0,7104) = 0.7104/0. (9.11)

This value of x; is exact, i.e., the value determined
from the exact solution of the Milne problem obtained
by the Wiener—Hopf method. It is to be compared with
the following values determined by other methods.
These values are taken from Table II in Ref. 6.

10. ASYMPTOTIC DIFFUSION THEORY

In the special case of the time independent homogene-
ous problem (i.e., ¢=1 and ¢ constant), we can cast
our diffusion equations into a form which is more amen-
able to numerical calculations. In so doing, we will find
that the resulting asymptotic expansion satisfies the
asymptotic diffusion equation mentioned in the introduc-
tion. Thus, we consider the boundary value problem for
the equation

1
¢
euw,,+¢_§f o(n, u)dp’=0. (10.1)
-1
We introduce the variable £ defined by
E:T]/E!/O (10. 2)
where
1 N j
— ), died (10.3)
Voo a1

where the constants d; are chosen so that the resulting
diffusion equations for ¥’ are all homogeneous, with
diffusion coefficient equal to one. That is, we assume
an asymptotic expansion of the form

4,/)(5, M, €) ~Zj10 df’(i, “)€j,

c~2,c;€ (10.4)
=9

valid in the interior of the region. Proceeding as above

by inserting (10.2), (10.3), and (10.4) into (10.1) and
equating the coefficient of each power of € separately to
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TABLE 1. The linear extrapolation distance (in units of mean
free paths) for the Milne problem.?

Mark Marshak Variational

pP-1 0,5774 0.6667 0,7071

P-2 0,.7746 0.6667 0.7071

P-3 0.6940 0.7051 0.7118

P-4 0, 7297 0.702

P-5 0,7039 0.7082

P—-6 0.7198

P-7 0.7069

P-8 0.7159

2The exact result is 0.7104,
zero, we obtain

i-1 1 i
uzdj-sz}:_}_d'}_ab Cj'kfwk(ga u')du':O, ]:0) 17 2y"'

R=D E=( &

(10.5)

with ¢t =0.

In order to have nontrivial solutions, we must have

c,=1 (10.6)
and
CI = 0 (10. 7)
with
V(g 1) =2,y (D k. (10. 8)
k=0
Then the constants d; are chosen so that
Dyi¥=yil+ =0, (10.9)
The first few d; are given by
dy = (3c,)'?, (10.10)
dy = Cydy /205, (10.11)
—dy c?  4c?
d. = L3 22 _¢,. .
3 W4Cz g C4 (10 12)
The functions {* are then given by
. jke
P =~ L; d gl (R=1), (10.13)

Thus all the coefficients ¥*, and therefore the entire
expansion for ¥, satisfies the same diffusion equation
given by (10.9); similarly, the flux satisfies

&, +d=0, (10.14)

In terms of the original variable x, Eq. (10.14) becomes
&, FH(o/v)d=0 (10.15)

which is the usual asymptotic diffusion approximation to
transport theory (cf. Ref. 5, where the expansion for
vy, though derived in a different manner, agrees with
ours). Since the diffusion coefficient in (10. 15) contains
Vg, i.e., a full series in €, while the P, diffusion co-
efficient contains only the leading term of that series,
we may compare the difference between the P, and as-
ymptotic diffusion approximations to the difference be-
tween the Born and Rytov approximations in wave
propagation. 12
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On the strength of a system of partial differential equations

Bernard F. Schutz
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It is shown that Einstein’s concept of the “strength” of a system of differential equations is directly
related to the number of dynamical degrees of freedom the equations permit. It may become a useful

tool for investigating the structure of the system.

In a recent paper, Mariwalla® discussed Einstein’s?
concept of the “strength” of a system of partial dif-
ferential equations. Although both suggested that the
strength was related to the amount of arbitrariness in
the solutions to the system, neither Mariwalla nor
Einstein made that relationship satisfactorily quantita-
tive, and both were surprised to find that the Maxwell
and Einstein equations had the same strength, twice that
of the scalar wave equation. The purpose of this paper
is to show that the strength is related in a well-defined
manner to the number of arbitrary functions of d-1
variables (where d is the dimension of the manifold)
necessary to determine a solution locally. For hyper-
bolic systems this is the amount of Cauchy data; it de-
fines the amount of dynamical freedom in the system,
The strengths of the scalar, Maxwell, and Einstein
systems are then readily understood in terms of the
number of polarization states available to the massless
particles associated with them. When extended to ex-
amine arbitrariness in fewer than d - 1 variables, the
method may become a useful tool in examining the
structure of the system of equations.

Suppose we have a system of equations for #» unknowns
U, on a d-dimensional manifold. If all the equations
can be placed in the normal form

akUA/axk:_fA(x’ v

Voo VUL A d™y)) (1)
[where {x,y, (a=1,...,d- 1)} are the d coordinates,

k is fixed, and [ +m <k, I <k] in some coordinate
system, then a local analytic solution is always uniquely
determined by giving analytic functions for U, and their
first k — 1 derivatives with respect to x in the hyper-
surface x =const (Cauchy—Kowalewsky theorem). That
is, the sytem allows kn free functions of £-1 variables.
However, it may not always be possible to choose co-
ordinates {x,v,} such that all the equations of the system
take the form (1). In the Maxwell or Einstein equations,
for example, some equations represent constraints, of
the form

0=g,(x,v,.0""U,/a'x 2"™,). (2)

Associated with the existence of these contraints are

gauge functions, whose values are arbitrary everywhere.

These gauge functions are physically unmeasurable, but
must be eliminated before the Cauchy—Kowalewsky
theorem can be brought to bear on the problem. The
existence of the constraints, moreover, means that not
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all the initial data is freely specifiable. We shall show
that Einstein’s concept of the “strength” of the system
provides a direct, if somewhat heuristic, method of
discovering just how much real freedom there is in a
complicated system of partial differential equations.

Consider the Taylor expansion of an analytic function
of d variables about a point. The total number of terms
of nth order in the expansion is?

[Z]E%Jj-—;)lz)!:<n+:_l>- (3)

If the function is completely unconstrained, then all of
these coefficients in the Taylor series may be given
arbitrarily. If for any reason the function can be given
arbitrarily on a (d - 1)-dimensional hypersurface, but
its behavior in the remaining dimension is determined,
then only [?;!] coefficients of order » are arbitrary. The

.converse is not necessarily true (the [¢;'] free coef-

ficients need not form a (d - 1)-dimensional Taylor ex-
pansion), but in the context in which we shall use it we
can suppose it will generally be true. The fraction of
free coefficients in such a function is

[d - d] __d-1
n n ntd-1"
which goes to zero for large n.

In order to determine the amount of freedom in a
system of partial differential equations, Einstein® sug-
gested one should expand all the dependent variables in
Taylor series and determine the number of relations
among the various coefficients of order » that are im-
plied by the differential equations of the system. By
subtraction there remains a number Z, of free coef-
ficients of order n. Einstein® and Mariwalla! have com-
puted this number for several physically interesting
fields. After removing all the gauge freedom in the
fields, they found that the ratio Z"/[‘},] always went to
zero as 1/z for large n, and they interpreted this to
mean that there were no completely free functions of d
variables left in the theories. They then defined the co-
efficient of 1/% to be the “strength, ” but did not interpret
it satisfactorily. It is clear, however, from the dis-
cussion of the previous paragraph, that the limit for
large # of Z_/[*!], which differs from the Einstein
strength by a factor of (d-1), is in fact the number of
free functions of d — 1 variables in the theory. We can
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formulate this precisely as follows. It is clear from Eq.
(3) that [¢] is a polynomial in » of order d - 1. Since

Z, is always a sum of such terms, !'? it is also a poly-
nomial in » of maximum order d — 1. Therefore, it has
a unique representation of the form

z,=3 N, [ﬂ : (4)

k=1

Then, at least heuristically, the number of free func-
tions of k& variables in the solution is N,. (In the Ap-
pendix we show that all N, are integers, as they must be
for this approach to make sense. )

As a concrete example, let us consider the Maxwell
field in four dimensions. When the equations are formu-
lated in terms of a vector potential and the gauge free-
dom is removed from Z, explicitly, one obtains®

oL -0 L)

If we were not to subtract the gauge freedom, the sec-
ond term would not be present. If the vector potential
is not introduced at all, one obtains®':?

sl ] )

Writing these in the form of Eq. (4) gives

e {7 ]
o]l

Neither Z, contains any free functions of four variables,
and both have four free functions of three variables.
These correspond to the two dynamical degrees of free-
dom in electromagnetism: On a Cauchy hypersurface
one can specify two variables and their time derivatives
freely. On the other hand, the two versions of Maxwell’s
equations appear to differ at the two- and one-dimen-
sional level. In fact they do not: Because Z,") refers

to a potential version of the Z ® equations, a term of
order »n in the latter is of order n + 1 in the former. To
“lower” the order of the former, we rewrite Z» in
terms of m=1n—1 and find

z0-a[3] vo| ]
m m

So in this sense both versions are equivalent. The in-
terpretation of this two-dimensional term is not at all
clear, but in view of its independence of the use of a
potential, it appears to contain some real information
about Maxwell’s equations. We may conjecture that it
describes the freedom to set a boundary condition on the
elliptical constraint equation in the initial hypersurface,
but it should bear a more thorough investigation. There
is another tantalizing suggestion in the Einstein equa-
tions of general relativity, for which Z, '*® takes the
form

zer=al] -2 [1] -o[2]
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This is derived using the metric tensor as the funda-
mental variable; but the metric may be considered to be
a second-order potential for the Riemann tensor, which
is physically measureable. Shifting the order by two

(m =n-2), we get

siral2) o)

The coefficient of [1] is zero, and the other coefficients
are positive, just as for electromagnetism.

Whatever the significance of the lower coefficients
may be, it is clearly not surprising that for the Einstein
and Maxwell equations, as well as for the Weyl and
Dirac equations,® one finds N,=4, while for the scalar
wave equation N,=2. All are field theories for spinning
particles: for zero spin particles there is only one
dynamical degree of freedom, while for massless
particles with spin there are two possible helicities
and hence two degrees of freedom.

APPENDIX

The expressions given by Einstein® and Mariwalla®
are always of the form

d
Z = K
" méer ”‘[n—-m] ’

where d is the dimension of the manifold and the K, are
always integers. This is in fact the general form for

Z,, because each term results from K, equations (al-
ways in d dimensions) containing m derivatives of the
field variables. We wish to reexpress this in the form of
Eq. (4). By using the definition of [¢] it is easy to
derive the basic relation

S R e B

By iteration of this we find
LA =00+ 10 1]
n+1 n n n
Equation (A1) can be rewritten as
BNEHE
n—1] |xn n ’
from which follows by iteration

L5 =2 e G ()

Since all the coefficients are integers, the coefficients
N, in Eq. (4) are also integers.

(A1)

o)

1K.H. Mariwalla, J. Math, Phys. 15, 468 (1974). Note the
error in Eq. 23), where (§) should everywhere be replaced
by (41).

2A. Einstein, Meaning of Relativity Methuen, London, 1956),
6th ed., Appendix II; also (Princeton U.P., Princeton, N.J.,
1955), 5th ed.
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‘Nonspreading solutions of the inhomogeneous scalar wave
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A simple condition that is necessary and sufficient for the solution of the inhomogeneous wave
equation to be a nonspreading wave is derived for a class of driving terms that arise in certain
physical problems. The condition is applied to the analysis of the self-scattering of gravitational
multipole radiation at second perturbative order. It is proved that there is no scattering at the
multipole component of highest order in the second-order gravitational field. It is conjectured that
there is no scattering for every component of the second-order field. A mathematical expression of
this conjecture, derived from the condition for nonspreading, is given and it implies conjectured

identities on Clebsch—-Gordan coefficients.

1. INTRODUCTION
The homogeneous wave equation

(=0, 1.1

has what has been called the characteristic propagation
property, or, equivalently, its solution can be described
as nonspreading,® In physical terms this means that a
field satisfying Eq. (1.1) can, with the appropriate
boundary conditions, be nonvanishing for only a finite
time for a fixed observer. This property is of such ob-
vious physical interest that Kundt and Newman' looked
for more general linear homogeneous hyperbolic equa-
tions for which it holds, and found that there are others
which, however, are comparatively rare.

In this paper we consider a related problem for the
inhomogeneous wave equation

=5, (1.2)

More specifically, we shall consider Eq. (1.2) where
5 satisfies?®

Sluyr, 8, 0)#0=>u, <u<u,. (1.3)

This condition is pictured in Fig. 1 where 6 is nonvan-
ishing only in the region labeled B. Equation (1. 3) might
seem an unnatural assumption to make about 5; however
important quasilinear hyperbolic equations, or systems
of equations, such as Einstein’s equations or Maxwell’s
equations in a nonlinear medium, can lead to Eqs. (1.2)
and (1.3) if a weak field perturbative approach is used.
The retarded linearized solutions will satisfy equations
like Eq. (1.1) and may be assumed to have the support
pictured in Fig. 1. The second-order corrections will
satisfy equations like Eq, (1.2), where § will be bilinear
in, and thus have the same support as, those linearized
solutions, Such a 5, and the solutions of Eq. (1.2) which
it generates, will be called nonspreading if one can
choose boundary data in such a way that ¢ also has the
support pictured in Fig. 1.° Physically, we are looking
for a class of driving terms for which a fixed observer
can, depending on boundary conditions, observe a non-
vanishing ¢ for only a finite time. We, also, shall find
that they exist but are comparatively rare.

?

For simplicity we assume that 6 and ¢ are axially
symmetric and expand them in spherical harmonics.
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Equation (1.2) becomes
2 2
9 2% g_zp_+g(azp a¢)+L(L+1)

r\du or (1.4)

dudy 97”7 72 v=9,

where L denotes the Lth multipole and L subscripts on
¥, and 6, are suppressed in this and the next section,
We note that if 6=0, Eq. (1.4) is solved by the retarded
and advanced multipole fields

S CLa dL-a

Yoot = &4 "ot s AW Yy (1.5)
and
& (-1)ec,, &
Zpadv=a=0 (,ron)l Le de-a b(v)YLO! Z’Eu+2’}’, (1‘6)

where a(x) and b() are arbitrary profile functions, the
C,, are given by

Cro=K3(L)/2%a!, K (L)=[(L+ a)!/(L-a)!]/?,

and the Y, denote spherical harmonics. Because the
retarded solutions are series in 1/7, and the cor-
responding solutions for higher spin equations are too,
the quasilinear problems described above would lead to
6’s which are also series in 1/». Therefore, we now
restrict ourselves to*

azid"(lf,), 1.7

n=3 ¥

FIG. 1. The sup-
port of §.
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where the d,(u) satisfy Eq. (1.3). We see from Eq. (1.4)
that the corresponding ¢ will be of the form

g=53/at0

.
net ¥ "

1.8)

We now argue that ¥ is nonspreading if and only if, ex-
pressed as in Eq, (1,8), it is a finife series in 1/», that
is, if there is an integer T such that n> T=>7f (4)=0.

The argument has two parts, First, since =0 in re-
gion C, ¢ in C must be a sum of retarded (Eq. (1.5)] and
advanced [Eq. (1.6)] fields. The only fields in region C
which cannot be eliminated by a choice of boundary data
consistent with =0 in region A are fields which are
advanced and are not retarded.® Hence our definition of
nonspreading can be replaced by the statement that ¢ is
nonspreading if and only if ¢ is a retarded field in C,
But a retarded field is, from Eq. (1.5), seento be a
finite series in 1/# of the form of Eq. (1.8) and, con-
versely, every finite series of the form Eq. (1.8) that
solves (=0 is a retarded field of the form Eq. (1.5).
Therefore, ¥ is nonspreading if and only if ¥ is a finite
series in 1/7 in region C.

Second, any discontinuity in ¢ across the surface u
=u, (Fig. 1) must have the structure of a retarded field,
and these are necessarily finite series in 1/». Thus #
is a finite series in 1/7 in C if and only if it is a finite
series in 1/¥ in B, We conclude that ) is nonspreading
(in C) if and only if it is a finite series lin B), We are
looking for those 7S for which this is the case.

In the next section we derive a simple condition, Eqs,
(2.6) and (2.12), on the 4, () of Eq, (1.7) which is
equivalent to nonspreading.

In Sec. 3 we consider a particular application of our
condition, If we treat Einstein’s empty-space equations
as indicated above, §’s are obtained which can be sub-
stituted into Eq. {2.12). The resulting equation [Eq.
(3.4)] involves Clebsch—Gordon coefficients (since the
5°s are bilinear in spherical harmonics) and can be read
as a possible identity whose verification would be equiva-
lent to a proof of the nonspreading of gravitational waves,
to the second perturbative order.

In Sec. 4, we consider Eq. (3.4) in detail, Since it
has already been shown®7 that a finite number of cases
involving quadrupole, octupole, and 16-pole gravitational
radiation fields are nonspreading, Eq. (3.4) must be
identically satisfied in certain cases, which it is, and
we conjecture it to hold in general, We actually prove
here that it is an identity for a twofold infinity of new
special cases, but our rather direct approach has not
established it in the general case, although there can be
little doubt if its validity. It is not clear if the relation-
ship is of mathematical interest in its own right, or
merely an adjunct to the type of spreading wave problems
we have been discussing.

2. THE INHOMOGENEOUS WAVE EQUATION

We begin with Eq. (1.4) where § is restricted by Eq.
{(1.3) and Eq. (1.7). In order to study particular solu-
tions of the inhomogeneous equation it is sufficient, and
convenient, to assume

858 J. Math. Phys., Vol. 16, No. 4, April 1975

AyAD
v=2" 2.1)
Substituting these series [Eq. (1.7) and (2.1)], we
obtain

22("'2)f',,_1+

,rﬂ

Z m-3-L)Yn-2+1L)
n=4 r"
_Z;Qr;_’ 2.2)

Tnay

f n=2

ne3

where the dot stands for differentiation with respect to
1. Equation (2.2) is equivalent to

2f,=d,, (2.3a)
201 2)f,_ + (n=3=LYn -2+ L)f, ,=d,,
4<pn<2+L, (2.3b)
and
2 ~2)f, ,+ (-3 -LYn-2+L)f, ,=d,,
3+L<n. 2.4)

It is easy to see that Egs. (2,3) determine the f,, 2<n
<L+1, in terms of the d,, 3<n<2+L (or vice versa).
Thus we have the simple result that if the driving term
for the Lth multipole stops at the L +2 power of 1/7, the
then the Lth multipole solution, itself, stops at the L +1
power of 1/, In addition it is clear that whether the
solution is a terminating series depends only on the 4,
3+ L <n, Since this is the question which interests us,
we can restrict our attention to Eq. (2.4),

We now assume that § is a terminating series in 1/,

that is we assume that
f,=0, L+3<T<n, (2.5)

where T is a positive integer, It follows from Egs. (2.4)
and (2, 5) that

d,=0, T+2<n, (2.6)
dpy=(T=2-LNT=1+L)fp.,, 2.7
d,=(m-3=LYn-2+L)f, ,+20—2)f,.,,
L+4sn=<T, (2.8)
and
d.’HL :2(L+ 1)f2+L . (209)

Tt can be seen that Eqs. (2.7) and (2, 8) determine the
Jas 2+ L<n<T~1, which are !l the f, which have not
been assumed to vanish, in terms of the d,, 4+ L=<n

< T+ 1, which are all the d, which have not been shown
to vanish, except for d,,,. In particular f,,; is deter-
mined, and its substitution into Eq. (2.9) must not lead
to a contradication, In other words, ¢ can terminate if
and only if Eq, (2.6) is satisfied and the d,, 3+ L<n=T
+1, satisfy a single condition which must now be
derived.

If we differentiate Eq. (2.8) n — L - 3 times and define

& .
X% =7 Ay sasys 0sj<T-~-L-2,
and
dt .
T)isa—i—f(u)l,+1+i’ l\l\T—L_zi
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Egs. (2.7) and (2. 8) can be combined and written in the
form

Tl =2
= 2 M7, (2.10)
=
where
Qreverrrernrane 0
My,= 0 iG+2L+1) 2(@+L+1)
[ P 0

Solving Eq. (2,10) for n, yields, after some calculation,

TL2 (L 1y49-1(L + )1 L +1)!
A T GrL v DI@ T N

7]1 = (2. 1 1)
In terms of the x; and 1; Eq. (2.9) becomes X,=2(L
+ 1)771 and this, with Eq. (2.11), gives

(= 2Y @ )

i jl(i+2L +1)! du’ do (s

(2.12)

where some nonvanishing factors present in every term
have been removed, Equation (2.12), along with

d,=0, T+2<n (2.6)

are necessary and sufficient for ¢ to terminate at the
T -1 power of 1/7.

3. AN EXAMPLE OF A NONSPREADING WAVE IN
GENERAL RELATIVITY

In this section we apply Eq. (2.12) to a problem
arising in general relativity, The nonspreading condi-
tion resulting therefrom is discussed on its own merit
in Sec. 4. A reading of that discussion does not require
all of the details of the calculations of this section.

The problem we investigate is whether a linearized
retarded gravitational field composed of a set of radiat-
ing multipoles gives rise to a nonspreading gravitational
field at second perturbative order, In other words, we
ask whether the first-order radiation scatters at second
order. This is a generalization of previous work® 7 in
which the radiating multipoles concerned were specific
ones of low order.

In order to fit the problem into the framework of Sec.
2 we collect together here some well-known facts con-
cerning general relativity in a weak field approximation
scheme. The Einstein equations for the first-order part
of the metric tensor can be replaced by the linearized
Bianchi identities regarded as field equations for the
Weyl tensor, and these field equations are the usual ones
for a spin-S field,® S=2, The higher order corrections
to the linearized field satisfy the spin-2 field equations
with driving terms. Solutions to the spin-2 field equa-~
tions can be generated from a potential® satisfying the
scalar wave equation, and similarly solutions to the
driven spin-2 equations can be generated from a poten-
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tial that satisfies an appropriately driven scalar wave
equation, Hence we need to deal only with Eqs, (1. 1)
and (1,2), This is true even for the question of spread-
ing because-the procedure whereby the components of
the field are generated involve, as regards operations
with respect to +, only integration and differentiation
and do not change finite series in 1/# into infinite series
(or vice versa).

We take the linearized axially symmetric gravitational
field to be a retarded 2!-pole field (! = 2) plus a retarded
2+ _pole field (' > 2) with complex profile functions of
compact support a() and a’ (x), respectively. [The real
parts of a(x) and a’ () give the electric type moments
and the imaginary parts give the magnetic type mo-
ments, | An answer to the question of nonspreading for
this field of two arbitrary multipoles immediately pro-
vides an answer for a field composed of any number
of different multipoles,

Expressed in terms of first-order complex quantities
U,¥,, X!, etc., of the null tetrad formulation of general
relativity!® the driving term of Eq. (1.2) is

2 9 ow 0w,
a 2 _ vyl
6= ray{r [ U 3 Xa—;-\If +w— 87’

a
+ (51 a_xT_ZB+ 2'r>\113+21/\111-- 3u\1/2+0'\114]}

== 2
-7V I [g*a—x—,qu-zwl}s (3.1)
where £ /axt = £%9 /0 6+ £°3 /0 b, and similarly for X'3/
1, the bar denotes complex conjugation, and ¥ is an
angular operator,'! which in this instance has the form

8
= - (cot@ + = a 3 )
For the retarded 2!-pole field each of the tetrad quan-

titites U, ¥,, X', etc., is a finite power series in 1/v
and can be simply expressed linearly in terms of the
retarded 2'-pole scalar wave, §, given by
1 -
C j=a
Y= 20 —La —d——a(u)Y

aeo’}’a*l dul-a 10¢

For example, ¥,=7"%), The explicit form of the other
quantities may be found in Ref, 7. For the 2! -pole field
some of these quantities have the angular dependence
of spin-weighted spherical harmonics!? [¥;;, ~2<ss< 2
rather than simply Y, dependence (,¥,,=Y,,); e.g.,
has _,Y,, dependence. However, because of the ax1a1
symmetry, ,7Y;, is the associated Legendre polynomial,
P{=Y,,exp(-is®), so that we have to deal only with
ordinary spherical harmonics,

Now consider the tetrad quantities to be those of our
problem; namely a 2! plus 2¢'-pole field. Then Eq. (3.1)
involves the products PiP; =Y, Y, 4, -2<s<2, of
spherical harmonics. We expand®® these products
themselves in spherical harmonics Y,

20+ D)2 +1) \1/?
YisYis = <(_”‘4‘.”(—'—_)

L _(l l’L)
X
v2L +1 000

) Y0 s+5 =0, (3.2)
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(% L. %) are the 3j symbols'; and we see that 6 is a
finite sum of spherical harmonics,
14
5

= 6, Y, .
Lai=gry 71O

From Eq. (3.1) we find 5, to be'?
b6, = 1?:\2 1'232 Claclla'(a +ao - D)(a+ o -2)Q

a+ol
¥

a=0 af =0

i 2o d1'+2-a’

><dul+2-cz (l(u) dltl' _,2-0‘1—0’ (Zl), (3'3)

where

1 I'L
v L
1-10

X(a?—aof =2a+a)+I10+ 1) (o' = aa’ —2¢ + )]

+2K K, < )(KZK-lK’ R @+ 1)

I U L
)[(z' ) + 1) = D)afa— 3)
2-20

+ 2D+ 1N - Do (& - 3)]
C,o= (K P/ 2%a!, K,=K,()

la

+K2K’2(

, K=K, 0.
We omit any overall factors in 5, that depend only on [,
', and L.

We have actually written down in Eq. (3.3) only a part
of 5, . We have not shown some terms that may be
ignored anyway, as regards the question of spreading,
for part of the set of possible values of L, namely,

N M=N
N

whenever L >m, m=max[l+ 3, + 3]. Also we have not
shown terms arising from Eq. (3.1) that involve @ or @’.
Such terms occur in a series similar to Eq, (3.3). It
can be shown that if there is no spreading then the two
sets of terms, one with and one without complex con-
jugation, must separaiely give no spreading. Hence Eq,
(8.3) is a prototype of 5, and is an independent part of
6, for alarge class of L values, [ and I/ remaining
arbitrary. In what follows it will be seen that interesting
results may be obtained from Eq, (3.3) alone.

We now substitute Eq. (3.3) into Eq, (2.12). Coeffi-
cients of powers of ™! less than (»"!)*** in Eq. (3.3) do
not contribute to Eq, (2.12) as shown in Sec. 2. The jth
derivative of

(11 2= 1? +2= o
At e a) dit' 2 a’(w)

occurs in Eq. (2.12), and we write it as a sum involving
binomial coefficients. Then Eq. (2.12) becomes a
quadruple sum. There are, however, two constraints
on the sums, One constraint (L + 3+ j=a+ a’) arises
from picking out the coefficient of »~%***} in Eq. (3.3).
The second constraint arises from using the fact that
a() and a’ (4) are arbitrary within the interval of sup-
port so that each coefficient of

dN (]M -N
™ ? u) du™N a’ )

occurring in Eq. (2.12) must vanish separately, When
these two constraints are properly applied the non-
spreading condition on the driving term of general re-
lativity becomes the following unconstrainted double
sum:

(1P @+ +3- 8=~ PIRY - B

B%o/eeo(l—kl’+L+2-B—B’)IB!B’!(I+2—B)!(l'+2—/3’)!(N—B)!(M—N—/3’)!:0’

where M=[+1!' +1—-L and N is any integer for which 0

< N=< M, In arriving at Eq. (3.4) we have shifted the
sums in Eq. (3,3) by B=1+2-a, ' =1’ +2 ~ &' and have
used L »m. Note that @ is independent of N, and its de-
pendence on S and 3’ is simply quadratic,

4. CONCLUSION

Equation (3.4) is our main result for general relativ-
ity. Inthe case L=1+/, Eq. (3.4) is easily proven to
hold by straightforward evaluation, The sums may be
performed and simple expressions!* used for (¢ X '),
Furthermore, we have found that for L =1+ the cor-
responding expression for the complex conjugate terms
also holds, so that there is no spreading inthe L=1+17"
part of the whole second-order field.

We conjecture that Eq. (3.4) holds for all possible L
values!® satisfying m < L =[+[’, for all integers [ > 2,
I’z 2, and for all integers N, 0< N <M, More generally,
we conjecture that the whole second-order field is non-
spreading. Equation (3.4) has several obvious sym-
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(3.4)

f

1

metries, e.g., N<—>M —~ N so that one only need prove
it for N< M,

The 3j symbols occurring in  are independent of 8
and 8’ and so may be taken outside of the sums so that
Eq. (3.4) may be regarded as a linear identity on the 3j
symbols. Equation (3,4) was derived by basing the
analysis on the Y, , part of the field, but we could have
placed a finite series condition on any one of the ,¥,, s
=0, +1, +2 parts of the spin-2 field. In this way four
further conditions (identities ?) similar to Eq. (3.4)
would be obtained on 3j symbols € L _k.)), —2< s+
<2, -3sss3,

In addition there must be more, simpler, identities
related to the Einstein—Maxwell equations which are
also known to have nonspreading radiation fields in the
sense used above.'® A systematic presentation of all of
these identities may be justified by a more elegant de-
rivation of them and their verification. Both are being
investigated.
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Factorization-method treatment of the perturbed Morse
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By transforming the Morse oscillator from type B to type F factorization, we obtain operators for
raising and lowering the vibrational quantum number v, and a recursion relation. This permits the
calculation of matrix elements needed for perturbation of the Morse oscillator to any order for
perturbations of the form (e“* — 1)". Explicit calculations are presented for n = 3 and n = 4,
analogous to the usual cubic and quartic anharmonicity perturbations of the harmonic oscillator.

I. INTRODUCTION

There are at present three standard theoretical ap-
proaches for treating the vibrational motion of a di-
atomic molecule. First is the Dunham method,* in
which the vibrational potential energy is expressed as
a power of series,

U(e) =heaot™(1 + a, & + ap8° + ast® +++), (1)

where £=(r-7,)/r,, and where 7 is the instantaneous
internuclear separation and 7, its equilibrium value.
The energy eigenvalues and rotation-vibration param-
eters for this potential have been calculated via the WKB
approximation,? and can be matched with empirical val-
ues to determine the coefficients a, of the series. Draw-
backs of this method are the unverified reliability of the
WKB approximation and the lack of analytic eigenfunc-
tions. The second approach involves the use of a
“realistic” potential with analytic solutions, such as

the Morse potential, ® given by

Ulu) :De[exp(—Z(m) -2 exp(—au)], 2)

where u=v -7,, involving the three parameters D,

(well depth), 7,, and a. The drawback to this approach
is that there are not enough parameters to accurately
reproduce experimental results. The third approach,
called the RKR method, * is a computer calculation in
two steps: first producing U(») from the observed vibra-
tional spectrum via “classical” turning points and the
WKB approximation, then obtaining eigenfunctions.

An alternative approach would be the application of
perturbation theory to the Morse oscillator, permitting
as good a fit to experiment as the Dunham method, while
retaining analytic eigenfunctions. This approach has not
been pursued very far, however; only first-order en-
ergy corrections have been published.® Off-diagonal
matrix elements of powers of u have been calculated, ¢
but since they are nonvanishing between all pairs of
states, higher-order perturbation calculations are
impractical.

The factorization method described by Infeld and
Hull” (hereinafter referred to as TH), is a powerful
algebraic technique for handling certain second-order
linear differential equations, including such exactly
solvable quantum-mechanical problems as the Morse
oscillator. Using a variation of this method, we dis-
covered a way to perturb the Morse oscillator in a man-
ner analogous to the perturbation of a harmonic oscil-
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lator. In our method, all matrix elements can be calcu-
lated, and all but a few off-diagonal matrix elements
vanish, so that perturbation can be carried out to all
orders.

Il. FACTORIZABILITY OF THE MORSE OSCILLATOR

The factorization method involves replacing a second-
order differential operator with two equivalent products
of first-order operators. Thus, following IH, we define
the equation

BY,™x)/ dx? + v(x, m) ¥, "(x) = =2, Y, "(x), 3)

where 2, is an eigenvalue and [ and m are positive-
valued parameters (which are to be varied in integer
steps), to be factorizable if it is equivalent to the two
equations

(4a)
(4b)

H'(m+1)Hm+1) Y, =, -Lim+1)]Y,m
H (m)H*(m) ¥,m =[x, ~ L(m)| ¥,™,
where L(m) is independent of x, and where H*(m) are
first-order differential operators of the form
H:(m) =k(x, m) = d/dx, (4c)

The operators H*(m) plas} the role of raising and lower-
ing operators, but they act on the parameter m, not
the eigenvalue index I:

H(m) Y, ¥,
H'(m) Yo ¥,

(5a)
(5b)

where Y™ is the solution of a different eigenvalue
equation with the same eigenvalue as Eq. (3):

BY, ™ At + r(x,me 1) Y ™=~ ¥ (6)

By investigating the possible forms of k(x,m), IH
showed that there are six general types of factorizable
equations, which they labeled with the letters A, B, C,
D, E, and F. For each factorization type, they obtained
explicit expressions for »(x,m), k(x,m), and L(m). For
example, type B factorization is specified by

r(x, m)= - d? exp(2ax) + 2ad(m + ¢ + ) explax), (7a)
k(x, m)=dexplax) - m -, (Tb)
L(m)=—a?(m +c). (Tc)

Writing the Schr&dinger equation for a Morse oscil-
lator in the form
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&/ di® + 2u /P {E - D,lexp(—2au) — 2 exp(- au)[}y =0,

(8)

IH showed that the definitions
s+z=(2uD,)/?/(ah), (92)
n?==2u E/(ak)?, (9b)
x=—au+1In2(s+3), (9¢)

permit one to rewrite Eq. (8) in the form
@R(x)/dx? + [ =n? = (1/4) exp(2x) + (s + 3) exp(x)] R(x) =0,
(10)

which is recongnizable as type B factorization with
a=1, ¢=0, and d=3, and where m is replaced by s,
and ), by —»?. From Egs. (7b) and (7c) we obtain

(11a)
(11b)

k(x,s)=zexp(x) —s,

L(s)=-s".

H1. IDENTIFICATION OF CLASSES AND
ORTHONORMAL EIGENFUNCTIONS

Having determined that a differential equation is fac-
torizable, the next step is to determine whether it is
what IH call a class I or a class II problem. If L(m) is
an increasing function of m, one has a class I problem,
for which the eigenvalue 1, is given by

x,=L(I+1), (12a)

where [ can have any of the infinite set of values

I=ly, ly+1, Ig+2,2, 0<ly<1,

and where, for fixed I, m can range over the finite set
of values

m=1l,, l,+1,.. -1, 1

.
The solution for m =1 satisfies the first-order differ-
ential equation

H(1+1) Y, =0. (12b)

If, on the other hand, L(m) is a decreasing function of
m, one has a class II problem, for which x, is given by

A, =L(), (13a)

where [ has the same range as before, but where m
can range over the infinite set of values

m=1l, 1+1, [+2,+«-.

For class I problems, Y;’ satisfies
() Y,! =0, (13b)

Given one normalized eigensolution, such as obtained
from Eq. (12b) or (13b), one can generate others, also
normalized, if one uses the normalized raising and low-
ering operators //;(m) defined by

Him) =[x, = L) [k (x, m)+ d/dx], (14)

where ), is given by either Eq. (12a) or (13a) depending
on whether one has a class I or a class II problem.

For the Morse oscillator we recognize that, by Eq.
(11b), L(s) is a decreasing function of s, so that we
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have a class II problem, Thus by Egs. (11b) and (13a)
we find that

=L =-P,

and we recognize that ! coincides with the quantity »
defined in Eq. (9b). Using n in place of I, we see that
for fixed » the minimum value of s is n. The corre-
sponding eigensolution R "(x) satisfies

(d/ dx + zexp(x) —n) R "(x) =0, (15a)
with normalized solution
R "(x)=[r(@n)]"/2exp(nx - 3e%). (15b)

Defining the appropriate normalized raising and lower-
ing operators by

B(s)= [(s +n)(s =) /%(3e" = s+ d/dx),

we can raise and lower s for fixed » (so long as s = n)
according to

(16a)

(16b)
(16¢)

R"s :B,,-(S) Rns-l,
R 31 =B (s)R,5.

For a given Morse oscillator, the parameter s is a
constant [see Eq. (9a)], while # takes the values

n=s,s=1,...,n5, 0O0<ny<l,

The vibrational quantum number v is defined by v =5 —n,
and thus takes values v=0,1,2,...,s —n,, showing that
the number of bound states for a Morse oscillator is the
greatest integer in s+ 1. Writing the eigenvalue —»?

as —(s -v)?, we see from Eqg. (9b) that the energy eigen-
value can be written

E,+D,=(s+3)tv+3) - 3t + 3)?,

(17a)

=38 N=08,v=2 +
N=18,v=1 /&z )
N=2.8,v=0 232.8(2'8)
s=28

FIG. 1. Effects of various raising and lowering operators on
Morse potential eigenfunction. In @), effects of the s-changing
operators /3, + (s) are shown, while (b) shows the effects of the
n-changing operators & = (n).
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where
t=(Ra)*/ 1. (1)

Thus the parameter s+ 3 can be related to empirical
parameters® by the equation

s+ %: %wz/wexe' (18)

The procedure for obtaining the normalized eigen~
function y,(x) is as follows: Noting that y (x)=R_ *(x),
first obtain R__ s?(x), using Eq. (15b), then apply Eq.
(16b) over and over a total of » times. Here, R__ *?is
the ground state of a different Morse oscillator (say
with a different well depth De), and each intermediate
stage in the calculation will be an excited state of a
different Morse oscillator. The process is illustrated
in Fig. 1(a). Note that the orthonormality properties of
the functions R =y, are

|2 RSR, *dx=5, ., (19a)

corresponding to the physical orthonormality condition

.{‘.: d)uwv' dx = éu, o e (lgb)

In addition to producing the eigenvalues and eigenfunc -
tions of the Morse oscillator, the above approach can
also be used to calculate certain matrix elements. In
addition to some obtained by IH, we present in the Ap-
pendix a calculation of the diagonal matrix elements
(vie*lv) and (vle®|v), These results can be used to cal-

culate the first-order perturbations obtained by Pekeris.’

Unfortunately, matrix elements (v’ |e*{v) are nonvanish-
ing for all v/, so that higher-order perturbation calcu-
lations in e* are not practicable.

IV. TRANSFORMATION FROM CLASS Il TO CLASS |

Given a factorizable class II problem, it should be
possible to transform to a factorizable Class I problem,
and vice versa. In this process, the roles of the param-
eters ! and m are reversed, so that m labels the “eigen-
values” and [ is raised and lowered. Starting with Eq,
(10), we consider a transformation of the type

x=f(y), Rx)=g(y)W(y),

and consider the differential equation satisfied by W:

(20)

aw fro2g ﬂ 12 2 1 2

e +<f—,-?> & ~(Ml/4) e¥ = (s+ D e + 2l W
(72 g\ w_
(f’g g)W % @1

where primes denote differentiation with respect to y.
IH performed a transformation to C-type factorization,
but this did not lead to an exactly factorizable result.
Following a suggestion by Carlstone, ® we considered a
transformation to F-type factorization, which IH speci-
fied by

r(x, m)=—-2q/x —m(m +1)/x?, (22a)

klx,m)=m/x+q/m, (22b)

L(m) = - (¢/m)>, (22¢)
Making the substitutions

f(»=Inlp/(s + D], gy =l(s+3)/y]72, (23)
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so that

y=(s+3)e, W(y)xe?R(x), (24)

we obtain

EW/dy* + W[y = (n=2)n+2)y2W=-Q2s+1)2y_ 4

(25)

which is equivalent to Eq. (22a) with g=~3, m=n =3,
and X, ==(2s +1)%, Equations (22b) and (22c) thus take
the form

k(y,m)=m/y - (2m)™,
L{m) =~ (2m)™2,

(26a)
(26b)

As L(m) is an increasing function of m, this is a class

I problem with eigenvalues
)\l:L(l+1):—(2l+2)-2, (27)

and we see that /=s — ;. Labeling the function W with
nand s, as W, we observe that W * satisfies

(s = 3)/y - @s ~1)* —d/dy] W =0, (28a)
with normalized solution
Wo(3) =(20(s + 33 + ) sy e
xexp[-y/@2s+ 1) (28b)
Other normalized solutions are related by
Wr=3F"(n)Wn-1, (28¢)
Wmi=7 )W, (28d)

where the appropriate F-type raising and lowering
operators are given by

Ty 20=)s+3) (n-z 1 d
fs(")—[(s+n)(s-n+1)]”2( v '2n—1idy>'

(28e)

Note that these raising and lowering operators act on n
while leaving s unchanged, thereby raising and lowering
the vibrational quantum number for a particular Morse
oscillator.

Since the “eigenvalue” of Eq. (25) depends on s, the
orthonormality condition for W is that

.fo“’ WsWs'ndyzés,s" (29)
in contrast to the physical normalization of R * {Eq.
(19)]. In order to relate W, with R, we introduce a

constant C_" into Eq. (24) and write

W(y)=Crle*/?R 5(x). (30a)
Obtaining the differential relationship
dy=(s+3) e dx (300)

from Eq. (24) and substituting into Eq. (29), we obtain
for s=s"'

W ay=Cos+ D) [T exRARAe=1,  (31a)

cr= ls+2) [ =R ax]? /2, (31b)

Using the value of the integral from Eq. (All), we
obtain
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C,=l4n(s + 2] 72,

W (y)=[4n(s + 3)?]™ /%¢*/*R *(x). (32)
This result is easily checked by comparing Eqs. (15b)
and (28b).

Substituting this result into Eq. (28e), we obtain
another set of raising and lowering operators for » (or
v), but which now act on the physically normalized
solutions R *:

Rn-ls:g;(n) Rns7 (333.)
R=G, (0)R,.*, (33b)
where
G*(n)
o 4n=3F D=3 1z
= (n—-éi%)(s+n)(s —n+1)>
X [(n -zz)eT = 2sn+_%1 e d%] . (33¢)

These raising and lowering operators produce a finite
ladder of eigenfunctions, as shown in Fig. 1(b), con-
sisting of the bound states of a particular Morse
oscillator.

V. ANALOGY WITH HARMONIC OSCILLATOR AND
PERTURBATION CALCULATION

The harmonic oscillator was one of the first systems
treated by the use of raising and lowering operators, *°
albeit of a simpler sort than those of the factorization
method. Where the oscillator has mass m and potential
energy Uu)=%ku?, one defines a dimensionless
coordinate

Q=au, (34a)
where

a’=mw/h, w=Fk/m}'?, (34b)
The groundstate eigenfunction ¢,(Q) satisfies

(d/dQ + Q) 9,(Q) =0, (34c)
with normalized solution

Qo(Q) =7""*exp(- 20°). (34d)

The other normalized eigenfunctions are generated by

?,(@)=A"() ¢,.(Q), (35a)

@, () =A") g,(Q), (35b)
where

A* ()= Q2v)*2(QFd/dQ). (35¢)

A recursion relation satisfied by the harmonic oscil-
lator eigenfunctions, which is important for perturba-

tion calculations, is obtained by the following procedure:

In Eq. (35a) replace v by » +1 and multiply by (2v + 2)}/2
to obtain

Rv+2)'2¢,,,=(@=-d/dRly,. (36a)
Multiply Eq. (35b) by (20)'/2 to obtain
v/, =(Q+d/dQ) ¢, (36b)
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Finally, add Eqs. (36a) and (36b) and solve for Q¢ , to
obtain the desired recursion relation,

Qo,=[3w+1)"2¢, . + (G0} /%9, .

Repeated use of this recursion relation, together with
the orthonormality condition,

f_: (pu(pv' dQ = 6v,v' ’

(36¢)

permits the algebraic calculation of matrix elements
(0’1 Q"1 v) for any desired power n of the coordinate,

In light of this procedure, note the similarity between
Eqgs. (33) and (35). In an analogous fashion to the deriva-
tion of Eq. (36c), we can derive a recursion relation
satisfied by Morse eigenfunctions: Rewriting (33a) and
(33b) by replacing n by n+1 in the former and taking the
quantities in square brackets to the other side, then
adding and solving for (e®* —1)y,, one can obtain

(e® =1y, =B b +AY, + By, _,, (37a)
where
_ 1 _(s+3) v(2s+1-p) \!/?
Bv_z(s-l-%—‘[)) <(S—v)(s+1_v)) » (37b)
2s +3)w+3) —v(w+1)
A= (sts-v)s=3—-2v) ° (37¢)

Repeated applications of Eq. (37), together with the
orthonormality condition of Eq. (19), permit the caleu-
lation of matrix elements of the type (v'l(e® —1)"|v),
hence perturbations in powers of (¢® ~1), Another
formula needed for perturbation calculations involves
the energy differences between levels of the Morse os-
cillator, which is obtained from Eq. (17a):
E -E_ =ntl(s+5) -v+ n=-1], n=+1,£2,-00,
(38)
It can easily be shown that Eq. (36¢) is a limiting case
of Eq. (37), just as a harmonic oscillator is a limiting
case of a Morse oscillator. Expanding the Morse poten-
tial [Eq. (2)] in a power series in au, we obtain

U) =D, =1+ (au)? = (au)® + (7/12)(au)* + -+ ], (39)

Thus the force constant of the equivalent harmonic oscil -
lator is

k=2D, a?,

n

and the harmonic oscillator parameter ¢? is related to
the Morse oscillator parameter a® by

a?=g%(s +3). (40)
Using this relationship, along with the approximation

(e —1)~ au and the limit s> v, we see that Eq. (37) re-
duces to Eq. (35).

In order to illustrate the perturbation method, we
consider a perturbation

V) =x(e® =1)*+ u(e o - 1)1,

which should correspond in the above limit to the usual
cubic and quartic anharmonic perturbation of a harmonic
oscillator, Multiplying Eq. (37a) by (e®* —1) and expand-
ing the right-hand side, we obtain
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(e = 1) =B,B 1y, + B, (A, + Ag) ¢, + (B,* + By? + A%)y,
+ By(Ay + AL ), + BoB_jy s,

where A, B,, and g, stand for A, , B,,,, and ¢,.,, re-
spectively. Repeating this procedure and then using the
orthogonality of the wavefunctions, we obtain the follow-
ing expression for the first-order energy correction due

to the “cubic anharmonicity” term:
E W =x[B*A, +Ay) +A,(B2+ B2 +Ag)
+B2(A,+A )], 41)

Substitution of the exact expressions for the quantities
A, and B, from Eq. (37) leads to an intractible result,
Instead, one can expand in powers of v=(v+3)/(s +3),
recalling that the unperturbed energy [Eq. (17a)] can be
written

E =D, (-1+2v -1?), (42)
where we used Egs. (9a) and (17b) to obtain
(s +3)2¢=2D,.

Making the approximation s®>-1, we obtained the follow-
ing expansions for A, and B2

noVtnts v+nt+3\ 2 .
A, e +3< Py ) . (43a)
lvtn | T+n\?
B~ = —| o
" estl 4s+§> * (43b)
To this order, Eq. (41) can be approximated by
E ‘D =) (602 + 3807, (44a)

which in spectroscopic notation® involves contributions
to w,x, and w,y,. By a similar process, the second-

order energy correction was found to be
E ® =~ _(\2/8D,)(150% + 6621°). (44b)

Finally, the “quartic anharmonicity” produces a first-
order correction
Er'™ =33 (3v° +69v°)., (44¢)
Defining dimensionless perturbation parameters
n=u/D,, v=2z1/D,,
we obtain the following expression for the perturbed
energy level to second order in 77 and first order in y:
E =D {~1+2v -[1-127-3y + (15/2) 7*]*
+176n+69y = 331722 + .- -} (45)

As a partial check of the above perturbation result,
we considered a perturbation which changes the param-
eter a to @’ =a(l + A) and D, to D,/ =D, +A)?, which
is equivalent to

(s +3)=(s+2)(A+Aa)?, (46a)

1 =1(1+A), (46b)
Since in this case the perturbed oscillator is still a
Morse oscillator, the energy shifts are exactly known,
and given by

AE =-D,(2A + A% 12, (46¢)

Recalling Eq. (39), this perturbation is equivalent to
the power series perturbation,
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. {47a)
The quantity (e - 1)° has the power series expansion
(e ~1)% = (au)®+ (3/2)(au)* +- - -, (4T}

from which we deduce that the perturbation of Eq. (47a)
is equivalent to our cubic plus quartic perturbation with
the following values for the perturbation parameters:

N==38, y=(4/3)a+(1/24) A2, (47¢)

V(u)=—D,A(au)® + (1/12) D, (24 + A%)(qu)* + + - -

Substituting these values into Eq. (45), we obtain
AE,=D,(-2A = 2?) 12 +[54A — (641/8) A2 |1 + -+,
{48)

which agrees with Eq. {46¢) to order »*. (To obtain
agreement to order v?, one would have to include higher-
order perturbations and higher-order power series
terms.)

Vi. CONCLUSIONS

We have demonstrated a practicable method for ap-
plying perturbations of the form (¢ —1)" to a Morse
oscillator and obtaining perturbations of any desired
order. Since a linear combination of such perturbations
is equivalent to a power series for small ax, the meth-
od may conveniently be applied to potentials describing
actual diatomic molecules, yielding analytic expres-
sions for both eigenfunctions and eigenvalues. The re~
sulting expressions are power series in (v+4$)/(s +3),
which makes for easy comparison with empirical formu-
las, as well as indicating the convergence properties of
the approximations.

APPENDIX: EVALUATION OF INTEGRALS

In order to relate the type-B and type~F solutions in
Eq. (31), we need the value of the integral

L2 B2 e dx,
In a manner analogous to our derivations of Egs. (36c¢)

and (37), we can derive the following recurrence rela-
tion from Eq. (16):

R =|(s+n+1)(s =n+DI/?R >+ (2s+1)R 3
+ (s +n)(s —=m) /2R 1,

Multiplying this expression by ¢ and expanding each
term of the form e*R * on the right-hand side, we obtain

@R =|(s+n+1)(s+n+2)(s —n+1)(s —n+2)J'/2R ***

+4(s+Dl(s+n+1)(s-n+ 1)]1/2}2"3"1

(A1)

+ls+n+ s ~n+1)+(2s +1)? + (s + n)(s —n)]Rn3
+43[(S +n)(s —n)]l/z Rns-l

+lis+m)s =m)s +n=1{s -n~1)P/2R 52, (A2)

Multiplying Eq. (A2) by R * and integrating, we obtain
integrals of the form [R ‘R s* dx, with k=0, +1, +2,
For k=0 the integral is unity, due to the normalization
of R,5. The other integrals do not vanish, as the ortho-
gonality property of R is for different n, not different s.

We evaluate the integrals for %+ 0 by using a modifi-
cation of a technique used by IH, involving an extensive
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use of raising and lowering operators. For k=-1 we
replace R, with A,7(s)R,*!, and write

SRR dx=[(s +n)(s =m)] /2

xf R *(3¢* =s —d/dx)R 2 dx, (A3)

Using the mutually adjoint properties of the raising and
lowering operators, we integrate by parts, then add and
subtract a term:

SRR ax=[(s +n)(s =) /2 [(3e" - s + d/dx) R,* ax
=(s +n)s =m)]/2 [{{3e = (s ~1)
+d/dx|R YR 5 dx = (s +n)(s - n)]2/2
X [ (R dx.
(A4)
The last integral has the value unity while by Eq. (16a)
the operator in the other term is proportional to
B,*(s =1). Thus we obtain
f RVR s dv= <(s+n —1)(s —n—l)) 1/2

(s+n)s =n)

Xf R 2R 1 dx ~[(s +n)(s ~n)] /2,

(A5)

If we apply this procedure over and over a total of (s —n)
times, we finally obtain

[ R 'R dx:(ﬁsi_m)llz

X f [(3¢* =n+d/dx)R"]R " dx
=l(s +n)(s =m)]* /2 (s = n). (a8)

The first term on the right-hand side vanishes because
R " satisfies Eq. (15a), and we obtain

SR R dx==[(s - m)/(s +m)I/2, (A7)

In similar fashion, we evaluate { R, *°R %dx by re-

placing R ® with A,*(s), then integrating by parts, to
obtain

f R 2R sdx= [(s +n)(s =n)]2/2

x / {l3e = (s -2) +d/dx] R,*2R,* dx
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~2[(s +n)(s —=m)]*/? f R,*R,* dx

=<(s+n—2)(s—n—2)>”2/ R SR s dx

(s +n)(s =n)

(( 4(s-n-~-1)

1/2
s+n=1{(s+n)s -n)) ’
(A8)

where we used Eq. (A7) to evaluate an integral. Apply-
ing this procedure over and over (s -~n-1) times, we
finally obtain

f R 2R Sdx= (const)fB,,'(n) R"R,™ dx

+2[(s +n)(s =n)(s +n=1)(s =n=1)]"1/2

s=n-1

X2 (s=n=F)
r=1

((s-n)(s—-n-l))”z' (A9)

(s+n)(s+n=1)

Multiplying Eqs. (A1) and (A2) by R,® and integrating,
and then using Eqs. (A7) and (A9) to evaluate integrals
of the form [ R,*R > dx, we obtain

.2 Rse*R S dx=2m, (A10)

[2R2e* R dx=(2s+1)2n. (A11)
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A variational method for the two-body density matrix is developed for practical calculations of the
properties of many-fermion systems with two-body interactions. In this method the energy £ =
ZHgapi is minimized using the two-body density matrix elements et = Y Wefafay ay W)

as variational parameters. The approximation consists in satisfying only a subset of NeCessary
conditions--the nonnegativity of the following matrices: the two-body density matrix. the “two-
hole matrix” Qys = (Wlajauafaf (W) and the particle-hole matrix Gy =<V liafa; -py)*

(ak ar-pi ) 1Y ). The idea of the method was introduced earlior; here some further physical
interpretation is given und a numerical procedure for calculations within a small single-particle
model space is described. The method is illustrated on the ground state of Be atom vsing

ts, 25, 2p orbitals.

. INTRODUCTION

We shall concern ourselves with the problem of cal-
culating the physical properties of a many-fermion
system in the ground state or certain excited states.
We shall consider systems where the Hamiltonian has
one-body and two-body interactions:

. .
H=02, T a4+ 500 Vi aialaa;.

The operators a; and a; are creation and annihilation
operators in a chosen single-particle representation.

In the matrix elements T;; the kinetic energy and the
one-body interaction are contained. We ghall express
the energy associated with any N-particle state {¢) as

a linear function of the elements of the two-body density
matrix

1.1

pmu:@‘ l “;a;akae \ )] (1.2)

in the form
E=2) Hip1Pijur- {(1.3)
1{f
r<1
The coefficients H;;,; are given by
Hyjpr= (N = 1) (T30, = Ty 8y, +6,,T5,~ 6;,T,,)

T Vier= Vi (1.4)

In this paper we present the elements of a method
of computing the two-body density matrix p;;,, directly
without using the wavefunction (See. TI). We shall refer
to the method as the density matrix approach. In the
density matrix approach we minimize the energy with
respect to the two-body density matrix elements. The
calculated two-body density matrix can then be used to
compute several properties of the system. The idea of
the method was introduced in Ref. 1, where several
formal properties are discussed. Here we develop the
method for practical calculations.

The motivation for this method comes from the fact
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that the two-body density matrix contains a much
smaller number of independent parameters than the
wavefunction (unless N is quite small). In order to il-
lustrate this let us quote the number of parameters in
both methods for the case of N fermions having at their
disposal L single-pariicie states. There are

i L(L - 1{3L(L - 1) + 1] two-body density matrix ele-
ments while there are {§) parameters needed to define
the wavefunctions. Furthermore the symmetry proper-
ties of the system (rotational, spin, isospin, space
inversion invariance, etc., if applicable) reduce the
number of independent density matrix elements more
efficiently than the number of parameters in the
wavefunction.

However, variational calculations of density matrices
have the major disadvantage that the two~body density
matrix, in order to correspond to an N-fermion state,
must satisfy certain complicated subsidiary conditions
which are called in the literature N-representability
conditions. This mathematical problem has been studied
extensively by mathematicians, physicists, and quan-
tum chemists'™ (and further references therein). The
full set of necessary and sufficient conditions is not yet
known explicitly. We present in Sec. III a set of neces-
sary conditions which are manageable and with whose
effectiveness we have some good experience. 5 By satis-
fying only a set of known conditions we can calculate an
approximate solution to the variational problem. Be-
cause the set of restrictions is incomplete too much
freedom is given to the variational parameters; there-
fore the approximate energy lies below the exact energy
value obtainable with the chosen single -particle basis.

We discuss in Sec. IV the computational problems
in the variational calculation of density matrices and
we describe an algorithm based on linear programming.
As an illustration we present in Sec, V the results of
some calculations on the Be atom to show the feasibility
of the method.
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The density matrix approach can be used not only to
calculate the two-body density matrix of the ground
state, but also of those lowest excited states which have
a different set of quantum numbers compared with the
ground state. In this case one has to add the subsidiary
conditions that the corresponding symmetry operators
have the prescribed expectation values.

We would like to mention that there have been several
attempts to calculate the properties of the N-particle
system using the elements of the two-body density ma-
trix as variational parameters. In the early attempts
fewer conditions were used which were reasonable for
simpler systems. The first lower bound formula was
derived by Bopp® and it was successfully applied to 3-
electron ions. Weidemann’ and Hall and Post” made
variational calculations of systems of particles inter-
acting by different kinds of potentials, but without a
central field. In particular they calculated a lower
bound to triton energy. While these attempts dealt
mostly with 3-particle systems, some more recent ap-
proaches introduce necessary conditions important for
many-body systems (e.g. Refs. 8—10).

The status of all direct calculations of the two-body
density matrix is still in a pioneering stage.

Il. FORMULATION OF THE METHOD

While a wavefunction ¥ uniquely determines the two-
body density matrix the inverse is not true in general.
There may exist no wavefunction, one or several wave-
functions related to a given matrix p;;,,; by the Eq.
(1.2). Those matrices p;;,; which have a solution for ¥
are acceptable for an exact description of physical
states.

The central problem in the variational calculations of
density matrix is to find and satisfy the conditions which
insure that the trial two-body density matrix corre-
sponds to an N-fermion wavefunction.

It was shown? that the set of acceptable density ma-
trices is a convex set and therefore all necessary con-
ditions may be expressed as linear equalities and
inequalities.!

A. Inequality constraints

We shall write the linear inequalities in the form

2R Pz €, V=100, ). (2.1
il

The right-hand sides can be evaluated in principle for

any choice of the coefficients h};g, by introducing the

two-body operator

N ()

hY = Z() hijn ajaia,a;
i<
<i

(2.2)

and by taking for €, the lowest eigenvalue of 2% in the
N-body space.! For any choice of coefficients hf}‘,ﬁ,, Eq.
(2.1) is a necessary condition because for any N-body
wavefunction ¢ the expectation value (zl)lfz(f’ 4 is larger
than or equal to the lowest eigenvalue of 7%’ and the
same is true for $h%); 05 =(@IRY 1Y) if Pise: is derived
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from . The theorem has been proved! that the set of
conditions (2. 1) is also sufficient if #%’ are all possible
two-body operators.

The above theorem in the form presented does not
seem useful, because in order to solve the desired N-
body problem, one has to know the solution of an infinity
of equally difficult N-body problems defined by h“”,
(v=1,...,*). However, the theorem is a useful guide,
if one is looking for a good approximate solution in
which case one might employ only a subset of necessary
conditions., The basic approximation is then defined by
the choice of the subset 2%,

Let us call E the energy of the approximate ground
state obtained with the conditions arising from the
chosen set of operators £%?, As the number of condi-
tions defined by 2%’ may still be infinite one has to con-
struct a procedure for selecting a finite sequence of
h(”i’ so that the successive approximations E; converge
to E, A possible procedure will be described in Sec. IV.

B. Equality constraints

In one type of equalities we impose the desired ex-
pectation values of the symmetry operators such as the
number operator N and the angular momentum operator

J

(| N?| gy = N2, (2.3)
J =

<wIA2lw> J(J+1)} 2.0

@I =m

W QW -Mmp=o. (2.5)

Here é) is any one-body operator. These equalities are
linear equalities for the two-body density matrix.

By imposing these equalities we are looking for the
solution only within a chosen subspace. Equation (2. 3)
normalizes the two-body density matrix corresponding
to N particles. With Eqs. (2.4) and (2.5) we can dis-
tinguish the calculation of the lowest excited state with
chosen quantum numbers J and M from the calculation
of the ground state.

If necessary and sufficient conditions (2. 1) and (2. 3)
are satisfied the variational calculation without restric-
tions (2. 4) and (2.5) would automatically give the ground
state with the correct expectation value for the expres-
sions (2.4) and (2.5). In the calculation of the ground
state these restrictions reduce the number of indepen-
dent variational parameters. If, however, only a subset
of conditions (2. 1) is taken into account, the expecta-
tion values (2.4) and (2.5) would sometimes come out
wrong; imposing the a priori known correct values then
improves the approximate result.

The second type of equalities refers to those N-body
states |y) whose energy is stationary with respect to
one-body transformations |¢) — exp(a@) i), so that in
the expansion

(exp(a@)d|A| expla@)y) = (| B ) + alu][4, §]| )
+(?/2)0|(Q, (A, 91w +- -
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the linear term vanishes:
|8, @) »=o. (2.6)

For eigenstates of the Hamiltonian, such a relation is
valid for any operator ¢, but we can use the relation
only with one-body operators Q because only then is the
relation expressible in terms of the two-body density
matrix. If the two~body density matrix is a solution of

a variational calculation, the energy is a fortiori mini-
mized with respect to one-body transformations and the
relation {2, 6) is satisfied automatically. But it is a use-
ful restriction because it reduces the number of free
parameters for trial density matrices.

111. BASIC APPROXIMATION—RESTRICTION TO
SOME MANAGEABLE CONDITIONS

We are able to satisfy only some necessary conditions
for the trial two-body density matrix. Therefore there
will in general exist no wavefunction ¥ corresponding to
the trial two-body density matrix through the relation
(1.2). The resulting two-body density matrix has a
physical meaning in the sense that it offers an approxi-
mation to the expectation values of one and two-body
operators.

We present here a subset of necessary conditions
which is numerically manageable, with whose relevance
we have had some good experience® and for which we
can give a physical interpretation. The conditions have
the form (2.1) and are defined by the following operators:

i’

;l(a):A;Aon Aa = Z x[ixj a;a;, (3' 1)
i<
W = A Az, (3.2)
o= B;B,, B, :;2 z:j(al?aj - (3.3)
Wi

Here the coefficients x;;, z;;, and c;; assume all possi-
ble values. The lowest eigenvalues of the operators A
and 2® in the N-body space are €, =0 and €;=0. The
eigenvalues of the operators 1Y cannot be obtained
easily, but they are obviously larger than or equal to
zero. In this paper we replace €, on the r.h.s. of Eq.
(2.1) by zero, which leads to a slightly weaker neces-
sary condition.

It has been shown® that the conditions generated by
the operators 1 with €, put equal to zero are all con-
tained in the subset in which one takes c¢;; =p;;, where

P =T Puasn/ N = 1). (3.4)

It would be sufficient to consider only operators A8
with ¢;; =p;;, but the corresponding inequalities would
then be nonlinear. As we use an iterational procedure,
we keep the conditions linear by choosing ¢;; equal to
the value of p;; from the previous iteration. When p;;
converges towards the solution this is equivalent to
choosing ¢;;=p;;.

Let us give some further interpretation of these con-
ditions. The condition generated by Eq. (3.1) is equiva-
lent to the nonnegativity of the two-body density matrix.
This can be seen by writing the coefficients hi“}‘k’, in the
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form h,‘j‘,,’,=x;", Xp1, SO that the corresponding inequality
can be written as

x50 = 0 (3.5)

b
1< j,p<t
This implies that all eigenvalues are nonnegative.

The condition generated by Eq. (3.2) is equivalent
to the nonnegativity of the “two-hole density matrix”

Qiser=Pijni~ PuiO51 T P10p +05(8;:— Py = 6,5(8 5 — ).
(38.6)

By rewriting the operator (3. 2) so that the creation and
annihilation operators appear in normal order one gets
the inequality (2. 1) in the form

20 %45 Qjua %t = 0. 3.7

Let us note that when a wavefunction ¢ exists the two-
hole density matrix takes the form:

th:(d" a;a,05a3 | 0). (3.8)

Similarly, the condition generated by Eq. (3.3) where
€y; = P;; is equivalent to the nonnegativity of the “parti-
cle—hole matrix”

Giint =011t O30 Py1= Py Prs (3.9
in the following way
22245 Gy 12, = 0. (3.10)

It is instructive to write also the particle—hole matrix
in terms of the wavefunction.

Giymr={¥](ata; - pi;)* (aza; ~ pyi) | ). (3.11)
It is worthwhile to point out that for N-representable
P 1, the first subset of conditions (3.1) guarantees
the nonnegativity of the norms of the states A |¢) having
N - 2 particles, which is evident from the form
WDV (G xy50500) (5 x5 10,a;) 1) = 0. Similarly, the second
subset of conditions guarantees the nonnegative norms
of the “(N+ 2)-particle” states A*|¢) and the third
guarantees the nonnegative norms of “particle—hole”
states Bly). Let us conclude by listing three types of
manageable inequality constraints which we know so far.

(i) The constraints generated by the operators ﬁ“”,
R and 2, Eqs. (3.1), (3.2), and (3. 3) which we
use in the present paper.

(ii) The constraints generated by the Casimir opera-
tors for certain Lie algebras or such operators which
mix only few representations of the group. Important
inequality constraints are probably generated by those
groups, which have already been used to derive approxi-
mate wave functions for the problem under
consideration.

(iii) The constraints generated by general two-body
operators which have nonzero matrix elements in a
smaller single particle basis and hence may be diagonal-
ized numerically. These constraints ensure all neces-
sary conditions at least in the subspace in which the two-
body density matrix has dominant components. The con-
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TABLE I, The Hamiltonian and the two-body density matrix elements of the Be atom. 2

1y M1y 13 nyly LS HES /M ® iR/ M M
Density matrix approach Complete diagonalization

10 10 10 10 00 —3,0217238 0.999918 0.999916
20 10 10 10 00 —0.1767351 —0.002355 - 0.002382
2 0 10 2 0 10 00 —2,6707742 0.929191 0.929222
2 0 20 10 10 00 0.0253498 0.000495 0.000498
2 0 2 0 2 0 10 00 0.0843677 —0.000016 —0.000017
20 20 20 2 0 00 —0,7160670 0.929116 0.929145
21 21 10 10 00 —0,0250858 0.002017 0,002025
21 2 1 20 10 00 —0,0394407 0.008525 0.008622
21 21 20 20 00 —0,1325608 0.256489 0.256437
21 21 21 21 00 - 0,5878038 0.070887 0.070859
20 10 20 10 01 —2,7214738 0.929113 0.929142
21 21 21 21 11 —0.6990588 0. 000000 0.000000
2 1 10 2 1 10 10 —2.6516514 0.023615 0.023605
21 2 0 21 10 10 0.0440854 —0,000559 - 0.000565
21 2 0 21 2 0 10 —0.7682196 0.000014 0.000015
21 10 21 10 11 —2.6226850 0.023615 0.023605
21 20 21 10 11 0.0762886 — 0.000559 0.000565
21 2 0 21 20 11 —0.6151516 0.000014 0.000015
21 21 21 21 20 —0.6545568 0. 000000 0.000000

2For notation see Appendix B.
bnij: (1 +6i]')1/2'

straints (ii) and (iii) are to be studied in future.

IV. NUMERICAL PROCEDURE

In the variational calculation of the two-body density
matrix we use an iterative numerical procedure which
contains linear programming. We were motivated to
use this procedure because the energy (1. 3) to be mini-
mized is a linear function of the variational parameters
Pije1 and the subsidiary conditions can be written as
linear equalities and inequalities.

In order to obtain the zeroth approximation we im-
pose all equalities of the type (2.3), (2.4), (2.5), and
(2.6) and we confine each matrix element p;;,; with in-
equalities 0<p;;;; <1, —1<p,;5; <1 which are contained
in the inequalities (3.5) and (3. 7). With these conditions,
the minimum of the energy is calculated with linear
programming.

The successive approximations are obtained by the
following iterative cycle: we construct the most violated
condition, add it to the previous ones and minimize the
energy with linear programming. In order not to work
with an increasing number of conditions, we then dis-
card one of the old conditions. A program for linear
programming which at each iteration adds one new con-
dition and discards one old condition is presented in
Appendix A.

The most violated condition (3.5) is obtained by
diagonalizing the two-body density matrix from the
previous iteration. The eigenvector x™" corresponding
to the most negative eigenvalue A, then generates the
condition Amyy = % X512 0; 1 e = 0 which is violated by
the amount A,,;,. The coefficients of the inequalities in
the form (2.1) are hy;; =x7" 7", Optionally one can
add several conditions in each iteration by constructing
them from the eigenvectors of several lowest negative
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eigenvalues. New conditions (3.7) and (3. 10) for the
two-hole density matrix @ and the particle-hole matrix
G are constructed in a similar way. One constructs the
@ matrix or G matrix from the parameters p;;,;, diag-
onalizes it and constructs the coeifficients for the in-
equality from the eigenvector corresponding to the most
negative eigenvalue. The construction of the G matrix
and of the corresponding coefficients h;;; usually re-
quires the recoupling of angular momentum. The corre-
sponding formulas are given in Appendix B. In our pro-
gram we add the p-matrix, @-matrix and G-matrix con-
ditions sequentially in consecutive iterations.

V. ILLUSTRATION OF THE METHOD

The proposed method faces two major problems: (i)
As the approximation we satisfy only some necessary
conditions on the two body density matrix. The question
is whether the conditions proposed in this paper are
adequate for a system of physical interest. (ii) The
iterative procedure described in Sec. IV selects a finite
sequence from an infinite number of conditions. It
should be examined whether and how fast this procedure
converges.

Our present experience is that both answers depend
on the properties of the physical system. The results
of our variational calculations on the nuclei *0 and 2'Ne
using a model with four valence particles are quite
satisfactory compared with several other methods. In
calculations with more valence particles (**Mg and *8i)
further conditions seem to be needed.

For illustration of the method we present here a cal-
culation for the Be atom. As a model we restrict the
single-particle space to three orbitals (1s, 2s, 2p) simi-
lar to the oribitals 1s, 2s, and p; in Ref. 11. The cor-
responding matrix elements of the Hamiltonian are giv-
en in Table I. The small single-particle basis is not
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TABLE II. Ground state energy of the Be atom, calculated
within the 1s, 2s, 2p shells.

Density matrix approach ~14,60999 atomic units

Complete diagonalization -14.609987
Hartree—TFock —14.57299
Experimental —14.66745

sufficient for a precise description of Be, but it does
give the ground state energy half-way between the
Hartree—Fock value and the experimental value. Thus
the illustration has some physical relevance. In addi-
tion, it contributes to the compilation of examples which
have as a purpose to test the new method. Results are
given in Tables I and II. The agreement with the exact
result of the model is good which shows that the chosen
conditions are adequate for this model,

In the calculation of the Be atom the convergence of
the algorithm is satisfactory (270 iterations for the rel-
ative accuracy of 10-%), We have used this algorithm for
systems of up to 70 variational parameters. For a larg-
er number of parameters we are preparing a faster
procedure.

VI. CONCLUSION

In this paper we have shown the feasibility of the den-
sity matrix approach. The method provides the energy
and the two-body density matrices of the ground state
and some excited states.

Regarding the calculation of the energy, this method
gives a lower bound to the eigenenergy of the Hamil-~
tonian restricted to a chosen single-particle basis. In
this sense it is complementary to the variational meth-
ods with wavefunctions (such as configuration mixing,
projected Hartree—Fock, generator coordinate method)
which yield an upper bound to the energy. In cases
where the results of a wavefunction calculation are
available and where the gap between the lower and upper
bound is small the two methods provide a rather com-
plete answer which is useful especially for those models
of physical systems where a complete diagonalization is
no longer feasible.

Since the energy determined by this method will in-
crease as the number of restrictions is increased but
decrease as the orbital basis is increased it may turn
out to be either larger or smaller than the true ground
state energy.

The calculated two-body density matrix provides the
expectation value of any one and two-body operator.
This suffices to calculate most static properties of
physical interest. In addition the two-body density ma-
trix of the ground state offers the required input data
for the calculation of those excited states which can be
described within the particle—hole space.'? Recently
excellent ionization energy calculations have been
made!® using a method which requires only the two-par-
ticle density matrix of the neutral atom as input. 1

Our present experience with the approximation of sa-
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tisfying only some necessary conditions is encouraging
in most cases. In some cases, for which preliminary
calculations have been performed, some important

class of conditions still seems to be lacking. We have,
however, not used all presently known explicit condi-
tions in these calculations. Only further study will show
which conditions are relevant for individual physical
systems. Some examples of classes of conditions which
have not been employed in the calculations of the authors
are:

(i) The constraints of the form
ZBijGijkl B,;> €5,

where B;; is any Hermitian matrix and €5 is a positive
constant which can be explicitly calculated.® In this
paper we have used the weaker condition €, =0.

(ii) The constraints generated by the Casimir opera-
tors for certain Lie algebras or such operators which
mix only a few representations of the group.

(iii) The constraints generated by general two-body
operators which have nonzero matrix elements in a
smaller single particle basis and hence may be diagonal-
ized numerically,
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APPENDIX A

An algovithm for lineay programming with inequalities
generated in consecutive itevations. We minimize the
function

n
E= Z Hi Vi:

i=1
where H; are given coefficients and V; are variational
parameters. The variational parameters must satisfy
the following equalities and inequalities:

2 diV,=b" a=1,...,¢
Za?Vi/?»bB,B:e-Fl,...,w.
1

The coefficients of equalities af and b are given in ad-
vance, while the coefficients of inequalities @ and b® are
generated in consecutive iterations.

(i) In the zeroth iteration, the function E is minimized
with the constraints [; < V; <u;. The lower and upper
bound [; and «; are given in advance. They are not taken
care of in consecutive iterations unless the program
which generates inequalities presents them as an in-
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FIG. 1.

equality when then get violated. In the zeroth iteration,
we get

l; H.=0
0 __ i i
{Vi_ u; lfHi<0
8,.; H =0
0 _ mi i —
{dmih b if H, <0’ m=1,...n.

The quantity 4 has the geometrical interpretation as the
set of m edges pointing upwards from the vertex V
(Fig. 1).

(ii) The equalities are imposed one in each iteration
by intersecting the edges with the corresponding hyper-
plane and choosing the lowest intersection

=V a0 - D 0/ T aid
J ¥

V¥=1y¥, for that index m =m, for which 3, v% H, =min
under the condition that

v -2 a -1)/2 @ drt> 0,

~ o
d’:i:i(”‘;i‘V?)ﬁ(bv-Za;W'l)/ijd;}l o
E

7
iz :f;':ni I:E (‘Z:/)z] e,
1

In each 1teratlon, the index m runs over m=1,...,n,
m #1y, My ... M, SO in each iteration one additional
value of m is omitted.

(iii) After having introduced all equalities, in each
iteration one inequality is imposed by the same algo-
rithm as in step (ii) except that the index m =, is no
longer omitted. The index runs m=1,...,n;m
#y ... i, Inthis way, the inequalities for f=v
—-n,...V are satisfied while some of the previous ones
may get violated again.

(iv) The program is terminated when one of the fol-
lowing conditions is fulfilled:

(a) EV<E'+¢ (we take €=10),

(b) when no inequality violated by more than € is
found,

(c) v>
In the calculation, precaution is taken against divi-
sions with too small denominators. K for any m,

1% a] a‘,’,,j l(e, it is avoided to choose # =m and we put
put dm = . If an equality is almost linearly dependent

Vimax Where V... is given in advance.
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on the previous ones (if 13, @ d% I{¢ for all m and
187 =3, @ Vitie) it is 1gnored If an equahty is incom-
patible w1th the previous ones (if 13, ) d}'| <€ for all m
and |5 —73, a}V51)€) the calculation is terminated.

APPENDIX B

Recoupling of angular momenta for the @ and G ma-
trix and the coefficients h. (We present the formulas
only for orbital angular momentum coupling. Similar
coupling must be done for spin, leading to the matrices
oS, @*S, and G*5.) Single particle wavefunctions are
defined by the quantum numbers 7= (1, ;) and m;. Due
to the time reversal symmetry, all quantities are taken
to be real. The following definitions and phase conven-
tions are used:

p”kl 2L+1 Z; <d)| <E clim{ jmjaimia]mj>

+

X (E clkmk lmlakmk alm,) W):

mkmz

1
Qfm:m%(lﬂ (ME c{',fn{:,mj aimiajmj)
imj
<E Clk"‘k 1"‘la’""k alm,) l@)

l;4m
FA )
) Climfl jmy

Gé;kl L+IZ}<4)| %

mym;

+

Xy Agom, = GLOPU)E

1+ R
X g Z) (— 1) 1 C%:"‘kzl’"z (akmkal-m, - 6Lopkl) 'lb),

ﬂlkMI
= b1y1, 5 D aua |
Pi;= Oy, 2L+1 5 Pl aiuyy | V),

2 hiJklpijkl = €,
il

The relations are as follows:

2L +
Z +1 pf;uhy

=6
L N_ iz 20 +1

Qukl thu 8inPrj= 0510 0405

Lel,~1
—-(-1)" * l(—ﬁitpu_5jkpti+5115ﬂz),

1.-1.%1, -1
ijk,:—;(— 1D)E R 20 + 1) WL, L) ply

+ou 0 - 2L+ 1)L+ 1) 25, Pi; Opy.

The coefficients for inequalities are constructed from
the following eigenvectors:

E Pirixi;=Axj; for the inequality corresponding to (3.1)
to (3.1),

kZ’Q{jk,y,f,: M'y7; for the inequality corresponding to (3.2),
Z;G{,,,,z;,’,: A"z, for the inequality corresponding to (3. 3);
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i ={Rya— (= DI - (- 1)L-tk-”’;4m
Lt lymty-1p

(= )R L+ 6,)(1 + 6,);
(i) ’;iijt: brsxi;%0;, €=0,
(ii) ;iiijl =07 Vi Va1 — ;; Vg Vi 6,1, 6;,(2L +1)/

(21, + DN - 1),
~ 1,
Ripi=—(=1)

1'lj*1k"; (ZL + 1) W(l!lklill, JL)ZJZ{,
+Zn> ZnZmy 61,1, 04 (L+1)/@L+1)W-1)

€==2,
(iii)

ki
- 202 + D@L+ D25, [Z) Zpn p,,,,,] 251 01,1, Oun
mn

X(2L+1)/@2L+1D)(N-1), e=-[(2;+1)@2L,+1)]}/?

2
X 6J'O I:; zmnpmn:l
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Adiabatic expansions of solutions of coupled second-order

linear differential equations. I*
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A generalized higher-order WKB approximation is found for the set of equations (1) +u? =¥
M, (1) (t) = 0 (¥ — ), when the coefficients M, form a positive definite Hermitian matrix M
satisfying a smoothness condition as a function of 7. In the construction, essential use is made of a
transformation introduced by Kato to connect smoothly the eigenvectors of M(t) at different values
of t. Eigenvalue degeneracies which exist for all ¢ are covered by the method. The expansion breaks
down at points ¢ where the multiplicities of the eigenvalues of M(t) change; this phenomenon,
analogous to the “turning point” problem of the ordinary WKB method, will be studied in a second
paper. The asymptotic nature of the expansion is proved; error bounds can be extracted from the

proof but are not studied here.

1. INTRODUCTION

We shall consider a system of coupled differential
equations,

d?h; 2ZN) .
—W%-u “Mjk(t)hk=0 (j:l,...,lv), (1)

and seek approximate solutions which are valid in the
limit of large u. (M, and k; may take complex values;
t is real; u is a positive real number. ) Equation (1) can
be written

h'/(t) +M(Dh(#) =0, @)

where h(#) is an N-component vector (h < C¥) and M(¥) is
an N XN matrix. Setting T=ut converts the equation to
%+M({‘-)h(f)=0. (3)
The problem of the limit of large « in Eq. (2) is thus
equivalent to the problem of the limit of slowly varying
coefficients, or adiabatic limit, in an equation of the
same form. The distinguishing feature of either limit

is that the “wavelengths” characteristic of the solution
are small compared to lengths characteristic of the vari-
ation of the coefficients. We use the word “adiabatic” to
designate this particular sort of problem in asymptotic
analysis.

When N=1, the familiar WKB approximation is valid
up to terms which decrease as u™, provided the function
M(t) is twice differentiable and bounded away from zero.
Higher-order approximations, forming an asymptotic
sequence with the WKB as first term, have been studied
rigorously by Blumenthal® and Olver.? The results are
summarized in Appendix A for the case that M(?) is
strictly positive. [In that appendix M({) is allowed to de-
pend on « and is denoted by p(%, #). ] Our aim is to derive
similar expansions for systems of equations (N>1).

A standard method of studying second-order differen-
tial equations is to pass to an equivalent system of
(twice as many) first-order equations. Indeed, many of
the results of this paper could be extracted from the
extensive literature on the adiabatic problem for first-
order systems. (Especially relevant are the books of
Feshchenko et al.®—discussed further in Appendix B—
and of Wasow.*) That approach is probably the most ef-
ficient for proving theorems on the existence and uni-
queness of asymptotic expansions, From the point of
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view of the physicist {or other user of applied mathe-
matics), however, there are advantages, aesthetic and
practical, in working with the second-order equations
directly, The solutions and approximate solutions are
more easily visualized—i.e., their qualitative features
more profoundly appreciated—both because they are
more intimately related to the original motivating prob-
lem, and because the space of the dependent variables
has smaller dimension. Our formulas may appear com-
plicated at first glance, but after close study they are
seen to have a simple and elegant structure.

Only a special class of matrices M will be considered
here (generalizations being discussed briefly in Sec. 7):

Positivity condition: M(t) is a positive definite Hermi-
tian matrix for each ¢, [Thus M(#) has an orthonormal
complete set of eigenvectors, and the eigenvalues p,(¢)
are strictly positive. )

As in the one-dimensional case (Appendix A), the vali-
dity of the mth order adiabatic approximation depends on
differentiability of M(#) to a certain order. In fact, one
is compelled to make a more cumbersome technical as-
sumption, to the effect that the eigenvectors of M(¢) at
different values of { are related to each other in a suffi-
ciently differentiable way:

Smoothness condition (Lth ovder): There is a family of
projection operators, {P,(¢)} (k=1,2,...,K<N), such
that: (1) DK, P,(f) =1 (the identity matrix); (2) each P,(#)
is the orthogonal projection® onto a space of eigenvec-
tors of M(#) with eigenvalue p,(f); (3) all the P,(f) and
Dty are differentiable L times, and the Lth derivatives
are at least bounded on the interval considered.

A simpler but stronger smoothness assumption® is
that M(#) is an analytic function of ¢ [i.e., each M, (1) is
analytic for # in some neighborhood of the real axis]. In
such a case the eigenvalues of M(f) are also analytic
functions; since M is Hermitian, these functions have no
branch points at real f values.” As a consequence of an-
alyticity, if two eigenvalues are distinct at one ¢, they
remain distinct except possibly at isolated points of
“crossing” (defined precisely in Sec. 6). Let p,(f) (k
=1,...,K) be the distinct eigenvalues in this sense,
Then the corresponding P,(¢), which are unambiguously
defined except at the crossing points, are analytic, and
they can be defined at the crossing points by analytic
continuation.

The complications which can arise when M(?) is not
analytic are discussed by Kato.® The eigenvalues may
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split and merge in a complicated way instead of simply
crossing or touching. Also, the eigenprojections P,(¢)
may be less smooth than the matrix elements of M, even
discontinuous. It is the latter pathology which motivates
our complicated statement of the smoothness condition.
However, Lth order smoothness of M(¢) implies that of
P,(¢) except in the neighborhood of a point of crossing or
splitting. °

The adiabatic expansions constructed in this paper ap-
ply only when p,(f) # p,.¢) for all ¢t (k# k'), [Note that any
b, may be a degenerate (multiple) eigenvalue, provided
that the degeneracy is “permanent,”| When two eigen-
values cross, a different method is needed, very much
as at the turning points [zeros of M(#)] in the one-dimen-
sional problem. This situation is described in Sec. 6,
and a full treatment of the simplest special case will
appear separately,®

2. KATO'S ADIABATIC TRANSFORMATION

If M(#) had eigenvectors which were independent of ¢,
then an adiabatic expansion of a particular solution of
Eq. (2) could be constructed by multiplying such an
eigenvector by the one-dimensional adiabatic expansion
(A3) with p=p,(t), the corresponding eigenvalue. In the
general case, we shall find, as one would expect, that
the t-dependent instantaneous eigenvectors of M(¢) play
an important role in the adiabatic expansion. But how
are those eigenvectors to be specified uniquely ? The
phase of an eigenvector is always arbitrary, and when
the eigenvalue is degenerate, there is even greater free-
dom in choosing an orthonormal set of eigenvectors. In
the special case first mentioned, it would clearly be
perverse to choose an eigenvector with (for instance)

a t-dependent phase, when a constant vector is available.
In general, however, there seems at first glance to be
no natural way to choose the eigenvectors.

Nevertheless, there is a very useful way to specify a
canonical set of orthonormal eigenvectors at each { in
terms of an arbitrary set given at an initial value of £,
This procedure was introduced by Kato in the study of
the adiabatic problem in quantum mechanics!! and treat-
ed in detail in his book on perturbation theory.!? The
eigenvectors for a general f are related to those for the
initial value, f=¢, by an operator U(¢#), the Kato adia-
batic transformation:

a(t) =U(Ha(c). 4)

The guiding principle behind the definition of U(#) is that
as f varies, the eigenvectors should change only in a
minimal manner; specifically, that the derivative of an
eigenvector should contain no component parallel to the
vector itself [see Eq. (9)]. In Sec. 3 this condition will
arise naturally in our heuristic derivation of the adia-
batic expansions, The appearance of Kato’s transfor-
mation in the approximate solutions is the most distinc-
tive feature of our approach to the adiabatic analysis of
coupled equations.

Before giving a formal definition of the Kato transfor-
mation, we review some properties of projection oper-
ators. A projection is an operator P satisfying P2=P,
It is intimately associated with a certain subspace, its
range PC”. If a is a vector in PC”, then Pa=a, P is
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called orhogonal if it annihilates the vectors orthogonal
to PA¥:

Pa=0 if a€ (PCV), (5)
A projection is orthogonal if and only if it is Hermitian,

If {Pk} are the eigenprojections of M (see the smooth-
ness condition, Sec. 1), and if DMD™ is a diagonal ma-
trix, then each DP,D™ is a diagonal matrix with 1’s and
0’s on the diagonal. Some readers may find it helpful
to re-express various statements of this paper in terms
of such a diagonal representation of M and the P’s, In
fact, we shall see that U()™ can be regarded as a ¢-
dependent diagonalizing transformation in a representa-
tion where M(c) is diagonal.

If {e;”} (j=1,2,..., N,=dimP,C") is an orthonormal
basis for the eigenvectors of eigenvalue p,, then in the
notation common in quantum mechanics one has

N
P, =2 el el?|. (6)
je

For examples of eigenprojections in explicit matrix no-
tation see the beginning of Sec. 4. P, is an intrinsic,
uniquely defined object, independent of the particular
choice of the complete orthonormal set {e,‘,”}; this is one
of the advantages of working in terms of eigenprojec-
tions. Nevertheless, even when one avoids choosing a
particular basis, Kato’s transformation U(¢) still is de-
fined, as an abstract operator, and is important,

For clarity we shall define U(¢) first as a transforma-
tion of eigenvectors, in accord with the motivation given
at the beginning of this section, and later characterize
it more abstractly. Let M(#), p,(£), and P,(¢) be as de-
scribed in the positivity and smoothness conditions of
Sec., 1. For a particular % let a vector a, (independent
of 1) satisfy M(c)a,=p,(c)a, lequivalently, P (c)a,=a,l,
Then a(f), defined by

a’()=P(Ha(t) and a(c)=a, )

(where the primes denote differentiation), satisfies
Ma(t)=p(ta(® lice., Pyha(t)=a(t)] ®)
and
P, (Ha'(t) =0, 9

Pyoof: P2=P implies PP’ + P'P =P’, which implies
PP'P=0and PP'a=P’a -P’Pa. Let w=Pa. Then one
has w(c¢)=a, and w'=P’a+Pa’'=P’a+PP'a=2P’a -P'Pa
=2a’ - P'w; these two equations form a first-order ini-
tial -value problem for w which is satisfied by a itself.
Therefore, by the standard uniqueness theorem, a=w
=Pa. Moreover, it follows that Pa’=PP’a=PP’Pa=0.

This construction can be applied to all the eigenvec-
tors of M and extended by linearity to the whole vector
space @¥, thereby defining a linear operator U(?) [Eq.
(4)]. This operator, the Kato transformation, has the
properties

U(OP()U) ™ =P, (1) for all &, (10)
P(U'(H)P,(c) =0 for all 4 11
U(e) =1, (12)
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K
U'(1) =23 POP(OU(H) =QU). (13)
k=1
[Equations (12) and (13) can serve as a definition of U,
Equations (10) and (11) express the fundamental prop-
erties (8) and (9) of an a satisfying Eq. (4).] Further-
more, U is unitary (when M is Hermitian, as assumed
here). If D diagonalizes M(c) li.e., DM(c)D™ is dia-
gonal], then DU(#)™ diagonalizes M(2).

In the absence of degeneracy, the Kato transformation
can be written down explicitly. If the eigenvalue p, is
not degenerate, then a normalized eigenvector a(f) is al-
ready determined up to phase. The proper phase is found
as follows. Let e(f) be an arbitrary differentiable nor-
malized eigenvector of M(¢) with e(¢)=a,, and let

a(t) =exp(ié(t))e(t).

By Eq. (9) the scalar product (e(#),a’(t)) = (P, (te(?),
a’(t)) must vanish. (P, is Hermitian since M is). Differ-
entiating Eq. (14), one therefore obtains 6’(¢) =i(e(s),
e’(), or

(14)

B(t):ifct dr'{e(t’), e’(t")). (15)
Thus the action of U(¢) on a nondegenerate eigenvector
has been determined. For a (permanently) multiple
eigenvalue one must solve a system of coupled first-
order equations.

Note that the possibility of crossing of eigenvalues of
M(?) is irrelevant to the construction of the Kato trans-
formation, as long as the smoothness condition is satis-
fied by the eigenprojections to order L =1, In fact, the
Kato transformation is determined by the system of
eigenprojections and has nothing to do with the eigen-
values at all,

3. CALCULATION OF COEFFICIENTS

It is a natural conjecture that for each eigenvalue
b,(2) there exist solutions of Eq. (2) which possess adia-
batic expansions analogous to Eq. {A3):

() = pt /*(¢) expla in [ F ph/2(¢7) at’]

X2 (+ iu)"sa k(1) + O(u™ 1y,

5=0

(16)

where the aj are now vectors and Maj=p,at. (We shall
omit the indices % and + and the argument ¢ whenever
there is no chance of confusion. A prime will denote dif-
ferentiation with respect to ¢.) Let us determine the co-
efficients a, formally, postponing the question of validity
of the expansion to Sec. 5.

Substituting the conjectured expansion {16) into Eq. (2)
[see Eq. (52) below] yields, order by order, the
equations

(M - pla,=0, (17)
(M - p)a, =2pt/2a/, (18)
(M= P)a,, =20 /72, + 920 (07 20 — pra, (19)

where
1. d, .
f=fk(t)zzl7 3/4 Zt_(p s/4pr)
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_pr 50 20
=7 "6 (20)
Equation (17) says that a, is indeed an eigenvector in
H =H () =P()T¥. Denote by A#* the orthogonal comple-
ment of this subspace; every vector can be decomposed
as

a=P(Ha+a'(d), PacH, atcH*.
We have

3.3:0, (21)

Equation (18) can be divided into two equations by oper-
ating on both sides with P and with 1 -P;

P(a)=0, (22)
ar=(M-p)" 20/ %(ad)". (23)

The second of these equations makes sense at any ¢ at
which p is distinct from all the other eigenvalues, since
(M - )" is then a well-defined operator in /*. (That is,
“crossing” is excluded from the present discussion.) In
the same way, Eq. (19) for each s yields a recursive
formula for P(a},,) and one for al,,. When N=1, Egs.
(A4) are recovered,

The perpendicular part of each coefficient, aj, is thus
completely determined when the coefficients for all
smaller s are known., To complete the recursive deter-
mination of the coefficient, therefore, it remains to de-
termine the parallel part, Pa,, using the known expres-
sion for P(a’). Since

P(a) = P[(Pas)'] + p[(a;),] (24)

and the latter term is known, the problem is to solve for
a vector (namely, b=Pa,) which at all times lies in the
t-dependent space //, when that portion of its derivative
which lies in // is prescribed. When this “parallel deri-
vative” is zero, as is the case for s =0, the solution is
given by the Kato adiabatic transform of an initial value:

b(#) =U(b(c).

Indeed, U is designed precisely to guarantee properties
(17) and (22) [cf. Egs. (8) and (9)]. To solve the more
general problem where P(b’) is a prescribed function of
t, we write

b()=U®Aa(t) (b=Pa),

where a(t) is in #/(c) and 4(¢) =b(¢). Then P(b’)
=PU'P(c)a + PUa’ =UP(c)a’ =U(E’), where Eqs. (11) and
(10) have been used. Hence one has

Aty = [ aru(e) T P(b (1) +a(c). (26)

In particular, from Eq. (24) with s=1 and the paral-
lel part of Eq. (19) with s=0 one obtains lusing Egs.
(17) and (22)]

Pl(Pa,)’]=~Pl(@}) ]+ tp* /22, ~ p /2P (ay)],

where a] is given by Eq. (23). One then finds Pa, by
substituting into Eqs. (25) and (26).

(25)

(27)

When (as in the example in Sec. 4) a calculation is
done in terms of a particular ¢-dependent basis of eigen-
vectors satisfying Eq. (4), the effect of the U operators
in Egs. (25) and (26) will be simply to move the basis
vectors outside of the integral [see, e.g., Eq. (42)].
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The only nonmechanical part of this construction is
finding U(f). For a given p, only the part of U(¢) that
maps #/,(c) onto #,(t) is needed. The differential equa-
tions defining it [Eqs. (13) or (7)] reduce, once the pure-
ly algebraic task of finding a complete set of eigenvec-
tors for M(¢) has been completed, to a set of coupled
equations, dim /4, in number, which can often be solved
by inspection. In particular, when p, is not degenerate
only a quadrature is required [Eqs. (14) and (15)].

The general solution of Eq. (2) is
K

h(¢) =2 [*h*(8) + " (1)), (28)

k=1
where the h* have the form (16) (al now carrying an ad-
ditional index, %, which we shall write as a superscript
on the left). The still undetermined initial values
P,(c)*a¥(c)] can be fixed by matching given initial values
of h(c) and u™h’(c) [treated as of order O(x®)] up through
order ™™, just as in Appendix A,
4. AN EXAMPLE
Let

C=cost, S=sint, (29)

and consider
t 0 0
M) =|[0¢tC?2+5% (t-1)CS

0 (t-1)CS 5%+ C?

) (30)

which is analytic and satisfies the positivity condition
when 0<t¢< <, In the usual way one finds that M has the
eigenvalues

p, =1 (double) and p,=1. (31)
An orthonormal basis of eigenvectors is
1 0 0
e’ =10|, e?=|C|, e,=|-S5|. (32)
0 S C
Hence one has
10 o—’ 0 0
P,=|0 ¢°Cs|, p,=[0 $ -Cs|, (33)
0Css? 0-CS (7

and also

( (2)
eil)' :0, 812)'292, 62,: —elz o (34)

It follows that the vectors (32) all satisfy Eq. (7) without
further adjustment. If we choose as the initial point

c=m, (35)

then the operator which maps e’ (r) onto e{*’(9), etc.,
is

1 0 0
U=|0~-C S (36)
0-8-C

[which indeed satisfies Eqs. (12) and (13)].
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Let us find the first two terms of the adiabatic expan-
sion of a solution of the *h* type for {>1, Equation (186)
becomes

Iht — 1/ exp[%iu(talz - Trs/Z)][laS + (Gu)t 13.{]

+ O(u™?), (37)
From Eq. (21) we know that
fay(t) = tiey (1) + £3ey® () (38)

¢{ and &} are independent of ¢, because the ¢ development
of a,(?) is given entirely by the Kato transformation U{#)
[see Egs. (22), (25), and (26)]. We then have (omitting
the index +)

aj=ajt=t,e,. (39)
Thus, by Eq. (23),
at=2£%(1 = )L e,. (40)

Equation (27) now yields
P,[(Pa,)"]=2/2(1 = ) ,ef?
+ 32, - 5 1 %, (41)
So, by Eqs. (25) and (26), we have
P,a, =U(t)4,(c) + F(t)g,e(® + (5/48)(r3/% =77%/%)a,,  (42)

where

F(t)= %f"‘ att (Y21 =) (1 + 3¢). (43)
In analogy to Eq. (38), U(9a,(c) can be written
U(H) 1a;(c) =nrel +ngel?, (44)

Finally, we assemble the desired approximation (sup-
pressing the f dependence of all the vectors):

=t S expl iu (1372 = 73/2y}{1al

+ (i) ntel™ +ntes® + F(1)tie®

+(5/48)(£73/2 =773/ ta + 264 12(1 ~ 1Y g e, I}

+0(u7?), (45)
where 'a} is given in Eq. (38).

Similarly, one finds
hr —explin(t —-m)H{tte, + (i) Hnte, + G(Dte,
-2(1 = 1) gtel® I} + 0@, (46)

where
Gty=3 [ atr(t =1) (3 +1) (47)

and ¢} and 0} are arbitrary constants. The expressions
for 'h” and ?h™ are the same except for the sign of iu,
with different coefficients, {7 and 7.

The solution of the form (28) which satisfies
bn) =771 (1) + O(u™?),
h'(7) = dur e (7) + O(u™) (48)
is found to be
h(t) =11 4 expl3in(t?/2 = 12/2) {e® + (iu)™
x[4n°3/% & F(f)e(?

+(5/48)(173/2 =773/ ?)e{® + 2/2(1 = )28, |}
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+ 3 1 expl - 3iu(t?/? = a3 /%) |(=iu) tgr 3/ 2@

+expliu(t = m @) st /4 + 1) + 72/ 4)(r = 1) e,
+expl - iu(t =)} (=) 577 4r +1) =1 /4)(m = 1) e,
+ O(u™?), (49)

Note that terms proportional to e, enter in the order

™, despite the “pure e{?” initial conditions (48).

Equation (49) is valid only on closed intervals which
lie to the right of the point {=1, where the eigenvalues
cross, On closed subintervals between =0 and {=1 the
solutions have expansions of the same form as Eqs. (45)
and (46), of course; to determine the coefficients (anal-
ogous to ¢3, nj) corresponding to the solution satisfying
Eq. (48) requires investigation of the behavior of that
solution near t=1 (see Sec. 6 and Ref. 10).

5. PROOF THAT THE SERIES IS ASYMPTOTIC

We shall now establish to what order L the smooth-
ness condition (Sec. 1) must be satisfied in order that
the error term in Eq. (16) really be of order u” ™),

Theorem: Let p(t)=p,(t), one of the eigenvalues of a
matrix function M(¢) which satisfies the positivity condi-
tion, let j=+¢, and let

h(t)=p™ 4 expliu [ p*/2(t") a’) 2 ) a (D),  (50)
5=0
where the coefficients satisfy Eqs. (17)—(20). Here ¢
varies in a closed interval containing ¢ and containing
no point of crossing of the eigenvalues. Let h(t) be the
solution of Eq. (2) such that h(c) =h (c), h'(c)=h.(c).
Then if M satisfies the Lth-order smoothness condition
with L =m + 3, the error Z  in the approximation,

Z,=h~h_, (51)

is O(u™ ™1y (i.e.,u™! WZ I is bounded as u— «, where
Il Il denotes the Hilbert-space norm or 2-norm). The
same statement holds for «*(h’ ~h’) [cf. Eq. (AT)].

We begin the proof by finding a differential equation
satisfied by Z,. One calculates that

hY/ +uMh,
m-2
=exp(ju f:p”z(t') dt’) (p3/42 (Gu)sa,,,
s==2

m-1 m
F2PIL () 2= 1 25 ) a,
§=0

$=x~1

- %p-s /4p, Z‘J ()™ a
320

m m=1
+p‘1/4Z_,(iu)" a;'-P'l /42 (ju)-s Mas+2>' (52)
=0 $="2

The a, are constructed so that the lower-order terms
cancel; using Eqs. (17)—(20) up to s=m -1, one reduces
Eq. (52) to

h)/ +u’Mh,,
=exp(ju [ p*/2(t') at’)
XA(Guy VM ~ pa,,,
+ () mp™ Yay! - 3p7p'al, - fha,)}
=exp(ju [} p/2(t)dt")
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X [(Guy "V gD (8) + Gu) gt (1))

=—g,.(u, ). (53)
Hence one has
. +UMZ, =8, Z(¢)=Z'(c)=0, (54)

Since the construction of a} [according to Eqgs. (17)—(20),
(25)—(26), and (13)] requires derivatives of the p’s and
P’s of order s+1, g, involves derivatives of order m
+2. The term in Eq. (53) proportional to u ™1 (abgent
in the one-dimensional case treated in Refs. 1 and 2)
will eventually force us to increase by 1 the order of
differentiability assumed.

The solution of Eq. (54) may be represented in the
form

Z, (1) :% f arG(t, tg,(t"), (55)
where G is a matrix defined by
2
Z2Gt, 1) +M(OG(, 1) =0, (56)
Gl
G(t,8) =0, é—t—G(t, )| sape=ul. (57)
We have
Z: () ——lft dt’—a—G(t g () (58)
m - u A at y gm .

If the operator norms WG(Z, £/}l and «™*113G/ 3¢ have up-
per bounds independent of «, one finds immediately that
Z,=0@™ and uZ!=0("™), To prove that these error
terms are O(u"”"’”), we must let L =m + 3 and use the
above argument for Z,.,; then combining the ‘™1 term
inh_,, with Z,, yields the desired result.

To show that G and 3G/3¢ behave as desired, we note
that G satisfies a matrix version of Eq. (2) and hence
possesses a formal expansion of the type we are study-
ing. Let {d,(} (i=1,...,N) be a basis of eigenvectors
of M(t) with the Kato ¢ dependence [Eq. (4)]. Denote the
corresponding eigenvalues by p,(f). (In the present con-
text p’ s with distinct indices may coincide.) Incorporat-
ing the initial conditions (57), we find that G has the
form

N
G(t, ") =2 sin(u [\,p, ()2 at'")
i=1

x[p, (&)1 /1d,(® aX(t)p, (')
+uA (L, )]

N
+2 cosu [Lp(tr V2 Aty B, (1, 1) + Z,, (59)
i=l

where Z, is expected to be of order «2, although it
would be circular to assert that at this point. A, and B,
do not concern us except that they are independent of «,
Now Z, must satisfy Eq. (55) (where Z, and g, are now
matrices). One therefore has from Eq. (59) a bound of
the form

G, )l < C(t, ") +ut D(¢, ¢)

+at [Ldt G, ) g, (7).
Recall [see Eq. (53)] that g, = O(u?) if the smoothness
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condition holds to order L =3, Introducing
G, =suplIG(¢, t)l (60)

(sup over all values of ¢ and #’ in the “closed interval”
of the theorem), one obtains

Grx<CHuD+uG, , E,

m.

where C, D, and E are independent of #, and thus for
sufficiently large u

C+ulD
<

Gmax\ 1-u'E

= 0(u"), (61)
A similar argument appl®: 3 to the derivative, This com-
pletes the proof.

Remark: This proof corresponds to the method used
in Ref. 1, rather than that of Ref. 2, which does not
generalize so easily.

6. THE PROBLEM OF CROSSING OF EIGENVALUES

By “crossing” we mean any change in the multiplicity
structure of the eigenvalues of M{{). The simplest case
is the first-order crossing of two eigenvalues at a point
t,:

Py(t) = p (1) = C(t = tg) + OL(t = £,)?], (62)

where C is a nonzero constant. For complete generality
one must also be prepared for tangency,

Py(t) = p )~ (t = 15)2,

and for higher-order intersections., When M(¢) is not
analytic, p,(¢) and p,(#) may even coincide on a whole
interval—e.g.,

pr=t3+1, p=|t]®+1 (t>-1).

Of course, in the most general case more than two
eigenvalues may be involved,

The expansions derived in this paper do not apply near
a crossing point £;,. Right at such a point Eq. (23), for
instance, is meaningless. Near the point, Eq. (23), be-
cause of its small “denominator”, contributes (in gen-
eral) a large term to the error Z,(¢) [see Eqs. (55) and
(53)]. For a fixed t #{, the series is still asymptotic as
u— «_ but it is not asymptotic [in the case (62)]ina
limit such as u— %, t—f,>u™, €> 3, The lowest-order
term in the series, p;'/“exp(+iu [ pi/?)*a, (k=1or 2),
is still meaningful at f,, however, and one can show,
using Eq. (55) with m =0 for |¢—{f,l <xu™, €=3, and
using the previous estimate outside that region, that the
error still vanishes uniformly as #— «, In general it
will not vanish as fast as »™, That ig, not only is it im-
possible to construct the higher-order terms in the se-
ries, but also the first term cannot be expected to be as
good an approximation as it normally is. An analogous
situation is encountered in the lowest-order adiabatic
approximation to the Schrédinger equation in quantum
mechanics (an equation of first order in f), where it is
found!® that one cannot obtain a uniform error bound of
the order O(u™') near a point of eigenvalue crossing, but
only one of the type o(x°). [The notation Z = o{u™) means
that u™Z— 0 as u— o, |

When two eigenvalues cross as in Eq. (62), the trou-
ble in the adiabatic series associated with one eigen-
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value arises from the appearance in the higher-order
approximations of anomalously large terms proportional
to the eigenvectors of the other eigenvalue. Evidently
there is strong “mixing” of the two modes near the
crossing point. A solution which to the left of i, has the
leading term pj*/*exp(iu [ pt/?)*a, should be expected to
behave to the right of £, like

R(u)pi*/* exp(iu [ pt/2) ‘a, + S)p;t/* exp(iu [ p3/?) %,

where S(u) approaches zero as u grows, but more slowly
than #™. One must, therefore, study the behavior of the
solution near {, in order to know its correct continuation
from one region of validity of the adiabatic expansion
into another. The problem is similar to that of finding
the WKB connection formulas, which continue a given
exponential solution of Eq. (A2), valid in a region where
p <0, through a zero of p(¢) into the correct linear com-
bination of oscillatory solutions in the region where
p>0,

A sequel (Ref. 10) to this paper will present a proce-
dure for dealing with the special case (62) of the cross-
ing problem,

7. GENERALIZATIONS

Some of the restrictions placed on the coefficient ma-
trix M(?) in this work are surely unnecessary. Even if
it were in the author’s power to cover all possible cases,
however, the effect would be to complicate the formulas
and proofs inordinately. It seems wiser to let each read-
er construct the generalization needed for his specific
problem. A few remarks are offered here concerning
various directions in which the present work might be
generalized or extended.

Explicit evror bounds and additiond u-dependence:
From Egs. (55) and (58) we have

NZ (OIsut|t-c| G, suplig, ()], (63a)
HZ,’n(t)llsu'l|t—c]supug%G(t’,t”) supllg,.()1l, (63b)

where G_,,, defined in Eq. (60), satisfies Eq. (61), and
the derivative is similarly bounded. From a detailed
study of Eq. (59) for G, one could obtain upper bounds
on the constants C, D, and E in Eq. (61) and the anal-
ogous constants in the bound on 3G/3¢. Thus one would
have rigorous upper bounds on the error terms Z, and
their derivatives—unfortunately much more complicated,
in all probability, than those in Appendix A.

As in Olver’s study of the one-dimensional problem
(see Appendix A of the present paper), error bounds
could be used to judge the accuracy of the adiabatic ap-
proximations h,, when M itself is allowed to depend on «.
For example, if all the derivatives of the p, and P,
which appear in Z,, are bounded as u— « and if the p,
themselves and their differences are bounded below,
then the series will still be asymptotic. If some of the
derivatives approach zero for large u, then the approxi-
mation h,, may be valid to higher than mth order.

An alternative approach to u-dependent coefficients,
adopted in Ref. 3, is to expand them in power series in
u™!, The formulas for the terms a in the asymptotic se-
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ries become rather complicated for s> 0, but the meth-
od is straightforward in principle.

Infinite intervals: The error bounds provided by Eqgs.
(63) increase linearly with the length of the integration
interval. They are unnecessarily pessimistic if M({)—~
constant (with its derivatives) as {— £, since each
term in g, involves a derivative of, ultimately, a p, or a
P,. In the one-dimensional case one obtains simple
bounds of the total variation type, Eq. (A5). In the pre-
sent more complicated context it will still turn out for
some M(?) that the integrals (55) and (58) converge when
extended over the whole real line, yielding bounds which
are uniform in {. In such a case, moreover, ¢ could be
chosen to be + «©,

Relaxation of the positivity condition: We consider
three successive degrees of complication.,

If the eigenvalues p,(¢} can be negative or complex
(but not yet zero), the proof in Sec. 5 will require modi-
fications, because the trigonometric functions in Eq.
(59) are no longer bounded by 1 as # —%. A promising
remedy (cf. Ref. 2, Theorems 1,3, and 5) is to get con-
trol over these factors by choosing ¢ to be an end point
of the interval of { considered. (Which end point depends
on the sign of jpi/?, and hence will be different for the
two solutions "h* and *h”.)

If M(¢) is not normal, but is diagonalizable, then the
eigenprojections, defined from the resolvent by a con-
tour integral,* will not be orthogonal.!® Again, some
points in the construction and the proof will require
modification,

Finally, let us consider to lowest order the simplest
example of nondiagonalizability, the case of a block

po 1
0 Mt

in the Jordan canonical form of M(f). Let a,(¢) and a,(¢)
be vectors such that

[p(t)>0] (64)

Ma, =pa,, Ma,=pa,+a,. (65)
As with any eigenvector, there are solutions whose
lowest-order approximations are

hi=p "t/ exp(tiu f Epriz(eydt')a,. (66)

To obtain linearly independent approximate solutions
which permit fitting initial values proportional to a,,
one must include terms of order u™:

2hi= 3p73/4(¢t = ) exp(s iu fC’ P dYa,

+ (i)™ p1 4 exp(s fu fc" P dta,. (67)

The form of Eq. (67) is suggested by the known exact
solution of a system of two equations with a constant co-
efficient matrix M of the form (64). The notation “term
of order u™™ becomes ambiguous in this situation. One
easily shows that [contrast Eq. (53)]

*h5"" +u*M%hy = O (¢ - ¢)) + O). (68)

For an approximation near ¢ which need not satify the
equation uniformly well, therefore, one may consider
+iu’h;, rather than *hg, to be zeroth-order quantities;
then the fitting of initial conditions proceeds as in the
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cases studied earlier, Otherwise, in fitting initial con-
ditions order by order one must treat the components
along a,(c) of #h(c) and h’(c), rather than of h(c) and
uh'(c), as zeroth-order quantities. Finally, the phases
of a,(t) and a,(?) should be determined by studying the
approximations of next highest order, in keeping with
the philosophy of Sec. 3. We shall not carry the analysis
any further here, wishing only to demonstrate that the
general method can be applied to such problems, First-
order systems with nondiagonal Jordan forms are
studied in Ref. 3.

Vanishing eigenvalues: When an eigenvalue passes
through zero, an entirely different approach to approxi-
mate solutions of the equation is needed. The connection
formulas used with the first-order WKB method in this
situation are well known, and several higher-order gen-
eralizations are available,'® It should be possible to ex~-
tend such methods to systems of equations, but the prob-
lem is beyond the scope of this paper.

Other generalizations which are not discussed here
are to equations of more general form (e.g., with in-
homogeneous and first-derivative terms—cf. Ref. 3) and
possibly to equations in infinite -dimensional vector
spaces,
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APPENDIX A: EXPANSION FOR A SINGLE EQUATION

Combining Theorems 4 and 6 of Ref. 2, one obtains
the following: Let p(u, t) be a strictly positive function
which is (piecewise continuously) differentiable m + 2
times with respect to ¢, Let

5(p7)°
T16p%

- dz - p/l
- _ a2 Jay £
Sty = =71 G (571 = (a1

Then the equation

Eh + P p(u, HHh =0

has solutions k,(x, t) of the form
hy=p™ " expeiu [! p*/*(u, ') dt’)
X {E (x0)™s ai(u, £) + (x du)™ ™0

$=0

X [afnd(u, f)-at, (u, o)} + € (u, t)}. (A3)

Here c is an arbitrary number in the interval of ¢ consi-
dered; the coefficients satisfy the equations

dat
7?-20 (A4a)
and
da:"l__l. 1/2¢, % 14 [ -1/2da§].
PR LA L [l | (Adb)
and the magnitude of the error is
|5l s ™V V(as, )2 expl2V(at)/ul - 1}, (A5)
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where the total variation V(¢) of a function ¢ between ¢
and { can be defined adequately for our purposes as

V(g)= }f:lw')ldt']a (A6)

Moreover, the derivatives have the expansion

hl=— :f_ph +iup*texp(x iu\/: prZar)

x [Z (£ u)" <a: +ptie d—-—"(§1>

$=0

+ (& )" (D) <afn“1 +p

- a;ﬂ(c)) 7, t)} , (A7)

where 7% satisfies the same bound as ¢* [Eq. (A5)]. The
differentiability condition on p assures that the coeffi-
cients a* gnd the error bounds €* and 1* are finite,

The general solution of Eq. (A2) is of the form &, +h.,
where the initial values a*(y, ¢) of the solutions of Egs.
(A4) can be determined by matching the initial data k(c)
and #"h’(c) order by order. For instance, if one
requires

h{e) = (2u)™/2p1%(c),

R(€) = i(u/2)* 121/ 4(c) + 1t 1200 ™) (A8)

(a choice which has applications in quantum field the-
ory'”), then

ay(c)=(2)2, ax{c)=0, (A9a)
aj(c) =aj(c) = (2u)/2p'(c)p/*(c)/8, (A%Db)
a@(c) = = 3(2u) ™ 2p 2(e)att, (e) ~ (- 1)°aiL, (o))

(s>1). (A9¢)

APPENDIX B: RELATION TO THE APPROACH OF
FESHCHENKO £T AL.

Adiabatic analysis of systems of equations is the sub-
ject of Ref. 3. The approach of that treatise differs
from ours in several ways, of which the most important
are the following: (1) Except for a preliminary chapter
in which only nondegenerate eigenvalues are considered,
second-order systems are treated only by reduction to
a first-order system of twice the dimension. (2) The
exponentiated integrand pY/2 in Eq. (16) is generalized
to a power series in #™, (3) The Kato transformation is
not used; the eigenvectors at different f are not related
uniquely. The mth-order approximations obtained con-
sequently differ, in general, from those of this paper,
but they must agree up to terms of the next higher or-
der —laborious manipulations sometimes being required
to verify the agreement., The case of crossing eigenval -
ues is not considered in Ref. 3, but some results along
that line for first-order systems are given by Wasow
(Ref. 4).

The present treatment leads rather inexorably to the
Kato conditions on the eigenvectors a,(f) [see Egs. (17)
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and (22)]. How is it possible, then, that the eigenvector
can be left arbitrary in the approach of Feshchenko et!

al. ? The answer is hidden in the terms of next higher
order in the exponentiated integrand. Let e(f) be an arbi-
trary normalized eigenvector of M(t) with eigenvalue
p(f). Let us carry out through the first two orders the
expansion prescribed in Ref. 3 for a system of second-
order equations without degeneracy.!® After translation
into the notation of this paper one has

h*(8) ~le, ¥ 20 (M = p)*pt /2(ef)  explt in [ dt’

x| pH2 s Mt ppr x i e, )]} B1)

Because of the extra factor of u#, the second and third
terms in the exponential really should be considered
part of the zeroth-order approximation, rather than
first-order corrections. Indeed, the term involving p’/p,
which can be integrated, is needed to reproduce the fac-
tor p*/4 in our expansion (16). (In particular, such a
factor appears in the standard zeroth-order WKB ap-
proximation for a system consisting of a single equation,
It is fundamental, ) The term involving (e, e’) yields a
phase factor!® which, when it multiplies the leading term
in the first factor in Eq. (B1), converts the possibly
wayward eigenvector e, to the Kato eigenvector a,, as
we have demonstrated in the discussion leading to Eq.
(15). Since the Kato transformation in the event of eigen-
value degeneracy requires more than a phase change, it
is not surprising that the method of Ref, 3 for second~
order equations is not easily extendible to the degenerate
case.
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Vector and tensor fields on conformal space*
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We consider in this paper vector and tensor fields on the compactified Minkowski space M? and
investigate their transformation properties under the group S O(2,4) of conformal transformations
which are well defined on the manifold M? contrary to their singular behavior on the
pseudo-Euclidean noncompact Minkowski space M ;. In writing down field equations on the manifold

Md

.» we get immediately the well-known conformal invariance of Maxwell’s equations. Also the

problem of gauge transformations of the vector potential is treated both from the global point of
view on the manifold M? and from the local point of view on the Minkowski space M, There we
show which gauge instead of the so-called Lorentz gauge one has to choose to get a conformal
covariant formulation of Maxwell’s equations on the pseudo-Euclidean noncompact Minkowski space

M,

INTRODUCTION

Besides its application in general relativity’+? the con-
formal group plays also an important role in elementary
particle physics and quantum field theory. The starting
point for the application there was the discovery?® that a
field theory for very high energies could in some sense
asymptotically be determined by a massless theory or
that the interactions of particles become independent
of their masses if the momenta are high enough. It was
known already long ago® that the group of conformal
transformations is an invariance group of such a theory,
in the sense that the field equations for these theories
are invariant under these transformations if the fields
are transformed in a certain manner.

This problem was treated in two papers by Flato ef
al.® and Rosen,® who found the general solution for the
transformation matrix acting on the fields., These
authors work in the usual four-dimensional pseudo-
Euclidean Minkowski space M,. From the definition of
the conformal tranformations it is clear that certain of
them are singular on this space. This fact seems to be
the main reason for all the difficulties arising whenever
one tries to apply the global conformal transformations
to physical problems.

A way out of this problem was in principle already
found by Dirac” and mathematically formulated in a
rigorous way by Penrose in general relativity.® One has
only to compactify the usual Minkowski space by adding
points at infinity. There are different mathematical
formulations of this compactification in the literature,
Penrose for instance calls it light cones at infinity, but
they are all topologically equivalent. For our purpose
the compactification of M, as a closed subspace of the
five-dimensional projective space® IP® appears as the
most convenient one,

On this compactified Minkowski space M: the con-
formal group can act as a well-defined group of C*
transformations, It is therefore of some advantage to
work not on the usual space M, but instead on the com-
pact manifold M? when one is going to apply the con-
formal group to physical problems. As a first step in
this direction we wrote down in a recent paper'® the
massless Klein-Gordon equation for scalar fields and
got immediately the conformal invariance of this equa-
tion on the manifold M?, Furthermore, we got also the
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familiar transformation properties of a scalar field un-
der the different conformal transformations on M, by
writing the quite natural transformation laws on the
manifold M? in local coordinates.

The advantage compared to the common treatment of
these problems in the literature is the fact that our
formulation is mathematically rigorous and indeed quite
natural on the manifold M7, In this paper we continue
this work in the same spirit and discuss vector and
tensor fields on the manifold M?, Here again we can
write down field equations which are easily seen to be
conformally invariant. In this way we can give a rigor-
ous and detailed discussion of the long known invariance
properties of Maxwell’s equations®* under the group of
conformal transformations, The difference from Dirac’s
treatment” is that we are working in four space—time
dimensions whereas he is working on a five-dimensional
hypercone embedded in a six-dimensional space.

In discussing Maxwell’s equations for the vector
potential and the related gauge transformations on the
manifold M?, we can then deduce the correct Maxwell
equations for the vector potential in M, in a gauge which
is, contrary to the usually used Lorentz gauge, con-
formally invariant. We show that this supplementary
condition on the vector potential can be chosen to be a
linear equation in the vector potential which gives as a
special case exactly the Lorentz condition. This is in
contrast to a comment of Flato ef al. in Ref, 5 where
they introduce a nonlinear equation,

In writing the transformation properties of the fields
on the compactified Minkowski space M3 under the con-
formal group in local coordinates, that means that, in
the coordinates of the space M,, we get the formal
transformation properties of vector and tensor fields on
the space M,, formal because the expressions involved
are generally not defined for global special conformal
transformations., Compared with the result of Flato et
al.,® we can give the full transformation matrix and not
only an expansion of it up to order two in the group
parameters, Our results coincide with the heuristically
written down transformation properties of these fields
in different papers, '~

In detail, the problems are handled in the following
way: After a brief review of the compactification of the
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Minkowski space M, we discuss.in the first section the
structure of vector fields on M?.

In Sec. II cotangent vectors and the tensor product of
cotangent vector spaces on the manifold M? are treated,
especially the symmetric tensors and the antisymmetric
tensors of rank 2,

In Sec. I the different tensor fields are discussed,
The results of these first three sections allow us to
treat the problem of extending Maxwell’s equations for
the vector potential to the manifold M? in Sec. IV. 1t is
shown how these conformal covariant equations on M:
look in global coordinates and how they look if they are
written in local coordinates of the space M,.

In Sec. V the notion of gauge transformations on M?

is introduced, and it is shown how their local version
generalizes the Lorentz gauge in Minkowski space M,.

In Sec. VI we extend the Maxwell tensor field £/ (x)
from Minkowski space M, to an antisymmetric tensor
field F*¥(n) on the manifold M% and discuss the mani~
festly conformal covariance of the equations these fields
fulfill.

In the last section, VII, finally, we investigate the
transformation properties of scalar, vector, and tensor
fields on the manifold M? and discuss again their local
versions in Minkowski space M,.

I. VECTOR FIELDS ON M}

Let us first briefly recall the definition of the com-
pactified Minkowski space M %5114 Consider the
space RS defined as

z:={q=(n,°°°,n5)€1R6\{0}} 1)

together with the metric g, g%= —gil=ere= gt
=1 and all the g*¥=0 for u+#v, u,vc(O,l,“' 5), and
the subset @3C

={gecRS:ng, 0 =n*n, =0} @
We introduce the following equivalence relation ~ in @3:
q1~q, iff n¥=pnt for all u and some pc R,:=R\{0}.
Then the compactified Minkowski space M? is defined as
ML=/~ (3)
Let be 7 the canonical map 7: Q5 —~ M2,

In two papers'®!* together with Go and Kastrup the
notion of conformal causality and the Klein—Gordon
operator for scalar fields on this space M? were investi-
gated. Let us now consider vector fields on M%, We de-
note by X(Q3) the set of all C~ vector fields X on the
manifold @3, i.e.,

X@):={X=a*()0,: n*a,lq)=0
=0 -, M) e @5,a"(g) e C*(QR)}. 4)

Of special interest for the following discussion is the
following subset X, (Q5)C X(Q3):

X (@):={X=a*()0,: X c X(Q3), a*(pg)=
= pa* (@)W, ¥pe R}, ®)

i.e., the set of all vector fields whose components are
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C™ functions homogeneous of degree 1 in ¢. In the set
X,(Q3) an equivalence relation = is introduced as
follows:

Let X,=a*(-)0, and X,=b* ()3, € X,(Q3), then
X, =X, iff b*(@m)=a*({m)+ oc(n)n*
for some C* mapping oz @~ IR,
homogeneous of degree 0 in 1, 6)

Lemma: The quotient space X' (r}): =X,(Q%)/=, whose
elements we denote by [X], is isomorphic to the space
X(M?) of all C” vector fields on M?, so that we can
identify the two spaces,

Proof: It can be shown'? that the tangent bundle of the
manifold M? can be identified with the following set:

Tord:={[(g,a*3,)], g € @3,a*3, € T,(Q3),
where (g,a*3,), (¢’ ,a*'3,) belong to the same class
[(g,a*3,)] iff #*’ =pn* and a*’ =pa* + on*
for some pe R, and some oc R},

Consider an element [X]=[a"(-),] € X,(Q3)/~ and an
element [g]e M*:

[(X10aD: =g, a* @), TOLY). )

It can be easily seen that this definition does not depend
on the representative g of [¢] nor on the representative
a*(-)o, of [X]: Take any other two representatives ¢’ and
a*’ ()2, of [¢] and [X] respectively, then (g, a*’(¢g’)3,)
determines the same class as (7,a*(¢)3,) in T(M?2) be-
cause 1’ =pn* and a*’ (pg)=pa*’ (g)= p(a“(q)+ O(q)ﬂ“)
=pa*(q)+ on* with pe R, and some &< R. The fact that
a*()e C” (@) ensures that the above mapping (7) is even
a C” section,

On the other hand let [X] be a C* vector field on M},
i.e., inlocal coordinates x = (x°, %!, x%, x%) [X] has the
form [X]=A’(x)a/ax!, where the functions 4/ (x)
€ C*(R?). The local vector field 4/ (- )8; can be expressed
as a vector field a*(-)3,, where a“(pn) pa®(n) and a*(+)
€ C*(@3) for all =0, 1 2o+ 5, The components of the
vector field a*(-)o, e X (Qg) are given in terms of the
components A4’ (x) in the following way*¢:

a’(n)=kAl (n/x), a*(m)=0, (8)
an)=24,m/x), n=mn',n%, 1),

This vector field a* (- )8u determines exactly one class
[a*(-)%,] in X,(Q3)/~. This completes the proof of the
lemma.

Il. COTANGENT VECTORS AND TENSOR PRODUCTS

To treat the Maxwell tensor f¥ in a conformal way,
we next have to investigate the 1- and 2-forms on the
manifold M?. For this reason let us first discuss the
cotangent vectors w, of @5 in a point q.

In the coordinates 1 a cotangent vector w, at a point
g € RS has the general form

b*c R for all pu=0,1,---,5, 9)

Consider next the cotangent vector & w,=n*dn,. Applymg
it to a general tangent vector X, _a“a e T (R)CT, (]Rs)

w,=b"dn,,
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we get
@, a*d,)=a*n,=0 because a3, e T (Q3).

Therefore, the cotangent vector n*dn, =0on T (Q}). I
we therefore introduce in the set T*(]ﬁ") of all cotangent
vectors in ]R6 the equivalence relatlon ~*

he dnu ~*b“'d112 iff ber =pe + p’?“, (10)

the space 7 ¥(Q3) can be identified with T} (Iﬁg)/—ﬂ‘, the
elements of which we denote by [b* dn,].

pER,Vu,

To construct the space T¥(M}) we apply a representa-
tive b* dn, of [b* dn, ] to any representative ¢*d, of an
element [a“8 ] of the tangent space T, (M‘*) this gives

b* dn* (@*9,)=b*a,. 11)
As a special case consider the zero tangent vector
a*d, =n"ad,:

b dn, (1"8,)=n"b,=0 for all b*dn,. (12)

Therefore b“n, =0 is a supplementary condition for
cotangent vectors acting on tangent vectors in M:.,

Consider the set T*(Q3)
(@) ={(g, [b#dn,1):q € @5, [b*dn, ]e T*@)}.  (13)

This set is called the cotangent bundle of the manifold
Q3. To get from it the cotangent bundle of the manifold
M¢, we introduce again an equivalence relation =* in

T*(Q3):
(g,[b%dn, D =*(g",[b*>an,]) iff n* =pn*, b* =p™b* + on*

for some pce R, and some cc R, (14)

It can be seen very easily that the above definition of
~* does not depend on the choice of the representatives
b*dn, and b‘“dn . As always we shall denote the ele-
ments of the set T* (M%) defined as T*(Q3)/=* by the
symbol [(g,[b*dn,])] or by [(q, b*dn,)]. In the next step
we want to show that the set T* (M“) can indeed be
identified with the cotangent bundle 7*(M?). For this
we consider the subset T[“(M‘*)C T* (M%) which is de-
fined in the following way:

T¥, (M2: ={[4g,[b2dn, ] c T*(M12):[q] fixed} (15)
and the subset
Ty, ={{(g,a*3,)] € T(M2):[q] fixed}. (16)

Choose any {{g,[{54dn )] T%,,01%) and any [{g,a"? ]
€ Ty, (M%) and two representatwes (g,b*dn,) and (q,a“a )
of these classes, Then

lg,[b2dn, D (@,a*3, )} :=b%dn, {@"3, }=a*b,.

If ¢’ =pg and b*’dn, and a*’9, are other representatives,
we get

@0 dn, X" ,a*3, )k =b*"a
X (Pau"" oznu)= b"au’

u' =(p7p* + o)

because a”n“—b“n =n*n, =0. Therefore, T?‘GI(M‘) is
contained in the dual of T[ 01,

We can express any element [(g,[54dn, )] e f?‘q,(M‘:)
also in local coordinates x of the chart U, (for the de-
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finition of the different charts U,, see Ref, 10):

bedn, = b* 2—22 dx, = Vidx, (16’)
L3

where V¥ =xb* - kb*x" and f:nkK'l, k=0,1,0°°3,

On the other hand, let there be given a cotangent
vector V*dx, in local coordinates »/; then we want to
express it in the coordinates 7. This can be done via the
mapping 7{,,:

Tt 015) —~
Tl @ 1(X,)
=@, (7, X, ), where oy ,e T, (M3) and X € T,(Q3).
(18)

T (Q3), a7

Taking w, =dx’, we get
78, (dx!)ard, )= dx! @k ek Na =alk™!
= (b*dn, - 2% dx - 27D dx) @43,

271kt - 271pra,

~nla*x?

=akbk —
From this we get

b =0, by=k"0,, b*=2x"nl,
For the general cotangent vector V/dyx, finally the
result is

Vidx,~btdn,

with b =0, p*=k"V*, b*=2pIV,k" (19)

This cotangent vector b*dn, determines uniquely a
class [(g,[6*dn,])] in the set T¥,, (M%) and therefore there
is 2 one-to-one map of Tt l(M“) onto the set T}, (M2).

Next let us construct the tensor product T}, ,012)®
®Tt, (M;). We proceed in the same way as we did in con-

structing the space T} (M), The general element of
the tensor product T*(ﬁ!ﬁ)® T* (]ﬁ!6 has the form:

Frvdn, @dn,, (20)
As a special case consider the expression
F‘“’:b”ﬂ"’ (21)

where (b*) is any point in R®, Applying this tensor of
rank 2 to an element of T {Q3)® T (Q3), we get
benvdn, ® dn, (a3, ® a"B,,): ba, na,=0,

because a9, is an element of TQ(QS), The same happens
for the tensor F“vdn,A ® d7, where
(22)

Therefore, the tensor (b7 + b n*)dn, ® dn, acts on the
tensor product 7,(Q3)® T,(Q3) as the zero tensor F4’=0,
It is therefore stralghtforward to introduce in T (R$)
®T* (RS) an equivalence relation ~¥

Fuvdn, ® dn,~¥G*vdn, ® dn, iff F*’=GH’+ bV + b/'n*
for all v, p=0,°<-,5 with b,5" € R®, 23)

To get finally the tensor product T, (M2)® T} ,(M;), we
apply any tensor F*¥dn, ® dn,e TH(QF)® TF(Q}) to the
special elements 13, ® ¢“3, and a*3, ® 19, & T, (M?)

O T, (ML)

Fuevdn, @ dn,@“3,® n"d,)=

Fuv—n*p”,

Fuvg m,, 24)
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Fevdn, ® dn,(n*3, ® a3, ) =F*n,a,. (25)

Since the elements 70 ® ¢*3, and ¢*3, ® 73, are the
zero element in T, (M?:)® T, ,(M}), the general tensor
F*¥dn, ® dn, applied to it must give zero: Fe¥q n,=0
=F#**n a, for all a*n, =0, From this it follows that the
relations

Fuvnu o nv (26)

and

Frvp, «cn* must hold, 27)
The cotangent vector nvdn, € T},,(M;) is the zero cotan-
gent vector, and therefore we can demand

Fevn, =0=F"'n, on Q. (28)

In the tensor bundle
TH@):= U TT@® THQ)),

whose elements we denote by the pair (g, F*vdn, ® dn,),
we can consider the following equivalence relation =}:

{q, F*vdn, ® dn,)=f (g’ , F**dn,® dn,)
iff -nul =pnu’ Fuv = p-ZFuv+ bunv+ CV’I’]“

with b7, =¢*n,=0 and peRR,. (29)
We put T3 (M2): = T3(Q5)/~% and denote the elements

of this space by {(g,F“¥dn,® dn,)]. The space Tj(M}) can
again be identified with the bundle T} (M?%): Take any two
representatives (g,a*3, ®4*3,) and (¢’,c*d, ® ¢'3,) from
the class [(g, (23, ® a”3,))] and any two representatives
of the class [(g, F*¥dn, ® dn,)], say (q,F**dn, ® dn,) and
¢’ , F*"dn, ©dn,):

(¢, F*vdn,® dn,){(q,a"8,® a”d,)}=F* a,d,,

I

(qr ’Fuwdnu ® dTlv) {(ql R cuau ® Cwav)}:Fuwcuc'

v

(30)
(31)
If ¢’ = pg, then F*¥ =p2F¥v 4 puy + b 1)* and c* = pa*
+ 0N, ¢*’ =pa*’ +0'n*, and therefore
Fovre ol = (pF* + b*1” + b¥n*)

X (pa, +06n,)pa,+0'n,)=F"a,a,

because n, F* =7 F*=n a* =7’ =nb" =n,a* =n,7"
=0,

Next we want to give a description of the tensors of
rank 2 at a point [g]< M? in local coordinates. It is
known'® that any such tensor can be written as f#dx,

@ dx,, where the dx; constitute a basis of the cotangent
space Tt,,(M2). The connection of the components f#/ and
the components F*¥ can be found by using the formula

onH

ant=-— dx' with nf =kx!, x=kx'x,,
x independent of x%, (32)
Then we get
Fuvdn, ® dan, ' f¥dx, @ dy,
with
FY = kPFH — g BFiexd g2 FRixt 4 g 2F*eyind (33)

From this we can also see that all representatives of an
element [(g, F*dn, ® dn,)] correspond everywhere locally
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to the same tensor and are therefore the same tensor on

ML

(4

On the other hand, given a tensor from T3 ,(M?) in
local coordinates f#/dx, ® dx,, we can easily find a
representative of this tensor in the 7 coordinates,
namely the tensor F*¥dn, ® dn, with
FH=fin?, P=ro2n Y,
Fr=g72m, [, F™=x4mn,f %,
Fix— fxi — e — Fa - FrA (),

(34)

This can be derived from relation (33) and from the
properties (28).

Of special interest for us are the so-called skew-
symmetric tensors and tensor fields which we want to
discuss next.

We have seen that every tensor of rank 2 on M} can be
represented as a class of tensors of rank 2 on Q3. From
now on we make the identification

T3 (2)= T3 ) ={[ (g, F**an, ® dn,)} (35)
Then every F*¥dn, ® dn, can be written as
Fovdn, ® dn,=2""F+¥(dn, © dn,+dn,® dn,)

+ 27 F (dn, ® dn, - dn,® dn,) (36)

One can see immediately that only the symmetric part
of F*¥ contributes to the first term and only the anti-
symmetric part to the second one. For the antisym-
metric part we write, as is common,

an N dn,:=2"(dn,®dn, - dn,®dn,). (37)

The antisymmetric tensors of rank 2 which we denote by
F¥¥dn, A\in, are therefore exactly the tensors F*¥dn,

® dn, where F*’=— F**, Whereas the condition (28) is
still valid, two antisymmetric tensors, (g,F**dn,Adn,)
and (¢’ , F*"dn Adn,), are equivalent iff

Fev — p'zF‘”"-F bun¥ — bVn*

for ¢’ =pg and some b= (b*) with n*b, =0. (38)

In local coordinates the antisymmetric tensor of rank 2

can be expressed as S¥dx,Adx;, where SY =~ 8/,

Given an antisymmetric tensor (g, F**an Adn,) in 5-co-

ordinates, the corresponding tensor in x-space reads as

follows [see (33)]:
SHdxNdx,;, where S =x>F!i - g*Fiky — k* F¥iyt, (39)

Inserting F** from (38) gives again the same S¥ for all
b* with 74, =0,

The inverse problem given S¥ to find F*¥ is already
solved in formula (34). For S¥ = -5/ we get
Fli=g™2St, FM= K'32ni8” = - K'3277¢S“ =~ Fi*,

(40)
F"":FM:F)'“:FM:F{“:F“:OQ

HI. TENSOR FIELDS ON M2

After the discussion of the different tangent, cotan-
gent, and tensor spaces in the last sections, we consider
next tensor fields on the manifold M2, Generally these
are defined as differentiable sections of the correspond-
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ing tensor bundles. As a special case we have already
discussed in Sec. I the sections of the tangent bundle of
M3, the so-called vector fields. This procedure will be
generalized now to tensor fields of rank 2 on the
manifold M?,

Let be T¥ (]fis) the set of all tensor fields w of rank
2 in RS, where

w=F*()dn, ®dn,, F*(): RS~ R (41)
with the following properties:

1) F**()eC(Q}),

@) Fev(pg)=p2F** ()W g c RS Vpoc R,

@) Fe*(mm, = F**(nn,=0 VY (n) = Q3.

We introduce an equivalence relation ¢ as follows:
If w,=F*()dn, ® dn, and w,= G**(-)dn, ® dn,, then
w Lw, iff GH2(g)=F"(g)+b* (@) + g+,

b (), ¢’ )€ C*(Q7)
homogeneous of degree -3 in ¢, (42)
Denoting
T 2):={lw]} = TF RS/ (43)

we show that T;‘ (M‘;) can be identified with T} (M?), the
set of all differentiable tensor fields of rank 2 on the
manifold M?,

This can be seen immediately: Take q,¢’ €[q], ¢’ =pg
and F*v(-)dn, ® dn,, G*¥(-)dn, ® dn,; then

[wllgD =[G, F**(g)dn, ® dn,))=
=[l’,6*(g" an, ® dn,)].
This is true because
G** (@) =F* (¢’ )+ b*(g' M + cv (g’ I’
=pF*(g) + p 2 (0™ (@ + ¢V (@)n*)

and therefore (g,F“*(g)dn, ® dn,) and (', G*(¢’)dn,
® dn,) are representatives of the same class in T¥ [q,(M“).

44)

On the other side it is clear that every differentiable

tensor field we TF(M?) determines one class of TX*(RS)/
t

The same arguments as above show us also that the
set of all C”-antisymmetric tensor fields of rank 2
which are also called differential 2-forms is isomorphic
to the set T“(]RG)/ £ where the equivalence relation &
according to (38) is given by

wilwt iff G*¥(g)=F"(g)+ b= (g’ - b*(gn*
with b*{(g) € C*(®3) homogeneous of degree — 3 in g
for all u and n#b,{g)=0 on Q5. (45)
The set T“(]RG) is the set of all tensor fields from
T (]RS) which are antisymmetric,
1IV. MAXWELL EQUATIONS FOR THE VECTOR
POTENTIAL

In Minkowski space Maxwell’s equations for the anti-
symmetric Maxwell tensor field f ¥ (x)dx;Adx, in the
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To solve these equations,

presence of an external current ¢ (x)= (c,(x)) are

997, )= — ¢, x). (46)

it is convenient to introduce
the so-called vector potential field 47(x), j=0,1,--+,3,
in terms of which the Maxwell field % (x) reads

FHE) =04 (x) -39 A ). (@m
Equations (46) then become

319,47 (x) - DA*(¥)=~c'(x), i=0,+°",3, (48)
or, if we introduce the function x(x),

X(x)=28,4% (x), (49)
Eqs, (48) are

QA (x)=atx(x)+ cilx). (50)

The set of equations (49) and (50) is equivalent to Max-
well’s equations (46). The potential 4’(x) is not uniquely
determined because any gauge transformation

Al(x) = AT (x)+2IA), Al)e CHOL,),

keeps the tensor field f%/(x) invariant, a fact which is
known as gauge invariance of electrodynamics., Working
in Minkowski space with the Lorentz group as the rele-
vant invariance group, one chooses the so-called Lorentz
gauge which is defined by the function

(51)

x(x)= (52)

To arrive at a Lorentz covariant procedure, one must
then demand that the gauge function A(x) fulfill the
equation

DA(x)= (53)

If one does not specialize the function x(x), then under a
general gauge transformation (51) the function x(x) is
transformed in the following form:

X(x) = x(x)+ O A(x) (54)

and the potential A% (x)}= A7 (x)+ 37 A(x) therefore fulfills
the equation

CA" (x)=07X (x)+ ¢ (x), oo

where ¥ (x) is given by (54) and A(x) is any differentiable
function in M,

It has been known already for a long time* that Max-
well’s equations are covariant with respect to the full
conformal group. We want to show how this conformal
covariance results when working on the manifold M‘;,
This we shall do in two ways: First we investigate the
set of equations (49) and (50) for the vector potential on
M‘; and show that there is a natural generalization of
these equations on the compact manifold which are mani-
festly conformal covariant., In the second treatment we
extend Maxwell’s tensor f#/ to a conformal tensor F*¥ on
M? which fulfills also manifestly conformal covariant
equations on M?, (See also Refs. 7 and 16,)

Consider now the equations
M4 () =27 x{x) + ¢! (x),
x(x)=2%4,(x).

Discussing the vector fields an M2, we have seen that a

(56)
(57)
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vector field [X]=qa* ()3, on M? can be written locally as
Al (x)9;, where A!(x)=«k""a'(n) —k*na*(n). (58)

On the chart U, therefore we can express every vector
field Af (x)aJ in terms of the coordinates 7 as we did in
(8). In general the functions a*(n) are not well defined
on the whole manifold @3; this depends on the behavior
of the functions A’(x) at infinity. For the forthcoming
discussion we shall assume that the functions a* () are
even C”(IRS),

We mention the fact that the choice of the function a*(n)
in the relations (8) is competely free because we have a
whole class of vector fields a*(+)3, which locally have
exactly the given form 4/(x)3,. To describe the vector
potential A/(x) in terms of a field a*(n), we have there-
fore the degree of freedom of a function. The question
now is what function a*(n) shall we take. The answer to
this is given to us if we look at the set of equations (56),
(57). There appears a function x(x) for which we also
assume to be extendable to the whole manifold M§ and to
belong to the class C*(R®) in the variables 7. As the
representative a*(-)3, of the class [a*(-)3,] therefore we
take the following:

a*(n)=~2""ex(m), af(n)=rAI(N/k)-2"nix(n/x),

(59)
arm=20A4,(/k) - k"0, xM/ k) + 2" x(M/ k).
The function o*(n) is determined by the requirement
n*a,(m)=0, (60)

It would be enough for a*(-)3, to be the representative
of a vector field on M} if the equality (60) holds on @3 as
we have seen earlier. Now we demand (60) to hold on
the whole space 1i’zg This is of importance for the proof
of the following Theorem:

Theovem: Let [X] and [C] € X(M?) be C* vector fields
on M} and let a*(-)3,, c*(-)3, be representatives of [X]
and [C] with a*(-) and c*(-) € C*(IR®) and n*a,(n)=n*c (1)
=0 on R®, Let A/ (x)a]. and C/ (x)aj be the local representa~
tives of [X] and [C] in the coordinates x € M,, Then the
following two sets of equations are equivalent:

Pga“(n):c“(n)}
vV u
04, (x) = - 2,a* (x) + C, (x),
iff 314, (x)=~ 2a* (x),
Lia*(x)=C*(x) where a*(x)=«k"'a*(n)

and  C*(x)=«"'c*(n).

P =k + 4«3, (n*a, + 1) is the Klein—Gordon operator
on M. 10

Proof: In the already mentioned paper!® we have shown
that the Klein—Gordon equation U®(x)=0 on the manifold
M reads P ,¢([n]) =0 with Ppj= x>0, + 4x3,(n*3, + 1) and
#([n])= ¢(®m/x). A simple calculation gives the following
important property of the differential operator P2 Let
() be any C(IR°) function homogeneous of degree « in
7. Then for any me Z

Poxme(n)=«k™Pen) 61)

as long as k™¢(n) is still a C*(IR®) function. Therefore,
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Poxa*(n)=«"Pra*(n). 62)
On the other hand we have shown in Ref, 10 that
Poxta*(m)=c (k™ iff Oa*(x)=C*(x)

where a*(x)=«x"la*(m), C*(x)=«x"'c*(n). (63)

Next let us calculate the action of the operator P onthe
expression x™'a' () — k¥ a*(n)= Al (x) for x #0:

Plca? (n) - k0P a*(n))
=k Pral () - k2 Poa*(n)+ 2k (kd! + 2173, Ja* (1),

(64)
In local coordinates x on M, we get
BA (v)= k" Pa’ () - %! Da*(x) - 2£j—a"(x)o (65)
Therefore, the two equations
DAY (x)= - 209a* (x) + C (x), (66)
Oa*(x)=C*(x) (67)
are equivalent to the two equations
Ppal(m)=c!(n), (68)
Ppa*m=c*(n). (69)

Let us next calculate Pna*(n) where a*(n)=x"(27a,[n)
- xa*(n)) for k+0 everywhere in R®, An easy calculation
gives

Ppa*m)=«1@2nPga,m) - \Pga*(n)+ 4x*(kd! + 2190,)

Xk a, () - k7'n,a* M)+ 8ra*(n)). (70)

In local coordinates this reads

PoxTa*m)=«"*2Poa,(n) - kAP ga*(n)

+4£:—A’(x)+ 8a*(x). (1)

Therefore, under the condition Praf(n)=c?(n) and
Pra*(n)=c*(n) the relations
Paa*(m)=c*(n) and 94 (x)= - 2a*(x)

are equivalent,

(72)

The set of equations
PDa”(‘n)zc“('n), [J.:O,“‘”,S, (73)

are Mdxwell’s equations for the vector potential field on
M. Let us add a corollary to the above theorem which
shows explicitly the conformal covariance of Maxwell’s
equations on the manifold M3,

Corollary: Let be [X] and [C]€ X(M?) and a*(-)5,, c*(-),
representatives of [X] and [C] with the following prop-
erties: a* (n)=«%a*(n), c*(M)=«*¢*(n), where 4*(n) and
&*(n) are C*(R®) functions homogeneous of degree 1
and - 3 respectively. Then Maxwell’s equations for the
vector field A7 (x) in Minkowski space
HAai(x)= - 20%a*(x) + C/ (x),

A, (x)=-2a*(x), Oa*(x)=C*(x)
are equivalent to Maxwell’s equations in M?*:

Deatm=¢&*m), p=0,:+-,5with 0;=23%3,.
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Proof: Ppia* (n)=Pa* (n)=k*P ;@ (n). But for any
function f(n) homogeneous of degree —1 in 7 the differ-
ential operator P is exactly the operator 20 ¢° This
and the theorem proves, therefore, the corollary.

The corollary gives us in a manifest way the con-
formal covariance of Maxwell’s equations: If [X] and [C]
€ X(M?) are vector fields with representatives a*(- )au,
c*(-),, where a*(n)=«*a@"(n) and c* (n)=«*¢"(n) for all
i, such that Egs. (73) are fulfilled, the for every w
£S0(2,4)/Z, the vector fields [X], and [C], are also
solutions of Egs. (73), where the generating represen-
tatives ¢*(-)3, and c%(-)3, of [X], and [C], are defined
as follows:

at(m=«*w* @ w™n), ctm=r*w" " wn). (74)

The components @ (1) and &*(n) indeed fulfill the equa-
tions L4a%(n)=¢%(n) for all u and therefore Pszci,‘; ()]
=ckn).

We want to add the following remark: The transforma-
tion (74) is not the transformation which is induced by
the mapping w, (see Ref. 14), We can now say that the
system of differential equations for the vector fields
Al (x) as they are written down in the theorem is a sys-
tem of conformal covariant equations, The important
fact is that the Lorentz gauge x(x)=0 is not a conformal
covariant gauge. One has indeed to take a whole class
of functions x(x) with Cy{x)=0,

The conformal covariant equations Ui @*(1)=¢*(n) has
been used already by some people some years ago.
Mack and Salam take one further supplementary condi-

tion for the fields @*(n), namely,
F’“(’iu(n):O., (75)

We want to show that this condition follows already from
the set of equations U7, ()=¢,(n). To see this, let us
consider the following expression:

(kd, + 20,3 k™ - ki a)
=d,a7 + 219,27 (@M + a¥A) — da*x™t
— k1 - k3, =23, Ja* - 2ax"1D ",

where we have used the identity

ANl = 8,27 (ka + ra®), (76)
which follows from the condition
nta, =0, (1)

The identity (76) is only true if the relation (77) is valid
for the whole space 11‘%2, If the relation (77) is true only
on @3, which is enough for a*(-)3, to be an element of
X(Q3), then we cannot use (76), and what follows must be
modified,

The right-hand side of the identity preceding (76) can
be written as

dal +da + 0,aF — dxa* =3, a — 4x7la", (78)
In local coordinates, then, we get
3A7 () =12,a*(n) - 4a* (x). (79)

But 8,47 (x)= - 2a*(x), and therefore the relation (79) says
8ua“(n):2ic'1a"(n)a (80)
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If we further have a* (n)=«x2%G"(n) for all u, then

3,a"(m)=«%,a* (n) + 2xa*(n)=2xka* (n), (81)
and therefore
8,a*(m)=0. (82)

We have therefore shown that the relation (82) follows
already from the equations 0 @"{n)=¢&"(n) if the condi-
tion (77) holds on the whole space RS, For vector fields
a*(-), with a*(n)=x%3"(n) and the condition (77) holding
only on 5 the relation (75) is in contradiction to the set
of equations Ugd*(M=2&*(MV .

V. GAUGE TRANSFORMATIONS ON ¢

It is quite natural to generalize the concept of gauge
transformations to the manifold M%, Let [X] <€ X(M?) be a
vector field with a representative a* ()3, =«%a*(n)2,
which fulfill Maxwell’s equations

Oea* (m)=¢&* (). (83)
Then we can introduce the transformation

a*(m)—-a*m)+o* o), (84)
where ¢(n) is any C*(IR®) function with

Oep(n)=0 (85)
and homogeneous of degree 0 in the variables 7.

The vector field a* (1), with
a (my=r*@*m)+a*¢ ) (86)

has the property n*a,’(n)=0 everywhere on R® and is
therefore the generator of a vector field [X’] € X(M?),
Furthermore, it fulfills Eqs. (83) because of (85) and is
therefore a solution of Maxwell’s equations on M;. Let
us next see how the transformation (84) acts in local
coordinates. From (85) and the theorem of the last sec-
tion it follows that the vector field ¢’(x)3,, which is the
vector field [¥*3“¢(n)3,] in local coordinates x, fulfills
Maxwell’s equations

O (x) =~ 29 ¢ (x),
¥, l)=—-2¢"x), O¢*(x)=0.

In terms of the function ¢(n) the components ¢ (x) read
as

(87)

& ()= kB (1) + 2173, 0 (1) = 50— & (),
! (88)
0 ()= = 2,6 ()] .

AKX
These expressions have to be interpreted in the sense
that we first perform the differentiations and then re-
place the variables 1 by 7’ =kx’ and )= kx"x,. Inserting
(88) into (87) gives

(7 () = 207 @* () = 207 (= 268, S ()] o cexs

ASKX
842, 3(6)= 43,0 (1) | st » (89)
A=kl xp
O(= 243, ¢ M s aens =0,
l:kxkxk
and therefore

Co¢(x)=0. (90)
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The transformation (84) [X]—[X’] induces, therefore, in
local coordinates the transformation

Al(x) = A (x)+3 o x), (o1)
x(x) = x (x)=x(x)+ Op(x),
with
Ox’ (x)= Ox(x)}+ 00¢ (x)=0,
where the function ¢ (x) fulfills
06 () =443, & 1)} s sens - (92)

Aakx2

Equation (92) means the following: Take the function ¢ {x)
then this defines a function ¢ (n)=¢®/x), n= 1°,7*,n%,7%)
on R®, On this function the operator 3, acts, and after-
wards we replace the n again by the x coordinates in the
known way.

It is trivial to go the other way round: We start with
a transformation 4/ (x) -4/ (x)+3/¢ (x), where ¢ (x) ful-
fills Eqs. (89); this determines a C*(R®) function ¢(n)
and a vector field [¢*(n)?,], where

o*m=-2%,0m), @ M=«%'¢n),
@ ()= - 2k%, ¢ ().

Therefore, we can write
@ m)=k"*p ). (93)

Since Pop"(n) =Px*d* ¢(n) =0 it follows that N ¢(n) =0.
Therefore, the transformations (91) and (92), on the one
hand, and the transformations (84) and (85) are com-
pletely equivalent,

As is known, the transformation 47 (x) —A4/ (x)+3/¢(x)
keeps the Maxwell tensor f*#(x) dx,Adx, fixed. The
equivalence of the gauge transformation in M, and M‘: as
disucssed above suggests that the transformation @ (n)
—~a*(m)+3*¢(n) also keeps a similar antisymmetric
tensor field f ""dnu/\dnv invariant, That this is indeed
the case we want to show next,

VI. THE MAXWELL TENSOR IN M}

In this section we use the results of our discussion of
tensor fields on M:. As we have shown in Sec. III the
antisymmetric tensor fields of rank 2 on M? can be
written as a class of tensor fields on Q5:

[F;z vdnu/\ dT)v],

where the equivalence relation defining the different
classes was given in (45). For the local coordinate
representation we got the expression (39). Let us there-
fore calculate in the n coordinates

e
575V )= k3, +2m,3,)
X (K2FH (1) - k> F* Mk — k®F* (1),
A rather trivial calculation gives
0
T SH )= k%3, FHu() = wnta, Fee (), (94)

where we have used the relations (28) on the whole space
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R®, If now 3,S* (x)=C'(x), then from (94) it follows that
95)

For given S% (x) in Minkowski space we have determined
in (40) a representative of the corresponding class
[F#vdn,Adn,] on M%. Because of the fact that the func-
tions F**(n) can be chosen always such that they satisfy
the equation

k%0, F (n) — k*0*3, F¥: (n)=k""c* () - k2P c* ().

8, (n)=k~c* (), (96)
we have the result

k%, Ft* (n)=«"ct(n) (97)
and therefore

3, Ft(n)=x~ct(n) for i=0,°°-,3, (98)

If, as we have assumed, the F*¥ fulfill on the whole
space R® the conditions (28), then the relations (96) and
(98) give that the equation

3, P ()= k™*c*(n)
also holds on M?, where we have used the relation
n*c, (M) =0.
If, on the other hand, there is given an antisymmetric

tensor field [F*vdn, Adn,] on M} of rank 2 which has a
representative F“Ydn Adn, that fulfills the equations

3,Frr(m=2&Mm), c"m=«'dMm)

and 1, F*(n)=0 on the whole space R®, then the anti-
symmetric tensor field $¥ (x)dx,Adx,, which is the
tensor field [F*dn,Adn,] in local coordinates x of
Minkowski space, satisfies Maxwell’s equations 3,S% (x)
=CH(x) for all =0, - --, 3, where C!(x)=«"ct(n)

- k20t (1),

(99)

Equations (99) can be solved by the standard procedure
of introducing a vector potential 3*(n) such that

Fev(n)=24a*(n) - +a°(n) (100)

The functions @*(7) must thereby satisfy the conditions
a*(pn)=p~a*m), na,m=0,

Oef* (M) =c*(n)on RS V. (101)

Our discussion in Sec, IV shows that these are exactly
the conditions a vector field a* (-)3, with a“ (n)= k%" (1)
must fulfill to be a solution of the set of Maxwell equa-
tions on M?, The gauge transformation &*(n) —&*(n)
+9#¢(n) therefore keeps the antisymmetric tensor field
F‘“’(n)dnu/\ dn, with F**=0844" - 3%@* invariant so that
we have a complete analogy to the local situation in
Minkowski space.

The formulation of Maxwell’s equations as the set of
equations (83) for the potential or as the set of equations
(99) for the components of the tensor field shows mai-
festly the conformal covariance of these equations:

If 2*(n)9, and &* ()9, fulfill (83), then w3 (w"'n} and
w4 (w™n) do also for all w € SO(2,4), and, if F**(n)dn,
Adn, and &*(n), satisfy (99), then whwiFeo (w™'n) and
w“&° (w™'n) also do the same,

Equations (8) and (33) allow us to write these trans-
formations also in the local coordinates x in Minkowski
space, which we shall do in the next section.
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Vil. TRANSFORMATION PROPERTIES OF FIELDS
UNDER CONFORMAL TRANSFORMATIONS

Let ¢(x) be a classical scalar field on M, that means
a mapping ¢: M, — C. Under certain conditions which we
have investigated in a recent paper'® this functiong(x)
can be extended to the whole compactified Minkowski
space M;. The resulting function we denote by ¢ (n]).
The functione ((7]) therefore has the property

o= o x)=lx), (102)

where ¢ MO U — ¢ (U)=M, is the local chart ¢, (1])
=k, 22 0 k).

We can now define what we mean by the dimension d
of the scalar field ¢ ([7n]).

Definition: A field ¢ (n]) has the dimension d if it
transforms under the conformal group in the following
way: If ¢([n])=«?¢ (1), then ¢’ (n])=«"! (1), where
& ()= ¢ (w™n) for any w an element of the conformal
group SO(2,4).

We see from the discussion of the free scalar field in
Ref. 10 that the free scalar field has dimension 1, be-
cause only then a solution of the Klein—Gordon operator
will be mapped under any conformal transformation onto
another solution of this equation, For any d#1 this is
not the case. It is quite straightforward to write the
transformation law locally in the coordinates x: For a
Poincarée transformation (A,a) we get

@ (x)=¢ (A (x —a)), (103)
for a dilatation D(p)
¢ =0 0(px), (104)

and finally for a special conformal transformation C(e)
the result is

(p’(x):(1+czx2—200x)'d¢( %+ cx? > . (105)

1+c%x%+2ce«

For infinitesimal ¢ and p=1-+¢ we get just the transfor-
mation properties of a scalar field which many authors'’
have already postulated. The transformation property of
a scalar field under any global conformal transformation
as we have written down it in (103) to (105) has also been
postulated by Todorov.

Let us next consider the case of vector fields [X] in
M?. Take any representative a*(n)3, of this field, The
dimension d of [X] is then defined as follows: If a*(n)
=x™4gG" (n), then a*(n) should transform under any con-
formal transformation w as

a*my—-a*’ (n)=«**a*" (n), (108)

where @’ (n)=w:Va*(w™n).

From our discussion of the free Maxwell equations in
See. IV we see again that the dimension d of the free
Maxwell field is equal to 1 since then a solution of
Maxwell’s equations is transformed under (106) into
another one.,

The transformations (106) in local coordinates x are
the following ones: Under a Poincar€ transformation
(A, a),
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At ()= A (A (x - ), (107)
under a dilatation D(p)
AY (x) =p A (p7lx), (108)

and under a special conformal transformation C(c),
A ()= (1 = 2c° x + c2x2PA (x) + 2x7 (1 = 2¢ - x + 22y
X c*A, (x) - 2xI (1 = 2¢ o x + 22yt
X 24, (x) = 209 (1 = 2¢ 2 x + 2%t A, (x)
- 2¢9x%(1 = 2¢° x + x%c2P 1R A4, (x)
+2¢9x%c2(1 - 2¢c° x + 2P 1R 4, (x),
with »’ = (v — cx?)/ (1 + ¢*x® - 2cx). (109)

For the special case of canonical dimension d=1 this
gives

A ()= (1=2c°x+cx?)A (x)+ 2x7c* 4, (x)
=209 xF A, (x) + 2¢9 ¢ » xR Ay (x) — 20249 5 A4, (x)
+2¢ic o xxf A, (x) = 2cix s xc" A, (x).

If we further restrict our attention to infinitesimal
special conformal transformations, then the result is

(110)

A (¢t )= A (x) = 2¢ o xAS (x) + 229 P A, (x)
—2¢ix* A, (x).

This is exactly what other authors like such as those of
Refs., 12 and 17 have also postulated.

Finally for the transformation properties of the anti-
symmetric tensor field S¥ (x)dx,/\dx; we get: Under
Poincare transformations (A,a),

§H ()= A AT S (A (x — a)).
Under a dilatation D(p),
SH’ (x)=p™28H (p~ix),
and under a special conformal transformation C(c),
St (x)=olx,c)S¥ (¢’ )+ olx, c)°SH* (x*)
(= 2x9x,c% = 2¢ 2, + 259, (1 + 2% ¢)
—2cicx?)+ alx, c )38 ()
X (= 2xtx,c? - 2¢tx, + 2xtc, (1 + 2 x)
—2¢tc,x%) + dolx,c)® (x2)1S® (')

X (x,x, (et = xicd) + xpe, (et — xied x?),

(111)

with x” = ¢(x, ) (x + cx?) and o(x,c)=1+x%c*+2c° x,
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Systems of differential inequalities and stochastic differential
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By employing vector Lyapunov-like functions and the theory of systems of differential inequalities, a
very general comparison theorem for Itd type stochastic differential systems is developed.
Furthermore, sufficient conditions are given for conditional stability and conditional boundedness of

solutions in the mean.

I. INTRODUCTION

Stochastic differential systems provide a mathemati-
cal formulation for sophisticated dynamical systems in
physical and life sciences. In many circumstances, it is
difficult to solve such stochastic differential systems
(especially nonlinear systems) explicitly, in order to
study qualitative and quantitative behavior of systems.
Many cases, it is enough to know the behavior of the sys-
tem rather than its explicit realization of solutions.

By assuming just the existence of solutions, qualita-
tive and quantitative properties of the system can be
studied by emplying the second method of Lyapunov.
This method has been successfully employed to study a
variety of problems, in a unified way, of ordinary dif-
ferential equations, functional differential equations
(deterministic and stochastic), and parabolic differential
equations. '™ This extension is based on the use of a
single Lyapunov function. It is natural to ask whether it
might be more advantageous, in some situations to use
vector Lyapunov function. The answer is positive. In
fact, Lakshmikantham and others®3 have exhibited the
fruitfulness of such a vector Lyapunov function for the
deterministic case. So, it is natural to except such an
important extension to stochastic differential systems.

In this paper, we wish to exploit the above idea for
Ito type stochastic differential systems. In Sec. 2, we
define various notions of conditional stability and condi-
tional boundedness of the solutions in the mean. These
notions, include as special cases the usual notions of
stability and boundedness of solutions in the mean. In
Sec. 3, we develop a very general comparison theorem
for It0 type stochastic differential systems based on the
vector Lyapunov function and the theory of systems of
differential inequalities. In Sec. 4, we give sufficient
conditions for conditional stability and conditional bound-
edness of solutions in the mean. These results are di-
rect extensions of the Theorems 5.1, 5.2 of Ladde,
Lakshmikantham, and Liu,* and are analogous to deter-
ministic results of Lakshmikantham. 23 Finally, exam-
ples are worked out to illustrate the fruitfulness of our
results. Furthermore, an example is given in order to
show the advantage of a vector Lyapunov function over
a single Lyapunov function.

2. NOTATIONS AND DEFINITIONS

Let R" denote the n-dimensional Euclidean space with
a convenient norm 1., We also denote by the same
symbol !l - Il the corresponding norm of a matrix. Let
R, and R denote the nonnegative real and real line re-
spectively. Let (22,7, P) be a complete probability space,
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By the symbol E[x|K ], we mean the conditional mean of
x, where K © 7 is a sub o-algebra of 7. Let (-)7 stand
for the transpose of a vector or a matrix and let I denote
the identity matrix. Let M,.,, denote a manifold of (n

— k) dimensions containing the origin.

Consider the stochastic differential system of It0 type

dx =f(t,x) dx + o(t, x) dz(t), x(t;)=x%,, (2.1)

where dx is a stochastic increment in the sense of It8, 5:°
x, fER", ot,x) is an nXm matrix and z(¢) is a normal-
ized m-vector Wiener process with

E[(2(t) —2(s)) - (z(8) = 2(s)) 1 =1|t = s]|.

Assume that the functions f and o satisfy the following
assumptions:

{(a;) The m column vectors of ¢ and f belong to
ClR,xR" R";

(a,) for ({,x)E R, X R",
WF(t, x) ot x)li< L(1 +lixit);

(ay) for (¢,%), (t,¥)€ R XK,
(2, x) =72, I+ No(t, x) = o2, I < Lilx = yll.

Under these hypotheses, it is knownS that the solution
x(t) =x{t, t,, x,) of the Itd system (2.1) is:

(I) a strong Markov process with killing time equal to
infinity;

(II) continuous with probability one, separable and for
any 0 st sb<=,

E (max llx()I2/x, )<
tostsbh

(TII) independent of z(s) = z(7) for all s>r=1t;

(IV) uniformly stochastically continuous in any com-
pact set;

(V) continuous in probability with respect to the initial
data.

We shall now formulate the definitions of conditional
stability and boundedness in the mean.

Definition 2. 1: The trivial solution x=0 of (2.1) is
said to be:

(CSM,) conditionally equi-stable in the mean if, for
each €>0, (€ R, there exists positive function &
=58(¢,,€) that is continuous in ¢, for each €> 0 such that
Xy € M,-, and the inequality llx,!l <6 implies

Elllx(t, ty, x )/ x 1 <€, for t=t;

(CSM,) conditionally uniformly stable in the mean if
the 6 in (CSM,) is independent of ;;

(CSM,) conditionally quasi-equi-asymptotically stable
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in the mean if, given €>0, @ >0, [, € R, there exists a
positive number T'=t ({,,¢€, @) such that x,< M,_,, and
the inequality l'x,ll & implies

Elllx(t, ty, x )l /%] <€, for t=t,+ T,

(CSM,) conditionally quasi-uniformly asymptotically
stabl e in the mean if the T in (CSM,) is independent of
to;

(CSM,) conditionally equi-asymptotically stable in the
mean if (CSM,) and (CSM,) hold simultaneously;

(CSM,) conditionally uniformly siable in the mean if
(CSM,) and (CSM,) hold at the same time.

Definition 2. 2: The stochastic differential system
(2.1) is said to be:

(CBM,) conditionally equi-bounded in the mean if,
given @ =0, {,< R, there exists a positive function 8
=B(t,, @) that is continuous in [, for each @ such that
Xo & M, and the inequality llx ! <& implies

Elllx(t, t,, x /2] <8, t=t,

(CBM,) conditionally uniformly bounded in the mean
if the 8 in (CBM,) is independent of {;

(CBM,) conditionally quasi-equi-ultimately bounded
in the mean if, given @ 20, {,& R,, there exist positive
numbers N and T=T(t,, @) such that x,€ M,_,, and the
inequality lix |l s implies

ELx(t, by, x)l/x, <N, t=t,+ T,

(CBM,) conditionally quasi-uniformly-ultimately
bounded in the mean if (CBM,) and (CBM,) hold at the
same time;

(CBM,) conditionally uniformly-ultimately bounded in
the mean if (CBM,) and (CBM,) hold simultaneously.

Remark 2.1; Note that if 2=0 so that M,_,, =R", our
definitions reduce to the usual definitions of stability and
boundedness of solutions of (2.1) with respect to the ori-
gin and we denote by (SM,)~(SM,) and (BM,)—(BM,).

Consider now the auxiliary differential system

u/:g(t,u)y u(to):u()’ (2.2)

where g€ C[R,XR™ R™] and g(t, u) is quasimonotone non-
decreasing in u, for fixed t€ R,. Let u(t, t,, u,) be any
solution of (2.2).

Relative to auxiliary differential system (2. 2), we
need the corresponding definitions (CS})—(CS}) and
(CB)—(CB}) in our discussion that may be defined an-
alogously. For example, the definition of conditional
equi-stability (CSy) runs as follows:

Definition 2. 3: The trivial solution #=0 of (2.2) is
said to be conditionally equi-stable if, given €>0, ¢{,€
R, there exists a positive function & =5({,, €) that is con-
tinuous in {, for each € such that

m

y .
2iuy,y<5 and u,,=0, for 1si<k,
i=1

implies

Z’ ui(l’ tm uo) < E’ t= to'
i=1
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Definition 2.4: A function b(7) is said to belong to the
class VK, if b€ C[R,,R,], b(0)=0 and b(7) is a convex
and strictly increasing in 7,

Definition 2.5: A function a(t, 7) is said to belong to
the CK, if a€ C[R,XR_, R}, a(t,0)=0 and a(t,7) is a
concave and increasing in 7 for each fixed {< R*,

Definition 2, 6: Let G be a function on R" into R™, The
function G is said to be covex if each component G;, for
1 <i<m is convex, and G is said to be concave if — G,
is convex. For more about convex functions, see Ref. 7.

3. COMPARISON THEOREMS

In this section, we shall develop some results which
furnish a very general comparison theorem. This is
achieved by employing the concept of vector Lyapunov
function and the theory of system of differential
inequalities.

Let the function V< ClR,xR" R"|, V,, V,, V__ exist
and are continuous for (/,x)€ K X K", the calculus intro-
duced by Ito® shows that

dV(t, %) = LV(1, %) d[+%-o(t,x) da(1), (3.1)
where
av v 1 X 2
L = —_ _ + = — W b.. 5
V(t,x) at+ ™ f(t, x) ziﬁilaxiaij”(t,x), (3.2)

and (sz(t;x)) = 0'([, X) * 0([, x)T-

Here and after, we shall assume that Eq. (2.2) and
the function V satisfy the following hypotheses:

(H,) g€ C[R,xR™ R™], g(t,u) is concave and quasi-
monotone nondecreasing in #, for each fixed (€ R,

(H,) Let #(¢, f,,u,) be the maximal solution of the auxi-
liary equation (2. 2) existing for ¢ = {,, {,< R,.

(H,) Assume that g(¢,0)=0,

(H,) V< ClR,xR", R™], 3V/at, aV/dx, 92V/0x? exist
and are continuous for (f,x)¢ R, XR", Furthermore, for
(¢, x)€ R,XR"

Lv(t,x) s gl(t, Vi, x)), (3.3)
where L is the operator as defined in (3. 2).

(Hy) Assume that the hypothesis (H,) holds except that

the inequality (3. 3) is strengthened to

ALY, x) + A OV (L, ) < g{t, AV (L, %)), (3.4)
where A(f) is continuously differentiable positive matrix
function such that A™({) continuous and positive matrix
for i€ R,

(Hy) V,(t,x)=0, for 1 si<k<n, if x& M,.,,, where
M,y is an (n—k)-dimensional manifold containing the
origin,

(H,) For (¢{,x)€ R _XR",

m
b(lixlly < 22V (¢, %) < alt, lixll),
i=1
where b€ VK, ac CK.
(H,) For (t,x)< R XR"
m
b(lixll) < 24 V, (¢, x) < a(t, lxI),
i=1
where ¢ € CK, bE VK, and b(r)— =

, a8 ¥— ©,
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(H,) In addition to the hypothesis (H,), we assume that
a(t, r) = alr).

(H,,) Assume that (H,) holds and further assume that
a(t, vy =a(7).

We shall state and prove the following comparison
theorem,

Theorem 3.1: Let the hypotheses (H;), (H,), and (H,)
be satisfied. Assume that for the solution process x(f)
=x(2, ,, x,) of (2.1), E[V(t,x(t))/x,) exists, with proba-
bility one, for {={,{,€ R, and

V(to, %o) < up. (3.5)
Then, we have
E[V(t,x(t)/x,) < #(t, to, 1), t=1,. (3.6)

Proof: Set
m(t) = E[V(¢, x(D))/x,), m(ts)=V(t,,%,).

The existence of E[V(¢, x())/x,] together with the con-
tinuity of V(¢,x) and x(f) implies that m(f) is continuous®
for ¢tz t,. For small k>0, we have
m(t + h) - m(t)

=E[V(t + h, x(t + h))/x,] = ELV(t, x(£))/%,]
= E[ELV(t + h,x(t + B)/x =x()} = V({t, x())/x,).  (3.7)

Note that the system (2. 1) and the process x(f) satisfy
the following properties, namely,

El(x(t+ hY = x(1))/x =x()] =f(t, x())h + o(h), (3.8)
and
El(e(t + h) =x(8) - (x(¢ + b) = x())T/x =x(2)]
=o(t, x()oT(t, x())h + o(h), (3.9)
and the fact that
ol(x(t + h) =x (1)) - (x(t + k) =x(D)) 71~ o(h). (3.10)

For more details about these properties, see Refs. 5,
6. From the hypothesis (H,), we have

V(L + h, x(1 + h)) = V(L x(8))
=V, (6, x(O+ V (8, () x(t + k) = x(1)]
Y Voo (6 (O (2 4+ 1) = 2,(D)]

i,d=1
XL (¢ + B) = x ()] + o(h). (3.11)

From (3.8), (3.9), (3.10), and (3. 11), the relation
(3.7) reduces to

m(t +h) = m(t) = ELLV(t, x(£))/ %,k + o(h).

This together with the hypotheses (H,) and (H,) gives the
inequality
m(t + kY — m(t) < g(t, m(t))h + o(h),
which yields the system of differential inequalities
Drm(t) < g(t, m(1)). (3.12)
Moreover, m(t,} <u,. Hence, by Corollary 1.7.1 in Ref,
3, we obtain
m() <r(t, L, u,), for t=t,.

The proof is complete.
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The following variant of Theorem 3.1 is often more
useful in applications.

Theorem 3.2: Let the hypotheses of Theorem 3.1 hold
except (H,) is replaced by (H,). Then, V({,x,) <u,
implies

E{V(t, x(D))/x,] < R(t, o, V),
where R(t, £, vy) is the maximal solution of the auxiliary
differential system

v =AY -Ar (v +g(t, A(DV)], v(t)=v,

(3.13)

(3.14)

existing for 1= ¢,.
Proof: Setting W(¢,x) =A(f)V(s,x). Because of (3.4),
we have

LW(t,x)=A(LV(t,x) + A (HV(L,x)
<g(t, W(t,x)).

This together with the hypotheses of the theorem, one
can easily verify that W(¢,x) satisfies all the hypotheses
of Theorem 3.1 and consequently, we have

E[w(t, x())/x,] < 7(2, by, 1), L=, (3.15)

whenever
W(t,, x4) <ty

Here »(Z,1,,u,) is the maximal solution of (2.2). In view
of the properties of A(?), it is easy to see that

A(BR(E, by, v) = ¥(, by, o) (3.16)

with A(¢,)v, = u,.

From (3.15), (3.186), properties of conditional mean
E, the definition of W(¢,x) and the properties of A(Y), we
have

EI.V(t, x(t))/xo] S R(2, £, v,).

Thus the proof is complete,

Remark 3.1: Note that the comparison Theorems in
Ref. 4 are derived by using single Lyapunov function
and the theory of functional differential and integral in-
equalities and sufficient conditions are given for stabil-
ity in the mean. In this respect, our present comparison
theorems differ and give a wide range applicability for
stability analysis of hierarchial stochastic models.

Remark 3.2: Theorems 3.1 and 3.2 are direct exten-
sions to systems of the corresponding Theorems 3.4
and 3.5 in Ref. 1 respectively. Furthermore Theorem
3.1 is analogous to deterministic Theorem 4.1.1 in Ref.
3, and Theorem 3.2 has no analogy in deterministic
theory.

Remark 3. 3: Note that the assumption that
E[V(t, x(t))/x,] exists can be dropped. Under certain
conditions, one could show that this assumption holds.

For example, let
m
2V (t,x) <a(t,lixll), where a€ C[R, xR, R,]
i=1

and a(¢, v) is concave in 7 for fixed {< R,. Then we would
have

0< ZJ ELV (t, x(1))/x,) < alt, EUlx(0)l/x, 1),
which establishes the existence of E[V(¢, x(£))/x,], in
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view of the property (II) of x(f) and the additive property
of mean,

4, CONDITIONAL STABILITY AND BOUNDEDNESS
IN THE MEAN

Employing the comparison theorems developed in the
preceding gection, we shall present various results
giving sufficient conditions for conditonal stability and
conditional boundedness of solutions of {2.1). Some of
our results may be viewed as stochastic analogs of the
corresponding basic results in deterministic case [2, 3.

Theorem 4.1: Let the hypotheses (H,), (H,), (H,),
(H,), (H,), and (H.) be satisfied. Assume that f(£,0)=0
and o(t,0)=0. Then,

(1) (CS}) implies (CSM,),

(i) (CS}) implies (CSM,),

(iif) (Cs}) implies (CSM,).

Proof: Let x(t) be the solution process associated with
(2.1). From (H,) and Remark 3.3, the existence of
E[V(t,x(l))/xo] is assured. Hence by Theorem 3.1, the
inequality

E[V(t, x(8))/x,] < #(1, £, u,) (4.1)
is valid for ¢={,, provided that
V(t,, x,) < iy, (4.2)

It is obvious that the relation (4. 1) yields the estimate
m m
23 ELV (t,x(1)/xo) <07 (t, by, uy), t>t,. (4.3)
i=1 i=1

Let us first prove the statement (i). Let €>0and {,€
R, be given, Assume that (CS}) holds. Then, given b(¢),
1, € R,, there exists a positive function 5, =5,(f,, €) that
is continuous in {, for each €, so that

m
2iut, Lo, ) <B(O), =1, (4.4)
i=1
provided
m
Qi <8, u;,=0, for 1<is<k, (4.5)

i=1

Let us choose uy=(u;q, Upg, ..., U, . .
=0, for 1<i<k, V(t,x,) <u,, and

oy o) SO that u g

m

2 ug=ally, llxyll), for xgc My, 4.6)
i=1

Note that this choice of «, in (4. 6) was possible because
of (Hg). Since acCK, we can find a 6= 6(t;, €) > O that is
continuous in £, for each €> 0 such that

llxolt <& implies a(t,, llx,ll) <8,. 4.7

Now, we claim that (CSM,) holds. Suppose that this claim
is false. Then there would exist a solution process x(f)
of (2.1) with x,€ M,_,,, lx,ll <5, and ¢ > f; such that

Elllx(ty, ty, x)I/x4) =€. (4.8)
From (H,), we have
b(E[Ix(O)l/x )< 22 E[V (t, x(8))/x,), t=t,. (4.9)

i=1
The relations (4. 3), (4.4), (4.8), and (4.9) lead us to
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the contradiction
m m

b(€) s 24 E[V,(t,, x(2,))/%0) < 22 7,(2,, to, 4o) < B(E),
= i=1

thus proving the statement (i).

Now, we shall give the proof of the statement (ii). Let
€>0, >0, {,€ R, given and let x,© M,_,, and lix ) sa.
From (H,), we can find 2 number of &, =@, ({,, @) such
that

llxll <, afty, llx,ll) <, (4.10)

hold simultaneously. As before, we choose #, so that

(4. 6) holds and one can obtain the estimate {4.3). Sup-
pose that (CS¥) holds. Then given b(€)>0, @, >0, {(€R,,
there exists a number 7'=T({,, @,¢€) such that

m
Z’ ui(t’ to’ uo) < b(é)’ t= to + T’

i=1

(4.11)

whenever

m
o

Ziugsa, u,,=0, l<sisk,

i=1
We claim that (CSM,) holds. Otherwise, there exists a
sequence {t.}, 1,2 t,+ T, t,—~ < as n— = such that for
some solution process x(#) of (2.1) satisfying llx,}l s
and x,€ M., will satisfy the relation

Elllx(t,, to, x)/x,] 2 €, =1+ T. (4.12)

From (4.3), (4.9), (4.11), and (4. 12), we have the
contradiction

B(O) < 2 ELV (1 (1) ) < 25 7,1 o, 1) < b0,

izl
which establishes the statement (ii).

The proof of the statement (iii) follows from the proof
of (i) and (ii), thus proving the theorem.

Theorem 4.2: Let the hypotheses (H,), (H,), (H,), (H,),
and (H,) be satisfied. Then,

{i) (CB}) implies (CBM,),
(ii) (CB¥) implies (CBMY),
(iii) (CB}) implies (CBM}).

Proof: Let @ >0, t,€ R, be given. By following the
argument in the proof of Theorem 4.1, we conclude
that every solution process x(f) of (2.1) satisfies the re-
lation (4.3), whenever lixyll <@ and x,€ M(,_,,. Assume
that (CBY) holds. Then, @, > 0 that is obtained in (4. 10)
and {, < R, there exists a 8, =8,(Z,,®,) that is continuous
in ¢, for each @, such that

m
Zout, ty, u)<B,, =1,

u=1

(4.13)

whenever

[

i=
Since b(7)—~ © as r— =, there exists 8 =8(,, @) such
that

B, (2, @) < b(B).

To prove the statement (i), we assume that there is a
solution process x(#) of (2.1) such that lixyll s@, x,&

(4.14)
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M-, and ¢ > {, such that
Elllx(t)ll/ %] =B. (4.15)

The relations (4. 3), (4.13), (4.14), (4.15), and the hy-
pothesis (H,) lead us to the contradiction

b(B) < 24 ELV (t,, x(t,)))/ x,] < 24 7,4y, Ly, us) < B(B),
i=1 i=1l

which proves the statement.

The proofs of (ii) and (iii) can be given by following
the proof of Theorem 4.1 and that given above.

In general, we may not be able to find the auxiliary
differential system (2.2) whose trivial solution has
(CSH)—(CS}) properties. In such cases, the following
result, which is based on the comparison Theorem 3.2,
is useful in discussing (CSM,)—(CSM,) properties of
(2.1). We simply state the result whose proof can be
formulated on the basis of the proofs of the Theorems
3.2 and 4.1,

Theorem 4.3: Assume that the hypotheses of the The-
orem 4.1 hold except that (H,) is replaced by (H,) with
IA(ON — < as {—~ «, Then, (CS}) and (CS}) properties of
the trivial solution of (3.14) implies (CSM,) and (CSM,)
respectively,

In the following, we shall indicate some modifications
necessary in order to obtain the usual stability in the
mean and boundedness in the mean results, using vector
Lyapunov function and a system of differential inequali-
ties. We denote (CSF*)—(CS}*) and (CB}*)—(CBf*) by
dropping the conditional character in (CS})—(CS*) and
(CB})—(CB}) respectively. For example the definition
(CS;*) would run as follows: For each ¢>0 and {(€ R,
there exists a positive function 6 = 8(¢,, €) that is conti-
nuous in {; for each € such that the inequality

m
VRTINS

i=1

implies

Z’ ui(t’ to; uo) <C, L= 10°
i=1

In the following, we shall state a theorem that gives
sufficient conditions, in terms vector Lyapunov function
and a system of differential inequalities, for stability in
the mean of the trivial solution of (2.1).

Theovem 4. 4; Assume that hypotheses (H,), (H,), (H,),
(H,), and (H,) hold. Further, assume that f(,0)=0 and
o(f,0)=0. Then

(i) (CS}*) implies (SM,),

(ii) (CS}*) implies (SM,),

(iii) (CS}*) implies (SM,).

Proof: The proof of the theorem can be formulated
with the help of the proof of the Theorem 4.1, We omit
the details.

Remark 4,1; Note that one could formulate the results
corresponding to uniform notions under the hypotheses
of the previous theorems except that (H,) and (H,) are
replaced by (H,) and (H,,) respectively and the corre-
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sponding notions relative to auxiliary equation (2. 2) are
uniform,

Remark 4.2: Note that all these results are natural
extensions of deterministic results due to Lakshmikan-
tham?'3 for It6 type stochastic differential system. Fur-
ther, note that these results include the usual results on
stability and boundedness in the mean'® as special cases.

Remark 4.3: Observe that the concavity of a(t, 7) is
used only to show that E[V(¢, x(£))/x,) exists. However,
if one knows the existence of E[V(t, x(£))/x,], then the
concavity of a(f, ») can be dropped.

5. EXAMPLES

In this section, we shall present some examples in
order to illustrate the fruitfulness of our results. Fur-
thermore, we also give an example to show the advant-
age of a vector Lyapunov function and system of differ-
ential inequalities over a single Lyapunov function and
a scalar differential inequality.

Example 5. 1; Consider the system of stochastic dif -
ferential equation

dx = A(f)xdt + o(t, x) dz(t), (5.1)
where
1+cosf 1-cost cost-—1
Ay={-€t+1 1+et  et-1 ,

cost—et et —costet +cost

X 0,(t,x)
x=|x,|, o(t,x)=]0,,x)],
Xy o,(t, x)

z(t) is a normalized scalar Wiener process and o(f,x)
satisfies the hypotheses (a,)—(a;). Further, assume that
o(¢,0)=0 and

[ol(t,x) +0,(t,x) = (73(t,x)J2 SX(Ox, +x, =%,

Lo,(L, %) = 0,(t, x) + 0,(¢, x) P < (D) (x, =%, +x,)%,

and

[= 0, (t, %) + 0,(£, x) + 0, X) P < X(D) (=%, +x,+x,)2,  (5.2)

where A € C[R,, R, |0 L,[0, =],
Take m =3 and
(), +x, =x,)?
V(t,x) = |(x, = x, +%,)?
(=2, +2x,+%,)°

Since

; 2 2 2}
2oVt %) =[x+ a2 + 22+ (x, =%, + (%, -x,)% + (%, —%,)%],
i=l

hence
3
3.
(22 +x2 +x2) <24 V{t,x) <5(x] + x5 +x3).

i=1
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Further, we deduce the vectorial inequality
LV(t,x) < g(t, V(t,x))

with
[4 +x ()],
g(t,u)=|[4 cost +1(t)}u,],
[4e7t + 1 ()]u,
whenever (5.2) holds.

Now, one can easily see that g(t,«) is concave and
quasimonotone nondecreasing in u for fixed /€ R,.
Choose #=1, Then the solution of (2.2) satisfying u,,=0
is

0
H(t, by, 1) = | Uy exp{ffoM cosu + ) ()] dul} |.
Uyg exp{f,‘o[e"‘ + \(w)] du}

One can easily observe that the trivial solution of {2.2)
is conditionally uniformly stable. In this case, M,.,,
=M, ={(%,,%,,%,) € R3: x, + x,=x,}. Thus all the hypoth-
eses of Theorem 4.1 and Remark 4.1 are satisfied.
Hence, we conclude that the trivial solution of the sys-
tem (5. 1) is conditionally uniformly stable in the mean.

Example 5.2: Consider the system of differential
equations

dx = F(t)xdt + o(x) dz(1), (5.3)
where
x]_ _fl(t) 0
X = xz , F(t): 0 —fz(t) B
0,(x)
fi€ClR,R,), i=1,2, olx)= o, ()

and o satisfies the Lipschitz condition with Lipschitz
constant C and 0(0) =0, Furthermore, assume that

4
lim inf(Lff(s) ds) > C?, (5.4)
teo t=to
where f=min{f,, /,}.
Take m =2 and

x2

Vit 0=| .|, Al=expl2fis)ds),

where [ is 2X2 identity matrix. In view of the assump-
tions on (5.3), we obtain that

A(LV(t,x) + AV (L, x) < BAR)V(L, x), (5.5)
where
B: CZ CZ
c2 C?|,
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The auxiliary system is u’= - 2f(¢#)u + Bu. Because of
(5.4), u=0 is asymptotically stable. Hence by Theorem
4.3 and Theorem 4.4, it follows that the trivial solution
of (5.3) is asymptotically stable in the mean.

Now, we shall present an example that shows the ad-
vantage of vector Lyapunov function over a single
Lyapunov function,

Example 5. 3: Consider the stochastic differential
system

dx =F(t,x)xdt + o(t, x) dz (1), (5.6)
where
%, et —f(t,x)  sint
= F =
x %,|’ (t,) sin{ et -1 (t,x)|,

fl € C[R+XR2’ R+]’ fl(tp 0) = 0!
z(t) is a normalized scalar process, and 0€ C[R*XR?,
R?], it also satisfies the hypotheses (a,)—(a,), o(t,0)=0
and

[o,(t, x) + 0, (¢, x) 2 < (%, +x,) (1),

Loy (¢, %) = 0,(t, ¥) ]2 < (x, = x,)20(8), (5.7)

and x € C[R,, R,IN L [0, ).

First, we choose a single Lyapunov function V(¢ x)
given by V(¢,x) =xZ+xZ. Then, it is evident that

LV(t,x) <[2e7t + 2] sint| + M(D)]V(t, %),
using the inequalities (5.7),
2|ab|<a®+b* and f,(t,x)=0, for (f,x)€R,XR2,
Clearly, the trivial solution of the comparison equation
u'=[2e7t +2|sint| + 1 (f) Ju

is not stable. Hence, we can not deduce any information
about the stability in the mean of (5.6) from the Theo-
rem 5.1 in Ref. 1, even though it is stable.

Now, we attempt to seek the stability information of
(5. 6) by employing vector Lyapunov function. We choose

(%, +x,)?

V0= el

Note that the components of V, V,, and V, are not posi-
tive definite and hence do not satisfy the hypotheses of
Theorem 5.1 in Ref. 1. However, they do satisfy all the
hypotheses of Theorem 4. 4. In fact,

2
(2 +x3) <20V (£, %) <2(x2+x)
izl

and the vectorial inequality
Lv(t, x) < glt, V(t,x))
are satisfied, with

[2e7% + 2sint + A () Ju,

gt u)= [Ze“—ZSint+7\(t)]u2 .
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It is easy to observe that g(¢,«) is concave and quasi-
monotone nondecreasing in «, for fixed #, and the trivial
solution of (2.2) is uniformly stable. Consequently, the
trivial solution of (5.6) is stable in the mean,
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Generalized free fields and the representations of Weyl group.

Il. Reducible representations
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The multiplets of generalized free fields, transforming according to triangle indecomposable
representation of dilatation group are studied. Further, using the technique of Mellin transform, we
represent an arbitrary generalized free field as a continuous superposition of fields with definite

dimensionality.

1. INTRODUCTION
There are well-known! transformation properties of

massless fields under the action of Weyl group, defined
as

1.1)
where T denotes the group of translations, L, the homo-

geneous Lorentz group, and S the one-parameter dilata-
tion group

W=T® DL,, DL,;=L,;xS$

1.2)

We define the dimensionality parameter 6 of the field
operator ®,(x) by means of the relation

. —_ et
Six, —x),=lx,.

U@, (x)U (1) =18 (1"1x) (1.3)
where U(l) is the unitary representation of S in the
Hilbert space £/

U*l)=U-1q)=U(). (1.3")

Further, we assume the absence of spontaneous break-
ing of dilatational invariance, i, e.,

u()|0y =] 0).

For massless fields we obtain

1.8")

=1 for bosons (helicity even),
5=% for fermions (helicity odd).

In our previous paper’ which we shall refer to as I, it
has been shown that the relation (1. 3) with any value of
6>1 can be obtained if?

@5(x) = f (H P ;L/Z)‘W (1.4)
where &(x;//*%) is defined as

@=-HH2@; 4% =0, (1. 5a)

[0 ), @ 1) =ialx =2 HD6(HE =4 (1. 5b)
and has the dimensionality d equal to zero,

2

VDot AU D =g 1x, D (1. 5c)
consistent with the canonical E. T. limit

[, 547, o’ ;4] =i6°® = %) 6(4/2 = 4'D). (1. 5d)

By using (1. 5¢) the proof of (1, 3) for the field operator
(1.4) is reduced to the change of variables 4% 4" = H/
7%, The field operator (1.4) is a generalized free field
with the following commutator function?®:

[@s(x), @5(x")]=ialx; {6}
=i [ @Al )
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- f dpe( po) (P explipx)

2% T(d~1)
T 7 T(l-4)
The restriction § > 1 follows from the requirement

that the Kallen—Lehman spectral function should be
positive definite.

e(xo) (%)%, (1.6)

The field operator ®;(x) generates from the dilatation-
invariant vacuum state (1.3’), the linear irreducible
representation space R(o'ﬁ) of the Weyl group, related
with orbit O, (see I), Introducing &, f],

= [ d'% fx)8,(x) (1.7a)

where suppf(p) € V*, APy S and using (1.4)—(1.5) one
can write the vectors belonging to R;%%’ as follows:

If>5 = q’o[f | 0).

In R;*® one can introduce various scalar products,
The conventional choice

(1. 7p)

d4
(1o [ o ) (1.8)
is only invariant under (1. 3) if 6=0. In order to define
the representation space /4, 1%9 with invariant scalar
product ¢ f1f')s, We should put into the definition of
LF1f), the weight function ()2, or define

LI V6= FlFe (1.8%)

The change 6 — - 6 defines the so~-called shadow opera-
tor. ¢ One can say, therefore, that the dual space to
(1.'7) is generated from the vacuum by shadow operator.

The representation spaces //5%° where s denotes the
spin value of irreducible representation can be intro-
duced in analogous way. The assignment of spin for the
orbit O, is the same for the Wigner representations of
Poincaré group with positive mass square, and for
simpli(;ity we shall consider here only the spinless case
(s=0).

Following I we can write that the generator D of
dilatations as the sum of two operators

D= Dyeom(!) + D) (1.9)
where
Diyeon(8) = | d% T4, (005" (1.9%)
and®
Dinaes(8) == Zfd3x/md/{zﬁz 19,® (x; Hz)g%é & (x; )
0 [
{1.97)
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Any generalized free field

®ei(0)= [, OB 4 i (1.10)
commutes with (1. 9) as follows:

1,4 N

;[D,é[ej(x)]z(xua“+d)!IJ[”(x) (1. 11)
where d denotes dimensionality operator

ch>[”(0) - [ mass’ ‘I?[”(O)] (1. 12)
In particular, &,(x) satisfies the equation

(d - 5)&4(0) =0. (1.13)

In this paper we shall introduce in Sec, 2 the multiplets
of generalized free fields &{" &) (1=1,2,...,N),
transforming under the generator (1. 8) of the dilatation
transformations as partly reducible indecomposable
unitary representation, °

Further, in Sec. 3 we shall discuss fully reducible
representations of Weyl group. We shall introduce the
Mellin transform of the generalized free field with re-
spect to the invariant mass square parameter. Such
spectral decomposition of the generalized free field
leads to the replacement of Kallen—Lehman representa-
tion, describing mass spectrum by the spectral rep-
resentation introducing the measure characterizing the
dimensionality spectrum.

2. MULTIDIMENSIONAL PARTLY REDUCIBLE
REPRESENTATIONS OF DILATATION GROUP AND
GENERALIZED FREE FIELDS

Recently®~!! the following generalization of the formu-
a (1. 3) was considered:

U(l)q’a;nU -1(1) = Tr(xrllz;ﬁ)(l)q)ﬁ'n’ (l-lx)

n=1
1nl
T S &g, (1%). @.1)
The representation matrix'®
1
Inl 0
T(N;ﬁ)(l):lo ’ (. 2)
InZ¥-1g
m Inl 1

defines N-dimensional reducible indecomposable reali-
zation of the dilatation group. If N=1 we obtain to the
case of irreducible representation, discussed in L. If
N>1, the representation is reducible, but not complete-
ly reducible. ! It appears that the multiplets (2. 2) have
some importance if one tries to reconcile the scale in-
variance with perturbation expansion or with the so-
called “naive” canonical manipulations, !°

In order to construct the field operator occuring in
the multiplet (2. 1) with n=2 we should perform the
following limit:

1 [‘I’am&, 1{x) = g 1(’5)]

@52_11m 0
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d
=7 ®,,1(x) " (2.3)
The triangular representation (2. 2) one obtains simply
by differentiating the Eq. (1.13). One gets the set of
two equations

(A= 0)L @4, 1(3) = &5, 1 (0), 2. 4a)
(d= 5)%,,1(x) =0 (2. 4b)

describing in infinitesimal form the transformation (2. 1)
for N=2.

1t is easy to show the following statement:

The components of the multiplet defined by the

formula
1 2\
%= 1)1 (a_x> &0)

transform under the dilatations in accordance with (2. 1)

By, () = . 5)

A=0

Proof: Let us differentiate the formula (1. 3). We have

) {(% "oy U)
E0) G e,

Because (%)= (n—1)1/kl (n—k=1)!, putting A=5 in
(2. 6), and substituting (2. 5), one gets the formula
(2.1).

The explicit formula for the field operator (2. 5) looks

as follows:
1 (1
(k-mf i’ n:;/-)

The formula (2. 7) introduces a definite set of field
operators, satisfying the transformation law (2.1). The
infinitesimal form of (2.1) has, however, the form

< )éﬁ;N(x) :{Js; N-]_(x)y
(d = 8)®4; yo1 (x)

(2.86)

QED

By, o%) = (HHP 2@ (s 42,

2.7

= @, v (%),
N (2.8)
{d = 8) g, x) = 554 (1),
(d- 8)%g,1(x) = 0.
The general solution of the set (2, 8) has the form
‘I)ﬁ;l(x) :(Dﬁ(x)5
lij
g 0(x) = %éﬁ(x) +0,9,(),
(2.9)
@, w0 = ‘1’6 N-1(®) + € gy ®5lx),
or
k=2 2 i
B x(x) = (2.7) + g_)o ¢ <a—6> ®4(x). (2.10)

The arbitrary coefficients ¢, can be obtained if we
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look for the solutions of the following set of N° equations

(n,n’ <N):

nel n'=1 lnl)'"‘ .
WG nen’ x) lz)ﬁkz)o IZ>0 kll' Wﬁ;n-k,n'-l(l- x), (2. 11)

generalizing the conventional condition of scale in-
variance for the Wightman function (N -1)

Ws(x) = (2 W, (l™'x)

to the case of Dell’Antonio multiplet. 14

2.12)

Remark 1: The introduction of Dell’ Antonio multiplets
does not lead to the appearance of indefinite metric,
Indeed, the field operator (2.7), as well as (2. 10), has
positive definite spectral function, This nice property
is not valid if we introduce multidimensional indecom-
posable representations for the Poincaré group by
means of the formulas [compare with (2, 8)]

(P = MEYhy(x) = Py ()

(2.13)

(P* = M)y (x) =

where p2=0 and M? real. It can be shown that the field
operators ¥ (x) - - - Y5 (x) generate the space of states
necessarily with indefinite matric. =18 A similar con-
clusion can be reached if we assume that the multiplet
(2.1) describes a conformally-invariant theory, '°

Remark 2: The multidimensional representations,
described in this section, can be constructed for the
orbits O,, O,, and O, of the Weyl group, but they do not
exist for orbits O; and Og, localized on the light cone.
In particular (see Ref, 4), it does not exist for N> 1 the
limit 6 —~1,

Remark 3: There exists a four-dimensional integral
kernel k,(x) which allows us to express the field opera-
tors &;,, (n> 1) as the convolution of k, and &,. We have

~ 1 1

ke (p) = T (Inp?)™-t, (2. 14)

F(n—l'

3. MELLIN TRANSFORM OF THE GENERALIZED FREE
FIELDS AND REDUCIBLE REPRESENTATIONS

Let us write positive-frequency part of an arbitrary
generalized free field &

+ 5 d
0w - [ eumetmsn
with the spectral function £(4?) satisfying the condition
for some k> 0

(3.1)

Sy ) <. 3.2)
Then one can write, if ¢ <k,
c+ix
2 2y-A
S(H %L[M G(a) (A da (3.3)
where
G(A):f 2yA 2 H
| (M%) (H)H2 (3.4)
or
903 J. Math. Phys,, Vol. 16, No. 4, April 1975

c+ixo
1 +
#0w - [ cwefimaa 6.5

i
We see that any generalized free field with spectral
function satisfying the condition (3. 2) can be written as

a superposition of the fields ®%),;,(x) (- © <& <),
generating from the vacuum irreducible representation
spaces Ri91-%+®) of the Weyl group. It is easy to see
that all these representations are unitary with respect
to the scalar product (1. 8‘) with 6 replaced by - 2c,
i.e , ]L/éoi-Zc)_

The fact that irreducible fields with respect to the
Poincaré group and with respect to Weyl group are re-
lated by Mellin transform follows from the commutation
relations of the generator of dilatations D and the mass
operator MR

(D, i1?)=2i 0P, (3.6)
The relation (3. 6) leads to

[D, 1na?)=i (3.7)
and the eigenvectors

D|ay=ala) (3. 8a)

LA | 42 = S| 4 (3. 8b)
are related by Fourier transform

| A= 21—77 ]w d(z1n/f?) exp(3i In/? - AY| 4% (3.9)

which, as it is easily seen,
transform.

is equivalent to Mellin

The formula (3. 5) describes as a special case the
Dell’ Antonio multiplet (2, 5), which can be obtained if we
choose ¢ =6 and

Ch

(k — 1)! 5(k-1)(a).

Gy(6+ia) = (3.10)

In the general case, however, G(A) is not localized in
one point. In order to study the general case let us ob-
serve that the commutator of the field

dx)=0"(x)+H.C., (3.11)

where @ (x) is given by (3.1), can be written as

[2(x), ®(0)] 11%/ da/ da’G* (c — i)

XG(C+iOl')[ (H2):(a- ')-ZcA(x 717/ );/Lé .

(3.12)
Introducing
glc+iB,c—iP) f G*(c— (8 + B))G(c +i (B - B)),
(3.13)

we obtain

M&LM@F#%].d%k+wm—w)

£

xl WV“%WH%Z

J. Lukierski and W. Sienkiewicz 903



= 77127 f dpglc +iB,c —ip)
o =120 (1 + (if— 2¢)/2)T(2 + (1B - 2¢)/2)
7,2(_ x2 +ix00)2+(i5-2c)/2 .

(3.14)
The formula (3. 14) describes the Mellin transform of
the commutator function, with the spectral function

which is a bilinear form (3. 13) in the Mellin transform
G(a) of the field operator [see (3.5)].

The aim of this section was to show that the basic
notion in the dimensional analysis of generalized free
field is the Mellin transform of the field operator, and
the Mellin transform of the two-point functions is its
consequence. %!
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Electrostatic or gravitational interaction energy of coaxial
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An expression, which is appropriate for high-precision calculations, is derived for the interaction
energy of two coaxial ellipsoidal distributions of charge or mass. By starting from Dirichlet’s
expression for the potential it is shown that the (in general) sixfold integration can be considerably
reduced by integrating over equipotential surfaces and introducing elliptic integrals. The evaluation of
the final expression requires only a double numerical integration.

1. INTRODUCTION

The study of nuclear deformations requires the cal-
culation of electrostatic self- and interaction energies
of homogeneous distributions of charge. (Inhomogenei-
ties at the nuclear surface can be treated by correc-
tions.!) The self-energy is essential for determining
nuclear equilibrium shapes and related data, such as
masses, binding energies, quadrupole moments, and
rotational bands; the interaction energy is important
for the motion of the fragments in nuclear fission as
well as the collision of projectile and target in heavy-
ion scattering experiments.

The determination of electrostatic energies in such
cases requires high numerical accuracy since the total
energy of a nuclear configuration is determined by a
balance of electrostatic and nuclear forces, such that
the electrostatic and other contributions to the deforma-
tion energy almost cancel one another. On the other
hand one often has to compute the deformation energy
for many different deformations of the nucleus (e.g.,
several hundred in fission theory). Therefore, great ef-
fort has been expended in order to evaluate the energy
of different distributions of charge in an analytical way
or to reduce multiple numerical integrations as much
as possible,

For general solids of revolution the electrostatic
energy can be calculated after the integration methods
given by Hill and Wheeler, Beringer, Cohen and
Swiatecki, Lawrence, Nix,® and more recently by
Davies and Sierk.? These methods, of course, can also
be used to compute the interaction energy between two
solids which are arbitrarily deformed but have a com-
mon axis of symmetry.

2=4

Spheroidal shapes are commonly used in those cases
in which computational difficulties prevent the study of
more complicated shapes. For these the self-energy is
available as an elementary function. It was derived by
Fliigge® in 1951 employing the explicit expression for the
electrostatic potential given by Dirichlet® in 1839. More-
over, expressions in terms of elliptic integrals are
available for the self-energy of ellipsoids. The homo-
geneous case has been treated by Rosenkilde, ’ Pal,
Gotz et al., and Leander.® Carlson® has also determined
the self-energy of inhomogeneous distributions with
ellipsoidal surfaces of constant density.

Series expansions around spherical or spheroidal
shapes have been given by Bohr and Wheeler, *°
Swiatecki, ! Present et al.,'? and by Businaro and
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Gallone. '* However, these expansions are applicable
only to small deformations. Highly distorted nonellip-
soidal shapes in general require multiple numerical
integrations or multipole expansions. This is exten-
sively studied in the work of Nix, * where also the ap-
plication to spheroidal shapes together with a survey of
the relevant literature is given.

Up to now rapidly converging expressions are not
available for the interaction energy between general
nonaxial distributions of charge or mass even if they
are homogeneous. However, if the distributions are
well separated, Nix’s fivefold multipole summation® is
applicable. In Ref. 3 explicit formulas for the case of
arbitrarily oriented homogeneous spheroids are also
given.

In connection with gravitation, Darwin'* has developed
an implicit formula for the interaction energy of homo-
geneous ellipsoids. It consists of a twofold infinite sum-
mation over increasing orders of mixed partial deriva-
tives of (x®+y%+2%)1/2, In the case of coaxial spheroids
these derivatives generate Legendre polynomials. Thus
an explicit twofold multipole summation can be ob-
tained'® for the axial case.

The present paper deals with the electrostatic inter-
action energy between two homogeneously charged
ellipsoids with parallel axes, which are in contact or
separated. Though originally carried out for nuclear
fission theory, 16 the results are applicable to any dis-
tribution of charge or mass of this kind. Therefore,
the calculation is given without reference to nuclear
physics.

Starting from Dirichlet’s® expression for the poten-
tial, the (in general) sixfold integration for the inter-
action energy is given in Sec. 2. By integrating over
equipotential surfaces this expression can be reduced
to a threefold integral and further to a twofold integra-
tion over elliptic integrals. In practice only two inte-
grations have to be performed numerically for the eval-
uation of the final expression, since elliptic integrals
can easily be obtained from standard routines.!’ The
results are summarized in Sec. 3, so that the reader
can refer directly to this section without going through
the calculations of Sec. 2.

2. METHOD
The electrostatic'® energy E of a system of two dis-

tributions of charge with densities p;(r) and p,(r) which

Copyright © 1975 American Institute of Physics 905



FIG. 1. Diagram of the distribution of charge or mass. In
general all axes of the ellipsoids have different lengths. Note
that the common axis, z, is not an axis of symmetry.

are separated or in contact can be split up into self-
energies E;; (=1, 2) and interaction energies E;;
(i,7=1, 2;i#3j) due to the repulsion or attraction be-
tween them, i.e.,

E=Ey +Epp+Ey,tEy,, (2.1)
where
fp—lgrﬂ‘i(r— drdr’ (i,j=1,2) (2.2)

involves in general a sixfold integration. By use of the
electrostatic potentials

@i(r)= j l—p;(—r%—ldr’ (i=1,2) (2.3)
equation (2.2) can be rewritten as
E; ;=3 [ pilr dr (i,j=1,2). (2.4)
Since the interaction energies are equal,
Eyp=Egy, (2.5)

the total Coulomb interaction energy E.; is given by
Ecy=Eypzt Ey = 2E3=2E,;. (2.6)
The present paper deals with two homogeneously
charged ellipsoids with semiaxes x;, y;, and z; (i=1, 2)
respectively, which are coaxial but may be separated
by a distance d (see Fig. 1). For the self-energies E;;

of (2.1) one can evaluate Eq. (2.4) with the potential
(2. 15) given below. The result

© 2 2 2
2 x5 Vi Z5 dx
E..— — 722 zzzzf - E_ i _ i
aTm TR (v v+ 1T 25+ x ) D;(N)

2.7

{for D(» see (2.16)] can be transformed into an ex-
pression which involves an elliptic integral of the first
kind but no numerical integration, see Refs. 7—9. For
the axial symmetric case (x;=1v;) explicit formulas
have been derived by Fligge, ®

2 (1—63)1/3 1+e,
Ei=1Eco €; «ln 1_€: (2.8)
with
&=1-x%/2% (2.9)

and the self-energy E., is that of a sphere of the same
charge and volume.

The interaction energies E;; in Eg. (2.1) are avail-
able only for coaxial homogeneously charged spheroids
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(x;=v;). I the charges of the spheroids are denoted
with @;, the total Coulomb interaction energy E.; reads®

Eo= gt ﬂ{fiﬁ S [s0u) +509) = 1+8(, 2)], (2.10)
where
2 2
= BiTXi (2.11)

and S(, 2;) can be represented in the form of a twofold

summation
R 3 3 (25 + 2k)!
Sy, Ag) = JZE kZ)l {27 + (25 +3) 2k + D2k + 3) (27)1 (2001
XaBi\2k,
(2.12)

The summands s(};} are different for prolate (x; <z;)
and oblate (x; > z;) shapes:

3 1 +x, 3

—4‘ (’% - 3\—3) lni_—x + "2" '%?:’ prolate, (2. 13&)
S()\):

311 1 1

3 (63 e G, oviate (oF =,

(2.13h)
For the general case without rotational symmetry the
Coulomb interaction energy E; shall be derived in the
following:

The two ellipsoidal surfaces sketched in Fig. 1 obey
the following relations in Cartesian coordinates:

24?2
+ + =1 2.14a
T (2.142)
and
22 9% (g=2y—2,—d)?
+ + 1. (2.14b)
*3 v} 23

Following Eq. (2.6) the total interaction energy can be

determined either from E,, or from Ey. To be definite,
we calculate E, in the following. The potential ¢;(r) in
a point r outside the ellipsoid (2. 14a) has been derived

by Dirichlet®:

@1(x, v, 2) = Ty v1210

= x2 2 z2 dx
x 1— - ar
" GHaT vE+a Tz +a) DY’

(2.15)

where Dy(3) is given by

DN =[(Z+N(pE+ N2+ V]2 (2.186)

The lower limit « of the integral in (2. 15) is defined as

the largest positive solution of the equation
2 2 22 B
vEtu zZZtu

X

+u

(2.17)

Thus the sixfold integration in (2. 2} is reduced to a four-
fold integral and E;; can be written

;max ;mu
dz dy dx
[ q

Eg = 21p1P2%1V121 f

Zmin

° dx x2 p2 z2
X - - — - 2.18
| o (-dn-idn-am)  ew
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with the limits of integration

Zmin = 21 +d (2° 193.)
Zmax™ 21 + 22, +d, (2.19b)
2\ 1/2
G =, < - (Z-_ﬁ:zzz_-ii_)_> , 2. 20)
23
2 _ _ - d)? 1/2
B =1p (1_ Y _ (Z__Zl_zz_z__)_> . (2.21)
V2 23

One further integration can be performed analytically
by first integrating over equipotentials (with constant
integrant) and then summing up the shares of all equi-
potentials, which can be parametrized by the above-
mentioned variable « [(2.17)]. Since the equipotentials
of an ellipsoid are confocal ellipsoids, this procedure
mainly consists in integrating the Jacobian of x, v, z with
respect to x, v, # over the area of the end section of an
ellipsoid. Explicitly one has to transform the set of
variables (x, v, z) to the new set (x, y,#). Thus the
volume element dx dy dz becomes

Ax, vy, z)
a(x’ y’ u)

dx dy du = dx dy du a—z (2.22)

with

2 _1f, 2 (?zlly 1)+l (Hre g
u 2 +u \E+u yi+u y1+u_>jl

) el
x 1= +u)t/?
|:<1 g Tu T (21 u) . (2. 23)
Consequently, formula (2. 18) goes over into
“max Ymax “ dx
E,y =270y 0.,v:2 f du f d f —
21 1P2X1Y12, wnta 0 y . D
*max 2% +u 2+ 1
< _ 2 1
L dx [ 12 - <;2 +a" 2 +u zzl )\)
.2 1 f+u 1 2z
Y (y1+x y§+uz NPy u
(2.24)

The integration over x can be evaluated analytically.
One arrives at the threefold integral

Ymax ¥, «©
Ep = 1p103%19124 f du(zf +u)™ /2 f ™ dy f S
" 0 « DY)

min

X[AO, v, W) L (y, w) + B\ y,u) I,(y, u)
+CO, ) I(y, w)]. (2.25)

The limits upn, #me and yp,, in (2.25) are given by

umlnzd(zzl +d)’ (2. 263,)
Umax =42,(21 + 2,) +2d(2y + 22,) + &, (2. 26b)
and by the solution v, of
BiVmax T B0 % + By =0 (2.27)
with
2
B, = (1 22+u 1) 9
4 3_)22 y_z_—_l +u ;g y (2 83.)
fy= 2 (2(21 +z2)(21 +d)+u+d2
y325
907 J. Math. Phys., Vol. 16, No. 4, April 1975

+ z]Z.+u 2(21 +Zz)(za+d)—u+da> , (2. ZBb)

3 1
yitu 23

& +4d(zy +2,) + Zdz(ZZ +22% + 62,2, — %)
23

By=

. 4d(zy + 2,)(2252, — u) + 0 — duz,(2, +zz)

[

Z2
(2.28c)
The expressions Ij(v, u), I,(v,u), and L;(y,u) of (2.25)
are given by
L(y,u)= [Fmaxf72(x, y,4) dx, (2. 29a)
Ly, u)= [ max 2 f1/2 (x, y, 0) dx, (2. 29b)
Ly, u)= [Tmaxxt 172 (x g u) dx, (2. 29c¢)
2 2
f(x,y,u)zl—m-}m, (2.30)
where the upper limit x,, is the solution of
Ve T Ve 7= 0 (2.31)
with the coefficients v4, 7,, and ¥,
2 f1 Ptu 1 1 2ty 1
et 0 (- ) (-3 3)
+ 2zt 2l ey Hd) tu
x%22
N fgiz 2(z, +Zz)(zzzg+d) -u+d2:| , (2. 32b)
Yo=By* + B + By, (2.32¢)

The 1ntegrals I, I, and I3 can be determined analytical-
ly.!® The result is given in the next section [formulas
(3.1)—(3.8)].

In the following paragraphs it shall be shown how the
numerical integrations in the Coulomb interaction en-
ergy can be further reduced by introducing elliptic in-
tegrals, for which excellent routines!” are standard in
many computer systems.

According to (2.15), (2.16), (2.23), and (2. 24) the
expression (2. 25) for Em is a sum of mtegrals over
functions of (xf + X172, (v2+1)1/2 and (22+1)1/2 or
powers of these up to the third degree:

Eg = mp1pyxyy12y fu':n';':" dufzy +u)/?
X( .7 a6+ 053+ (& + 0] [omsxdy Go(y, u)
+ fu"’dx[(x‘;‘+ N3 (yf + 0 (ed+ 0172 Jme dy Gy (v, )
+ [ 7 A + N (y2+ 033G+ ]2 fy“‘axdy Gyly, u)

+ [ ax[(F + 0 (93 +0) (22 + 0] -”zfymudycs(v, ).

(2.33)

In (2. 33) the improper integrals over X can be replaced
by expressions, which are free of (numerical) integra-
tions but employ elliptical integrals of the first and

H. Schultheis and R. Schultheis 907



TABLE I. Transformations for the standard form of the inter-
action energy (3.1) in the axial asymmetric case. If ellipsoid
(1) is triaxial the required permutations of semiaxes
P(xy,¥, 2y and the corresponding sequence of indices j, k, 1
are given in entries 2 and 3.

semiaxes Plxy, v, 2 ikl
x> V1> 2y ey, 3y, 29) 123
x> 2> (x4, 21, 9y) 132
2y > %4> ¥y (zy, %y, 39 312

second kind F(a, p) and E(qa, p).?® If x, >y, > 2y, the first
one is equal®® to

2

(_952_2717'2 F(a’p),

2. 34a
T2 ( )

Ao, 9y, 2150) =

the second to

2
Al(xlryb zl;u): (xlf_ Vf)(x Z ) [F(a P)- E(Q,P)]
(2. 34b)
the third to
21 /2
Az(xl’ Y1, zl!u) é’%_—z? E(Q,P)

2
" @ Fles)

1/2
=)

_ 2 24u
yi-zf \(d +u)(y

(2. 34c)
and the last one to
Dyxq, ¥q, 293000 = 2 E(a,p)
3 2 V1 21 (Z%—y%)(X%—Z?)j]z s
+ 2 3 ) 1/2
-7 i 7, .
yi— 2% \(f +u)(ef +u)
(2. 34d)
Here « and p are defined as
. %—Z%) 1z 2 3
a=aresin (m (2.35a)
2\ 1/2
p= <ﬁ2§'—”§> ) (2. 35b)
X1{1—- 21

For cases other than x; >4, > 2, some reordering of
the variables and indices in A; is necessary. This will
be discussed for the final expression in the next section.

3. RESULTS

In the following section we give the final expression
for the electrostatic interaction energy E¢; of two
ellipsoids-which have constant charge densities p,;
(=1, 2) and parallel semiaxes x;, y;, 2; (=1, 2), are
coaxial with common z axes and are in contact or
separated by a distance d (see Fig. 1). To be definite,
¥; >¥, is assumed in the following [if x; =, and x, =¥,
see (2.10)]. Then—apart from a particular case treated
below—the interaction energy is given by

E g = 27p102%1 V121 fu"max du(z? +u)1/?
min
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x (AO(P(xI, Y1s 21);74) foymu dy Go(_% u)
+A1(P(x1’ Y1, Zl);u) f;)ymu dy Gl(y’ “)

+ A (P (xy, 91, 21) 50) foym“ dv Gy, u)
+ A(Pxy, 91, 21) 5 fgym“ dv Gy(y, ).

(3.1)

Here P(ay, a5, a3) is a permutation of real numbers

(@, as, a;) which orders these with decreasing magnitude;
(4, %,1) is the resulting order of indices, i.e.,

P(xl’ X2 xa)

=(x;, X5y %) with ;> x, > x,. (3.2)

The factors A; (i=0, 1, 2, 3) are defined in (2. 34), their
indices j, k, I and the actual values of P(x,, y1, ;) can be
obtained from Table I,

The integrants G, Gy, G, and G, in (3.1) are defined
by
2

2+
G(V u)_ x+u1/2 1+Zl u_ Yy
0N Yy 2( 1 ) ‘2—x1+u yT—1+lt

2 2
zy1tu zitu
x (1+ -23—
( +u yl+u

Xarcsint g, [(x% +u) (1 -

V2 )] -1/2
vitu

max

1 & 2 2 1/2
( - 372+u - x12+3¢) s {3.3a)

2 mer STy,

3 22 +u v?
Gy, w)=3(x%+u) i
(9, 2t 4;\ +u o oyitu

1 224u , 3 284y
X [z - =2 +2 510
<4 y1 u 4x1+u>

2 2 1/2
X {x 1 - Y - max )
max vetu Ztu

2
'v
_(xz+u)1/z 1- —
! ]‘1+Zl

V2 ) -1/2
v12+u

X2 ) 172 p2_ (2
xt

Xarcsiny,y,, [(xf +u) (1 -

1 2
+fom_x (1 —2——

1 gt
(3. 3Dp)
2 2 2 1/2
1y 2 2i =} _ Y X%
Gt 0= st S (155 - )
1 1 22+1(
()22 2+ 2
(oF + )t 2y [2 5
2 1 zf+u 1 2i+u ]
Tyitu \2 Tyt 2 x2+u
2 ¥ -7z
Xarcsinyg,, [(xl + 1) (1— m)] ,
(3.3¢c)
and
3 1 2%+
Gy(y, W) =503 +u)' /2 (2% +u) -271 T
Taag+
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Lt 3,1 Z+u  2i+u
Vru |2 2xitu yitu

N 2 3 lzf+u+zf+u)]
y1+u _4—4x1+u y1+u

32 a2
Xarcsinyg, [(x% + ) (1 - FT)]
1

u
1 2 yZ _ xzm 1/2
5 lzitu, 1 ab, s-m ¥ 5
474 xXX+u 2 xitu 22ty yi+u 4

z23+tu
yitu

+ 1 zf+u]
4X1+u

The limits #,,y, and g, in (3.1) are defined in (2. 26).

(3.3d)

{[_ Bz + (Bg— 46460)1/2]/264}1/2

if By<0, By#0, (3. 4a)

Vo= { (= By/BM? if By<0, B4=0, B,#0, (3. 4b)
0 if By=0, B,=0, 8;=0, (3. 4¢)

0 if 8,>0, (3. 4d)

with B; (=0, 2,4) from (2.28), and x,,, is analogous
to that if one replaces 8 with ¥ from (2. 32).

The expression (3. 1) cannot be applied to ellipsoids
which are solids of revolution with symmetry axes per-
pendicular to z. In this case the factors A; in (3.1) have
to be replaced in the following manner. If x; =24:

2 m (y§+u)1/2>
= = 3.
s (3w Grrgm) 6
(y%+u)1/2 + 1
=M= T o A 3.5b
A= (- DEE+w) 265 -9D 7 ( )
A — 2 + 1 A
S O R € R LU SO B
(3.5¢)
Ify=2
1 (2 +2)' 2 (df = yR) /2
A=~ 7172 . 3.6
0 (xf = 27) (xf + )t 7%+ (xf = 9%) 3.6a)

The other factors A are analogous to (3. 5b, ¢) if one ex~
changes the axes x; and v; and the indices j and k.
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Space-time symmetries and nonunitary representations of the
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In this paper we justify the use of nonunitary representations of the space-time symmetry group to
describe physical systems, as, e.g., unstable particles. It is shown that such a generalization of the
standard theory of symmetries is possible inside the approach to quantum mechanics recently
developed by Ludwig. The Poincaré semigroup turns out to be the fundamental symmetry group and

only Lorentz transformations must be unitary,

1. INTRODUCTION

The problem of characterizing the kinematical be-
havior of a particle by space—time symmetry consider-
ations treating stable and unstable particles on the same
footing has been recently considered by several
authors . '™

More specifically, one can describe a relativistic
(nonrelativistic) particle by an irreducible linear con-
tractive up to a factor representation on a Hilbert space
$ of the restricted Poincaré semigroup? (resp. Galilei
semigroup); in particular stable particles correspond to
unitary representations which can be immediately ex-
tended to the whole group. In the nonrelativistic case
one gets in such a way a quite natural and well-known
description of the unstable particle in which the wave-
function decays exponentially; the description of the
relativistic particle is more involved and has been in-
vestigated recently. However, both cases present a
basic difficulty with respect to the axiomatics of quan-
tum mechanics which allows only unitary representa-
tions of the symmetry group. Furthermore, in the
relativistic case one meets some difficulties in the
physical interpretation:

(1) Spacelike translations are not contained in the
Poincaré semigroup and can be represented a posteriori
only on a proper subset of § .°

(2) The kinematics of the particle leads to define the
following probability amplitude:
1 dsp . .
0= gy | L expl- 01 = i2)(prro =02/
(1.1
with

p0=(22+m262)1/2, f %egw(ﬁ)lz:ly

0

1 .
EF’ §:1,2,...,2]+1,

A
y:

]
m being the mass, j the spin, A the Compton wavelength,
T, the mean lifetime of the particle. The integral in the
rhs of Eg. (1.1) converges for all ¢(p) only for timelike
x. Furthermore, the wavefunction (1.1) is not linked to
a self-adjoint “position” operator. All these difficulties
seem to be intimately connected; therefore, one expects
that in a framework in which the use of a nonunitary
representation of the Poincaré semigroup is well
motivated, also the difficulties (1), (2) can be
overcome.
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Such a framework can be found inside the approach to
quantum mechanics recently given by Ludwig.* An im-
portant feature of such an approach is the introduction
of the so-called “effects” aside the usual “properties” of
quanfum mechanics. Such a generalization of quantum
mechanics proves to be essential to our purpose. For
a nonrelativistic particle the present analysis provides a
more fundamental motivation of the treatment of Ref.

5.

In this paper we shall use the metric
ab=a,b* =ab,—a-b

and the following symbols: /!, P! are the proper ortho-
chronous Lorentz and Poincaré groups respectively,
i.e.,

L1={Aixr —xr=A* x| detA=1, AS=1, A® A =g"],

Pr= ;{(a,A):x“ —x'# = A" ¥+ a* !AEL:, ae]R4}.

We indicate by /., the Poincaré semigroup

Pl =A@ Nepild=ag-a>0, >0},

and by P}  the Poincaré

/913_::{(a,A)eP:’azzaﬁ—gzao, a, < 0},

“antisemigroup”

G { is the Galilei group
g:::{(b,g,gR):aﬁ—-f':R§+vt+g, t—t' =t+b]
beR, ac Ry, veR,, Re O, detR =1},

and G |, the Galilei semigroups
g-:s*: {(b7E’E’R)Eg:! b%O}'

The subgroup of § : {(0, a, v, R)} is called G .

Let § be a Hilbert space and / (§) the set of the linear
operators on § to 9 ; Tc($) is the Banach space of the
“trace~-class” operators on :

re(@)=:{Ac/ ()| Tr{(4A*A)}/?) <},
7c(9) is a base-norm space® with base K:
K={Wwe 1c(®)|W=0, Tr(W)=1}.

B(9) is the Banach space of bounded operators onJ ;
B(9) is an order-unit space® and its [0,1] order inter-
val L is

L={FeB(®)|0<F<1}.
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2. SPACE-TIME SYMMETRIES IN THE APPROACH
OF LUDWIG TO QUANTUM MECHANICS

Let us give first a very sketchy account of the
approach of Ludwig,* emphasizing some points which
are relevant for the discussion of space—time
symmetries.

Let us consider the set M of experiments which should
provide evidence for the physics of a microobject.
Each experiment can be abalyzed into two parts: a
preparation part ¥V and an effect part F. V if a certain
macroscopic process by which the microobject is
produced, F consists of a certain macroscopic pro-
cess which can be suitably modified by the microobject
and of such a modification to the process. Let L be the
set of all F and K the set of all V. One has that | M is
contained in the Cartesian product of K and L:

MCKXL. (2.1)
On the set M a real function u(V,F), 0< u(V,F)<1, is
defined with the following interpretation: u(V,F) gives,
in physical approximation, the frequency of occurrence,
in the experiment (V,F), of the modification associated
with F. One assumes further that

3 )=1;

2.2)
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Let us consider the following relation between V and
V, V, V'ieK: Vv~ I_/', if u(v,H= u(V’ ,VF such
that (V F) (Z ,PeM. Such a relation is assumed to
be an equlvalence relation (it is an assumption since M
#KXL). Let K be the set of equivalence classes V. Let
us consider the subset MCKXL: -

M=:{(V,F)| 3V € V such that (V, F) e M};
on M one defines

ulV, F) = u(y, F).
The the following axiom is formulated:

M=KXL. (2.38)
As a consequence, the relation

E~E: WV, D)= u(VE)V VeK

is an equivalence relation. Let L be the set of equiva-
lence classes F; on KX L one defines

WV, F)=wy,E), FeF.

Building up from this basis, introducing physically rele-
vant axioms on the sets K and L and mathematical
hypotheses on the structures which are successively
specified, Ludwig and co-workers prove a sequence of
theorems leading to the following statement: A Hilbert
space © can be found such that K is norm dense in the
basis K of the Banach space 'rc(Tf)) and L is dense in the
so-called weak* topology” in the [0,1] order interval L
of the dual spaceIB($); the function w(V, F) is given by

pV, F)=Tr(VF). 2.4

To discuss the problem of space—time symmetries
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within this theory, let us give the space time charac-
terization of effect and of preparation parts. We shall
consider three different characterizations.

A. Characterization |

The usual treatment of symmetries in quantum
mechanics is based on the following description of the
experiments in terms of preparation and effect parts.
Each preparation part (effect part) V(F) is defined as a
production process (a modification of a given macro-
scopic process) referred to a fixed reference frame R.
The experiment (V, F) consists in the determination of
the frequency of occurrence of the effect F in the frame
R, as a consequence of the preparation V. The invari-
ance of macroscopic physics under /] (G ) implies that
K and L are the spaces of two representations of
P G ) Uk (g), U 4(g) defined in the following way: Let
us consider a concrete realization of Y(F) in R and a
transformed reference frame R’ =gR; . the realization of
Y(F)} is described in R’ as a new preparation (effect)
which is defined as U/ g(2)V (/ (&) F).

The symmetry of the theory implies that

= = (2.5)
Vge PG, Y(¥,Fle M,

from which it easily follows that //,{(g), {/, (g} preserve
the equivalence classes so that, defining

Ul DY =AU DY, Ve W}, U (F={/ (F, F F},

(2.6)
WV, F)=ull/ (VU (2F),
where {/,(g) and é/L(g) are representation of P} (1)
on K and L respectively. Finally, in the realization of
the theory in a Hilbert space $ one can prove® that L/L(g
can be extended to IB(P) with the form

U (@Y=U(gYUu*(g), YcB(§), 2.7
where U(g) is a unitary up-to-a-factor representation of

PLGD on® .

Within such a characterization of the experiments,
axiom (2.3) is strongly restrictive. In fact, considering,
e.g., the nonrelativistic case, one has couples (L/,E)
such that F follows ¥ in time; axiom (2.3) implies that
for any f, and any production process V involving times
t=t,, one can find a process V'~V inv_olvmg only times
t<t,.E.g.,ifVisa preparatlon “of an unstable particle
at time t>t, Z must be, loosely speaking, the prepa-
ration at time ¢, of particles correlated in such a way to
produce with probability 1 the unstable particle at time
t. To require that preparations of this type are possible
might be a too strong assumption especially for large
t~t, and in the case of a relativistic dynamics in which
several channel for the time evolution are open. We feel
that assumption (2.3) is connected with the difficulties
to obtain a clear description of unstable particles in
quantum field theories.

B. Characterization 11

Ludwig® considers the following different characteri~
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zation of the experiments in which axiom (2.3) is no
longer restrictive. Each preparation part V is charac-
terized by a space—time frame R, (which we shall call
preparation frame) and a productidn process @, re-
ferred toR,: ¥V =: (RV, a,). Each effect part Fis a mod-
ification of a given macroscopic process referred to R.
The macroscopic physics which is involved into the
description of V and of F is assumed to be invariant un-
der 2} (G1); then K and L are the spaces of two repre-
sentations L/&(g) L/L(g) of P1(G)). [/K(g) is given by

Ug Y =(gRy,ap), v gePL(G)). (2.8)

U L( g) is defined as in the previous characterization.
The experiment (V F) consists in the determination of
the frequency of occurrence of an effect which is de-
scribed in R, in the same way as F in R, as a conse-
quence of the production process ay.

The schematization of an experiment as being com-~
posed by a preparation and an effect part is meaningful
only if the effect part does not influence the preparation
part. In the nonrelativistic case this can be assumed for
every pair (V, F), prescribing that the production pro-
cess involves times f<0 (obviously in R,,) and the effect
part involves times >0 (in R). In the rélativistic case
the space—time points of ay must be outside the union
of the forward light cones with vertices at space—time
points of £; this is obtained most simply, taking F in-
side the forward light cone of R and oy outside the for-
ward light cone of Ry. B

We stress that such prescriptions reduce the sym-
metry group for the effects to a semigroup: in the non-
relativistic case to the Galilei semigroup g,s , in the
relativistic case, to the Poincaré semigroup /JJ,s ; the
positive direction of the time axes is then privileged.
The symmetry of the theory under P (G) is expressed
by the relation

wlll (Y, F)=uY,F), ¥ ge P (G, (2.9
and ¥ F such that (V,F)c M. Relation (2.9) implies that
U, (g)V VvVeK Vgep! (g , and therefore one gets
only a trivial representatmn of PL(G1) on K.

On the other hand, the symmetry condition does not
give any restriction on UL(g) gC/Q+s (G1,.). We see
therefore that in the given descrlptlon of the experi-
ment, in which the effect part is referred to the prepa-
ration frame, the symmetry condition has very poor
consequences.

However, features which in the characterization I are
linked to the symmetry can arise by the very structure
of the present one. In fact the experiment (V L/L(g)f),
ge P}, canbe described also as (Y',F) with V"'
= (g“RK, -1) where o o1 is the descrlptlon given in
2R, of the production process which is described as
o m‘R Therefore, there is an arbitrariness in the
speciff_'cation of K associated with a set of experiments;
“minimal” choices of K are those in which each concrete
preparation part corresponds only to one element of K.
With such a choice nothing new about //, (g) arises. More
fruitful choices are the two following ones:

(a) K is such that if (R,,@) e K also (g'Ry,a,-1)€ K,
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Vge /318 (g's ); then on the set of all production process-
es o a representation of P (G,,) is defined.

(b) K is such that if (Rv,a)cK also (g'Ry,a@,-1) € K,
gc[ go then on the set of all productlon processes

o a representation of / ] (G,) is defined.

We stress that the axioms of Ludwig, which require
that certain relations holdV¥ V< K, as is the case for
axiom (2. 2) become the more restrlctlve the larger
K is. The consistency of the description requires that
B ULE) =u(Vk(gV, F), VFeL, V=(Ry,0)€K,

(2.10)
with [x(g™)(Ry, @) = (§™'Ry, a,-1), where g€ Pl (Gl,,) in
the case (a) and g/ | 9’3 in the case (b).

In the case (a) it follows immediately that lk(g) and
{/L(g) preserve equivalence classes and yield respec-
tively a representation [/x(g™) of 2}, ((},) on K and
Ua(g) of Pis,(Gls ) on L, such that

H(V_K VF) #(VL/_L F) VVekK,

Vx(g™), (/L(g) are aifine mappings. In the Hilbert space
realization of the theory, (/;(g) is, by (2.11), continu-
ous on L in the weak*-topology of B(9); therefore, it
can be extended as an affine mapping //z(g) on L to L.
Then one can show!® that {/.(g) can be extended to a
linear contractive, weak* continuous, order preserv-
ing, unity preserving operator //(g) on B($) to B(P).
Its adjoint leaves 7¢(9) invariant and its restriction
to T7c(9) is a positive linear endomorphism, i.e., it
maps K in K; it provides the linear extension [/(g!) of
Vk(@?) to 7c($). The correspondence

PisfGis) 28-U(8)
is a representation of Pis*(l/is*) on B(9). The
correspondence

PislGls) 2g-V(8)
is a representation of /}s ((1s) on 7.($). For g
€ LGy, liL(g) is a bijective application on L. Then
(/(g) is an automorphism of the order unit space IB(9).
Such an automorphism has the following structure:

()Y =U()YU(g), VY<IB(Q),
where U(g) is a unitary up to a factor representation of
LG on® .10

In the case (b) result (2.12) holds for g< /| (Gg),
whereas for g=(a,l), a*>0a°> 0 [g=(b,0,0,1), b= 0],
one cannot even show that //(g) preserves the equiv-
alence classes F. )

Fel. (2.11)

11

2.12)

C. Characterization 111

Our aim is to give a description of experiments inter-
mediary between the two previously given, devised in
such a way that axiom (2. 3) is not too restrictive and on
the other hand the space—time symmetry is as fruitful
as possible. Let us investigate the reasons why, in
characterization I of the experiments, axiom (2,3) is
far less restrictive than in characterization I. In the
second description, due to the fact that effects are re-
ferred in the experiments to the preparation frame, the
separation between V and F in each experiment is simp-
ly obtained, e.g., in the Galilean case, considering
preparations involving ¢ <0 and effects involving { > 0.
However, to meet such a situation, it is sufficient that
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only the time specification of the effect part in the ex-
periment is referred to the preparation frame; there-
fore, in our new description we take preparation frames
obtained from R only by time translations, so that ¥
=:(b,a), where b is a real number and ¢ a production
process involving only negative times, referred to the
frame R, obtained from R by the time translation 4. The
relativistic version of such a characterization consists
in taking preparation frames obtained from R only by
space—time translations, so that: ¥=:(b,, @), where b,
(b=0,1,2,3) is a 4-vector and a a production process,
involving only points in the backward light cone, re-
ferred to the frame Rp, obtained from R by the space—
time translation b,. As in the second description one
considers effects involving only space—time points in-
side the forward light cone of R and in the experiment
the effects are referred to Rs,. Therefore, the set L

as well the representation (/r(g) of the semigroup /915*
(G :s*) are the same as in characterizations I and II. The
definition of //k(g) is simpler in the relativistic case,
which we consider first. The preparation (b,, @) is
described in a transformed frame R’=(a, A)R as

(a, +(Ab),, '), where o' is the description referred to
R > Ab) of the production process which in R, is de
scribed'by a. Since R, ey, =0, AR, one has o’
=u(A)y, where u(A) is “a representatlon of / ! on the set
of all production processes «. In conclusion one has the
following representation of 2} on K:

Ugl@, )b, @)= (@, + (AB),, u(A)a)

Via,A)e P, (b, @)eK. (2.13)
By similar considerations one sees that the symmetry
condition is now

u(, F)= (U gla, )Y, 1 (0, A)E)

V(e,A)e P, VeK, FeL. 2.14)

By considering the case A =1, Eq. (2.14) implies
Ugl@, )Y~V VacR, VeK,

and therefore one gets only a trivial representation of
translations on K ://x((a,I)) = Jx, with Jx identity opera-
tor on K,

On the other hand in the case @, = 0, by the same
arguments given in connection to Eq. (2. 5) one defines
{/x((0, A)) and {/((0, A)) and proves that in the Hilbert
space realization of the theory //1((0, A)) can be extended
to IB(§) with the form -

U0, A)Y=UM)YU*(A) VY B(D), (2.15)

where U(A) is a unitary up to a factor representation of
/ion$. The symmetry condition has no implication on
the representation //z{{a, I)) of timelike translations into
the future. a

In such a way we achieve by space—time symmetry
the results obtained in characterization II with the as-
sumption (b). [See (2.12).]

As in the characterization I also in the present one
different pairs (V, F) can exist which are related to the
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same concrete experiment. In fact (V,{/,((a,1))F),
a’> 0, a’> 0, where [/=(b,, @), canDe described also
as (V’, F), with V'-(b +a“,a(_a‘,)), G, ry being de-
fined as in characterization I, Then the same set of
results which are obtained in the characterization I
with the assumption (a), now can be obtained with the
following assumption:

(a7): K is such that if (®,, “)€£ also

(bu+au7 a(-ayl))€£ va€R4’ aZZOy 0020-

Let us consider now the definition of // g( g) in the
Galilean case. By the same arguments used to obtain
Eq. (2.13), one gets the following representation of
gionK:

/,/gg(('r,_‘}s_”_, R))(by O’) = (b+ 7 u(il+b?_},_?{,R)O’),

(1,8,9,R)e (., (2.16)

where u(a,v, R) is a representation, on the set of all
productlon processes, of the subgroup /, & of9 of trans-
formations (0, a,v, R).

The symmetry condition is
w(V, F)y=ulll (7, a,2,RNY, {0, a+vb(¥), v, R)EF),
(2.17)

where b(V) is the specification b in the preparation V
= (b, @), In analogy with the relativistic case one has
that

Ul(7,0,0,1) = g, (2.18)

The operators (/x((0,a,v, R)), which yield a representa-
tion of G, on K, do not preserve equivalence classes
when v %0, due to the term v8(¥) in the rhs of Eq.
(2.17). Therefore, the representation (/x((7, a,v, R))

of g* on K does not induce in a natural way a represen-
tation of? on K. On the other hand no nontrivial rep-
resentation of g . exists compatible with (2. 18). How-
ever, writing Eq. (2.17) in the form

(¥, F)=n(Ug((r,a~ vb(V), 0, RNV, {/((0, &, v, R)E),

(2.19)

one can define a mapping of K on K by

Uxla, v, R)V=V", (2. 20)
where V' is the equivalence class containing the
elements

Ugl0,a~vb(1),v,R)V, VeV.
Since

Ug(0,@ - v0(V), v, R))(], a) = (b,u(a,v,R)a),  (2.21)

{/xla,v, R) is a representation of Goon K, By Eq. (2.19),
L/L((O a,v, R)) preserves equivalence classes in L and
yields a representatlon U@, v,R)of Gyon L. Then the
symmetry condition 1mp11es that in the Hilbert space
realization of the theory //,(a, v, R) can be extended on
IB($) with the form T

Ule,v, )Y =Ula,v, R)YU*(a,v, R),

vY c B(H), (2.22)

where U{a,v, R) is a unitary up to a factor representa-
tion of G, on$. This is the result (2. 12), now obtained
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only by symmetry considerations. The results on
L/é(('r, 0, 0, D)) obtained in 2B with assumption (a) now
follow from assumption:

(ag) X is such that if (b, @)= K, also
(b+ 7,00 00n €K, Yb=0.

From our discussion the following new feature arises
for the description of space—time symmetries in
quantum mechanics: The usual requirement that space—
time translations are represented by unitary operators
on the Hilbert space of the system is a not well-motivat-
ed restriction; instead one should consider timelike
translations into the past of preparations (“states”,
statistical operators) given by positive linear endo-
morphisms of T¢(P) and timelike translations into the
future of the effects given by the adjoints of these map-
pings. In such a way one has a more fundamental moti-
vation for the use of “dynamical semigroups” consid-
ered, e.g., by Kossakowsky. > In such a more general
context, energy—momentum conservation (energy con-
servation in the Galilean case) is an additional require-
ment. We stress, however, that what one calls experi-
mentally energy—momentum conservation in a process
concerns only ingoing and outgoing states, so that en-
ergy—momentum conservation should become an asymp-
totic condition in this theory. We observe that axiom

(2. 3) in the characterization I becomes less and less
restrictive for increasing separation between the pre-
paration and the effect parts, so that one can expect that
by a more accurate formalization of axiom (2, 3) sym-
metry under space—time translation is again relevant
for energy—momentum conservation.

3. IRREDUCIBLE REPRESENTATION OF
Ps, FOR AN UNSTABLE PARTICLE

Let us consider first the case of a stable particle:
The space—time symmetry of such a system can be
described as in Sec. 2A and, since one expects that
symmetry alone determines the description, one re-
quires that the representation (2.7) of 2, () on § is
irreducible; then one chooses on physical grounds rep-
resentations characterized by a finite spinj and a
nonnegative mass m. If one does not assume a priori
that the particle is stable, the characterization 2A is
too restrictive and 2B or 2C must be used instead. We
shall refer to 2C.

One expects that the pure kinematical behavior of one
(in general unstable) particle can be still characterized
by symmetry consideration alone.

Let 11_’_1(1) be the set of experiments concerning the
pure kinematics, i.e., no observations on possible de-
cay products are made. For the set M‘? in the case of
an unstable particle the axioms of Ludwig and the condi-
tion (a,) [(a,)] are incompatible: e.g., (2.2) cannot be

satisfied for V=(b,, a) if @ is removed to far into the
past. One expects, however, that the axioms of Ludwig
and symmetry considerations 2C without condition (a,)
[(a,)] hold for MY so that one can take the result (2. 15)
for {/{(0, AY) [(2. 22) for {/((0, a,v,R))]. Since the theory
for an unstable particle should be a possibly straight-
forward generalization of the theory for a stable parti-

cle, one is led to assume that {/ ((a, D)) preserves
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equivalence classes in L, induces an affine mapping
{/1((@, 1)) on L, so that’it can be extended by linearity
on B(9); finally taking into account the Hilbert space
structure of the theory, let us assume the following
structure in the relativistic case,

U@, I)Y = U(a) YU (a),
VY c B(9), Val= 0, a’= 0,
and in the Galilean case,
U((0,0,0,1)Y =U®)YU" (D),
VY < B(), Vb= 0,

where U(a) and U(b) are linear contractive operators

on 9.

Defining U((a, A)) =1 U(Cl)U(A), U((by a,v, R))
=:U(b)U(a,v, R), one has then a (generally) nonunitary-
up-to-a-factor representation of i, (G.,), which,
taking into account that we are describing only the
kinematics of the particle, we shall assume to be
irreducible.

We consider now only the relativistic case for a parti-
cle with positive mass, the Galilean one having been
treated in Ref. 5, starting from a less fundamental
point of view.

Let us recall that a stable particle corresponds to a
unitary representation of /2, characterized by a mass
m and a spin j. In the nonunitary case a systematic
classification of the representations is still lacking.

A representation, 2 which is a straightforward gen-
eralization of the forementioned unitary one, is the
natural candidate to be associated with an unstable par-
ticle of given mass #2, spin j, and mean-life time 7,
The Hilbert space  of such a representation is

25+

-2, 39"
£=1

with § (¥ = L3(R3,/l, i), where/li is the Lebesgue o-
algebra of R®?, and

1
u(Q)j_/SdeW’ QG/”.

Indicating by fe(p) an element of §, the representation
of PLS* is (almost everywhere in IR%) 13

(U((a, M) )e(p)

=25 expli/M(1 + 1) plQee (A, P ), (3.1)
with
_ etz 1A _
[)07+(£2+mzc LR 7=5 T A= el
p=(po, ), p'=A"p,
Q(A,p) =D (B (p) A B(A™p)), (3.2)

where B(p) is the boost!! transforming the 4-vector
(m, 0,0, 0) into p and D' is the (2j +1)-dimensional
representation of SU(2). To simplify the notation, we
have always indicated the elements A of the homo-
geneous Lorentz group instead of the corresponding
element of SL(2,T). We shall see that in this frame-
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work a completely satisfactory description of a single
particle system can be given,

For stable particle one associates also a linear “wave
equation” to the particle (e. g., Klein—Gordon, Dirac
equation). Such equations do not add anything to the de-
scription of the particle, but become relevant if con-
sidered as classical field equations. In fact the quanti-
zation of such fields provides the theory for systems of
many particles and antiparticles. The correspondence
between the quantum mechanical description of the par-
ticle and the classical field description is the following:
There is a mapping M of the Hilbert space 9 onto a
suitable set of solutions of the wave equation such that
the wavefunction transforms as follows:

(U((a, A))p), (%) =2 Do) 97106 - @), (3. 3)
where
U((a, A))M=MU((a, A)) (3. 4)

and D(A) is a representation of the homogeneous Lorentz
group. 14

In the case of unstable particle one can find an
analogous mapping M and write Eqs. (3.3), (3.4) with
the only difference being that the wavefunction is de-
fined only in the forward light cone and that in {3. 3)
atz 0, a,< 0 and that U((a, A)) on the rhs of Eq. (3.4)
must be replaced by U*((- A™la, A™Y)) with a®=0, a,< 0.
In fact one looks for the correspondence in the Schro-
dinger picture; in such a picture one has, with our
characterization of space—time symmetries, only
timelike translations into the past, We give explicitly
the mappingM in the case of a spinless particle:

P(x)=My=: dggmz—)m exp[- (i/m)(1~iy)p - x|P(p),

pe, %20, 2,20 (3.5)

@(x) is a “positive frequency” solution of the Klein—
Gordon equation with “complex mass.”

4. PHYSICAL INTERPRETATION OF THE SINGLE
PARTICLE THEORY

The key point of the physical interpretation of the the-
ory of a single particle is the definition of the observa-
bles momentum and position, Usually an observable is
associated with a self-adjoint operator. However, such
an association is rather a consequence of a more funda-
mental mathematical characterization of an observable,
as it has been stressed particularly by Ludwig.? An ob-
servable is a field of “coexistent” effects; such a field
yields in the Hilbert space realization a measure with
values in the [0, 1] interval of B($). In particular, if the
measure is projection-valued, it generates an Abelian
algebra of self-adjoint operators. Such operators are
then called observables,

Let us consider first the case of a stable particle. To
define a position observable at time £, one looks for a
projection-valued measure E,,(€) on the Borel o-algebra
of IR;. The effect Ex(R) corresponds to the following
property: The particle is at time t:xo/c inside the re-
gion §2. Since in our scheme the effects are inside the
future light cone, one considers only regions Q such
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that, for xe @, Ix| <ct. By its physical interpreta-
tion Ex(Q2) must transform in the following obvious way
under rotations and space—time translations:

Ul(a, R)Ex(U*((@, R)) = E, uq (),

where Q' =:{x'|x'=Rx+a,xc Q}.

4.1)

The family Ex,(§2), which satisfies Eq. (4.1), is
given explicitly by

Exo(Q) =: U((xy, 0; 1)E(Q)U*((x4, 0; 1))
with
E(@)=: P "3 E@7 Py,

(4.2)

where

(E(Q)f)c(g) = :Xg(gyc(E);

GNe)=: gzpyrs [ dab exelle/mp-x1fe(p),
1 4.3)
G- g f it exal i/mp-x1fet),

(Pof):(ﬂ) = Zpof:(ﬁ)-

In the theory of a stable particle according to descrip-
tion I, in which effects are not restricted to the future
light cone, E{R) can be interpreted as the measure as-
sociated with the position operatora_? at time £=0:

~ .0
ENelp) = :m(-a—f ) PA1)

Such position operator does not transform in a covariant
way under velocity transformations, This is in no way a
difficulty since the physical interpretation of the spec-
tral measure of X requires only the transformation
property (4,1).

(4. 4)

A momentum observable at time t=x,/c is a projec-
tion valued measure Exo(ﬂ) on the Borel o-algebra of IR,
with the following physical interpretation of Eyy(£2): the
particle has at time { momentum p & . Then Exy(R)
must transform in the following way:

U((a, \))Ex(Q)U*((a, A)) = Ex(R"), (4. 5)
where

3
@ =:9p' | pi= 2y Mlp + BB+ K= 1,23,
P : P
pe Q).
Exy(R) is given explicitly by
Ex(2) = E(%),
where E(Q) is given by (4. 3).

(4. 6)

Obviously the selfadjoint operators [_; related to E:(Q)
are

(B11e(p)=bFe(p). 4.7)

The operators J_? andé obey the canonical commutation
relations, It is useful to introduce a coarse grained
position-momentum observable, which is more adherent
to the actnal measurements of position and momentum
of a particle: It is given by the field of coexistent effects
generated by the following projections:

Exy(n, 7)=:Ulxy, 0; 1E(n, )U*(xy, 0; 1),

Comi et al. 915



(D))= 50 20) [ dp' i
xu' w2 (p")f, (p'), (4. 8)
u'?2(p) = exp[- (i/m)p - x,] (Ap)3/2 x,(,b)(p2+m /4

where ¥,(p) is the characteristic function of the cube
2, of volume (Ap)? centered in pp=7Ap (¥;=0,%1,
£2,-++, i=1,2,3) and x,= (21/Ap)Min (;=0,+1, iz
i= 1 ,2,3).

The effect Exy{z, 7} corresponds to the following prop-
erty: The particle at time f= x(,/c has momentum p & 2,

and is somewhere in a region around x, with volume
~7/(ap)®. Such an interpretation is possible since

25 Exgf,7)=1. (4.9)

Obviously Ex(n,¥) is a meaningful effect if |x4! <x4. In

the case of an unstable particle, due to the way in which

U{(a, A)) depends on v, one is led to consider the follow-
ing sets of operators:

Fuy(Q) = : expl(i/M)xo(1 + i) P P} 2 7E ()

X7 ,P 2 exp [— (i/H)x4(1 - iY)P,] (4.10)

with

e =: gagers [ dap explli/mi1 - i) 2110),

FiDD) = Gaore [ dyx expl- (i/R)(1 +i)p - 2] Fx),
€ such that xEQ =>lxl <Xg;
Fep() = : exp[— (2/m)yx,Py)E(9), (4.11)
(Pl 21)(0)-:0370) [ ' Gz
xugz D (b)), _ (4.12)
w22 (p) = expl- (/M1 +iy)(p 5_—%%”@

Xxr(P)(P*+ m2c?)/4,

However, there is no evidence that Eq. (4. 10) defines
an operator <1, On the other hand, one expects that a
localization in arbitrarily small regions is not possible
for an unstable particle which one describes in a model-
istic way as a “resonance” of stable particles.

There is no problem in connection to (4. 11): It de-
fines the field of coexistent~effects of the observable
“momentum. ” The effects Fx,(Q) are not projections,

The operators Fx,(n,7) are effects; in fact:
25+ 1

(f, Fyln, 7)) = E f P T et

xzﬂ"”(ﬁzf:([’)j

xp?

2J+1 1
f AT
xexp[(2//)(p - xa—bxv]| F (D)2

1
< | o
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< £II%, (4.13)

They provide the expected kinematical description for
the unstable particle. In fact let us evaluate the expres-
sion (f, Fxy(n,7)f) given by Eq. (4.13), using the method
of the stationary phase. Let us choose f,(p) peaked in

p =pr,, such that its phase is practically constant; then
the condition of stationary phase, which selects the ef-
fects which have the highest frequency, i

- prxy/ (PE+mEcA 2=, (4.14)

Fon e Sttect Faln, 7o), with %o, 2,7, satislying Eq.
(4.14), one has

(f, Fxo(n, 1))
2j+1
f dyp expl(v/F)(pxa— pywo) 2

S

Xe(2)

- & (apy?

¢=1

« expLG/ ) (pxn = by fe(D)
(p? +m2c?)1/4

= exp[(2y/R) by, - %n— (D3, + m¥ch) )]

24+l
) x:(£) expl(6/R)(pxn = Py ofe(D) I*
XZ‘:? f 3£{A;>)3 (£2+mzcz)1/4 . (4.15)

Equations (4. 14) and (4. 15) give the expected kinematical
description of an unstable particle with mass # and
mean-life time 7,=1/2ym. The effects Fxy(n,7) generate
a field of coexistent effects if for any subset / of vectors
(r,7) such that Ix,| <x, one has

21 Feyn,7)<1.

(4.16)
&l

Such field defines a coarse-grained position-momentum
observable. Condition (4. 18) is immediately verified if
the effect Fxy(n,7) is replaced by Fiy(n,7) defined as
follows: -

(F:'co(lt Vf):(p

=P (p) expl(2y/m) pr- 24—

@ f f(f
de3f Moy ')(f)‘(f,—g—;W

(D2 +mPc?) x}
(4.17)

("'"(p) =1 expl(ipyx,Ju @ (p).

On the other hand one can see that expression

Sz | (s [Fro(n, ¥) = Fiy(n, 7)1f) | becomes arbitrarily
small, uniformly with respect to f, by choosing ap
small enough.

One can give a connection between the effects (4. 12)
and the operators (4. 10), by which the practical use of
the latter can be justified under suitable conditions. In
fact let us take a state f, where fe(p) =X, (p)fz(P) and
let us consider the effect ¥%(Q) =: 2y 5 5 c0 Frol2, 7),
where € is a region such that xc Q=s|x] <x,. One has

(f, F5,(Q)f)

1 2j+1
NaY [
2y

Cwngea (APP T

f dyp exp|(i/7)(1 +iy) (fln —Pr)xo)]
o il

2

1
x (p2+,,2202)1/4f:(£) (4.18)
S e [ d epl/m i o x - bl
g=1
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2
X ey s (0)| =, e,

where Fzy(Q) is defined in (4.10); Ap must be chosen

in such a way that F3 (R) <1 and the continuous approxi-
mation in (4.18) hold together. Then Eq. (4.18) defines
in a natural way a position probability amplitude which
coincides with the wavefunction (1. 1) introduced, e.g.,

by Zwanziger and Schulman,

The observable related to momentum and to position
which we have introduced are coexistent with the spin
observables, e.g., §, defined by the field, generated by
the following effects,

(Fe)F)e () = expl- 2y/R)p o]0 fulp), £=1,2,...,2/+1,
(4.19)

so that, e.g., the observable “coarse grained position-
momentum and §;” is associated with the effects

F"O(ﬂy Z) ‘E) =1 U(xO,Q,I)F(E’Z, E)U+(X0,9 91)’
Fln,7; £ = Fo(n, 7) - Fy(k).
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Correction terms for Padé approximants
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Let f(x) be a function of the form f(x) = f§ d p(1)/(1 + ux), x

> 0, where p(u) is of bounded

variation and piecewise differentiable on 0<u < oo; and suppose that the [N —1/N] and [N/N]
Padé approximants (PA’s) to f(x) can be constructed. Then correction terms by(x) and cy(x) such

that [N —1/N]—-by(x) < f(x)
shown to have the structure x 2

[N/N]+cy(x), x >0, are considered. Suitable corrections are
[posmvc constant}/{denominator of corresponding PA}

The nature

of the constants is examined: They vanish when f(x) is a series of Stieltjes, and given appropriate
information about f(x) they can be calculated. Applications are considered.

I. INTRODUCTION

In this paper we consider the following problem:
Suppose f(x) is a function of the form

flx)= / o) x =0,

(1+ux)’ (1.1)

where ¢(u) is of bounded variation and piecewise dif-
ferentiable on 0 < u < «; and suppose that the [N-1/N]
and [N/N] Padé approximants (PA’s) to f(x) can be
constructed. Then we ask if it is possible to evaluate
correction tevms b (x) and c,(x) such that

[N =1/N]=bx) <f(x) < [N/N]+cx), x=0.

We will establish explicit formulas for such corrections.
Except for a constant multiplier, at fixed N, these use
the same information as is used to construct the PA’s
themselves. Given certain additional information about
f(x), the requisite constants can be evaluated.

The motivation for this investigation is that in the
case f(x) is a series of Stieltjes, which corresponds to
¢(u) being a bounded monotone nondecreasing function
in (1. 1), we have the inequalities®

[N-1/N]<f(x) <[N/N],

(1.2)

x=0, (1.3)

These bounds have many applications? both because they
are in practice usually found to be tight and because
they require a relatively small amount of information
about f(x), namely the first 2N + 1 terms in the asymp-
totic expansion of f(x) at x=0. One is led to expect that
the PA’s themselves in (1. 2) will be good approxima-
tions to f(x) and to hope that relatively small corrections
can be found. Since functions of the form (1. 1) occur
even more often than series of Stieltjes, the nature of
simple correction terms such that (1. 2) is true is
interesting, and explicit formulas for them should find
many uses.

Our approach involves a bivariational bounding tech-
nique described recently by Barnsley and Robinson. 3
In Sec. 2 we construct a real Hilbert space $ with sym-
meiric inner product {, ), a pair of vectors £ and 5 in
$, and a positive, self-adjoint linear operator L in 9,
such that

F(x)= (&, (

This latter quantity is in a suitable form for bounding by
means of bivariational functionals. In Sec. 3 we show
how formulas of the form (1. 2) are obtained by choosing
appropriate trial vectors in the functionals. We obtain
the central result that the correction teyms each have
the slvucture

1+xL)Y'y), x=0. (1.4)
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x*¥ {positive constant} i
{denominator of corresponding PA}?

(1.5)

We show that the constants vanish when f(x) is a series
of Stieltjes, thus reducing the bounds (1.2) to the usual
PA ones in this case.

In Sec. 4 we consider the evaluation of the constants
in the correction terms. We find that the necessary
constants may be calculated explicitly provided we know
two sets of numbers, {f, 2% and {F 2%  The former
are simply coefficients from the formal expansion of

f(x) about x =0, written

:i\ (=2)"f,, (1.6)

n=0

so that
o=

These numbers are precisely the ones used to construct
the [N —1/N] and [N/N] PA’s to f(x) (see below). The
second set of numbers, {F 2%, are coefficients from
the formal expansion of the function

u"dg(u), n=0,1, -, (1.7

I Y ) T -
F('\)w_/; (1+ux) _nz=;:)( W)"E (1.8)
so that
Fn:[”"ldcﬂ(u)l, n=0,1, -, (1.9)

where |dg(u)| denotes the absolute value of the incre-
ment do(u).

Requiring the latter numbers is clearly too stringent
a condition to be useful in most cases. However, in
Sec. 4B we show that the set {F 2%, may often be re-
placed by a new set of numbers {F,}2¥  obtained as
follows. Let 6(«) be any function such that

do(u) = fdgo(u) | R

By this notation we mean that 8/(«) > {¢’(u)| on all in-
tervals where the derivative ¢’(u) exists and that 8(x)
has a larger positive “jump” than the magnitude of the
jump in @(u}) at each point of discontinuity of @(u). Then
the F,'s are given by

Fo= " wrasq),

which should be compared with (1.9). We assume that
the requisite F,’s are finite.

for all 0 su< o, (1.10)

n=0,1,--, (1.11)

When all is established, we see that one is oflen able
to use PA’s plus corvection tevms to devive bounds on
functions of the form (1.1) in much the same way as
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PA’s gre usually used to bound sevies of Stieltjes: The
point is that the additional information needed, the F,’s,
is usually accessible. In Sec. 5 we test the method with
an example, and briefly consider applications and
extensions.

For reference later on we give the definition and for-
mula for the [M/N] PA to f(x). The approximant take
the form of a polynomial of degree M divided by one of
degree N. The coefficients, not all zero, are obtained
by equating powers of x in the equation

M+ N
( 54 (—xm) QUx) = P(x) = O(xh" ), (1.12)

n=0

where P(x)/Q(x) is the [M/N] PA to f(x). Provided that
DM ~N+1,N~1)#0 we have?

u-N
[M/N]=725 (=x) f,= (= x)4"2

j=

0 fM-N+1 e fM

i+ X yr)

Frowa Uyt fo-mz)

fy (fy+ %fy.d) o ey T ¥ en)

(1.13)

(fM + fo+1)

(fM-Nfl + fo-Auz)

(i +fo+1) (fM+N-1+fo+N)

and the approximant displays the familiar property
f(x) = [M/N]=0(x##1), (1.14)

In the above we have the persymmetric determinants$

fm fm+l o fm+n

Dm,n)=| frr  See (1.15)

fm+n+1 ’

fm*n fm«»ml Tt fm»Zn

and we adopt the convention f;=0 for j<0. For
simplicity we assume throughout that

D(O,N-1)#0 and D(1,N-1)#0, (1.16)

thereby ensuring the validity of (1. 13) in the case of
[N-1/N] and [N/N| PA’s. We will use the notation

(fM-N+1+XfM—N+2) (fM+fo+1)

Quuy milx) = : :
(fu +%fu) Faonar T % gy

(1.17)

for the polynomial in the denominator of the [M/N] PA.
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2. BIVARIATIONAL BOUNDS FOR f(x)
A. Construction of a representation f(x) = ({, (1+xL)™! n)

Here we construct® a real Hilbert space $ with sym-
metric inner product (, ), a pair of vectors £ and 7 in
P, and a positive self-adjoint operator L in §, such that
f(x) can be written in the form (1. 4).

Let $ be the Hilbert space L2[0, ) of real square
integrable functions on [0, ©), with the symmetric inner
product

o= L) edu, G andg in$.  (2.1)
Now let L be the linear operator in $ defined by”
Le(u)=ug(u), te (L) (2.2)

Here /) (L) is the domain of L, and consists of all ¢ in
P such that

ILgIP= (L, Loy = [ fut ()} du<w;

{L) can be shown to be dense in §. It is then readily
established that L is both positive and self-adjoint. We
have, for example,

(&, LY = [7 uft@Pdu>0 for ££0, ¢ (L), (2.4)

(2.3)

and
EuLty= [ Glugdu=(LE,, t,),
£, and ¢, in /)(L).

In particular, the operator (1+xL)™, x>0, is a bounded,
linear, self-adjoint operator whose domain is the whole
of §.° Its operation is simply

(1+xL)? glu)y={1+xu)? c(u),

(2.5)

tuye 9. (2.6)

The final step is to select any pair ¢ and n of vectors
in § such that

(2.7

Suppose for the moment that this has been done, Then

fo E(u)n(u)du:fo de(v), for all 0 su< o,

(&, 1+ L) )= [ ) (1 + xw)™ n(u)du
:f: (1+xu)"d(f: E(V)n(u)du)
:‘[ (1+xu)td (fou d(p(V)>

7 ey
ﬁ_/o- A+x)

which is just what we want.

W

0, (2.8)

The existence of vectors £ and 7 in § such that (2.7) is
true is easily established if we assume @(u) is differ-
entiable on 0 < u <, In this case we can choose for
example

nu)= @ @)[*/2 and £u)=sen{y (W} |o w)[*/?,
(2.9)

where sgn{I'} takes the values + 1 and ~ 1 according as
the real number T is nonnegative or negative, respec-
tively. Then these functions belong to $ because

L7 P du= [ T00F du
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= [ low]au= [ |do@)] <=, (2.10)

where we have used the property that ¢(u) is of bounded
variation for 0 <u <<, With this choice we have

foun(u)i(v)duzfou sgn{ @ ()} | @ ()| du

= @' (wdu= [ dep(u). (2.11)

If o(u) has discontinuities v, at points w, € [0, =), say

@lw; +) = p(w,)=v;#0 (i=0,1,-), (2.12)
then we may adjoin the contributions

2 |Uiil/2 [6(u _wi)]x/z,

i=0

2 sgn{v} |Ui,l/2 [6(u-w’.)]1/2, (2.13)

i=0

to n(«) and £(u), respectively. The inclusion of such
functions in , along with the use of the usual rules for
evaluating integrals involving delta functions, can be
rigorously justified.® With these additions it is readily
verified that n(u) and £(u) satisfy (2. 7) in the case
where ¢(u) is piecewise differentiable.

We observe that /(x) being a series of Stieltjes cor-
responds to the case £ =7. Similarly, f(x) is the nega-
tive of a series of Stieltjes when £ =-17. We also note
that the coefficients in the expansion of f(x), as in (1. 6),
are related to inner products in involving powers of L
and the two vectors n and £, by

(L™, L™) = f:’ wmn do()=f,... m,n=0. (2.14)

B. Bivariational bounds

Let A be any linear self-adjoint operator in a Hilbert
space P, such that

&A= 0, te i)

Suppose ¢ and 5 are vectors in . Then if ¢ satisfies
the linear equation

Ap=¢,
bivariational upper and lower bounds can be imposed on

the inner product (¢, n) =%, A™n). There are lwo pairs
of bounding functionals®:

(2.15)

(2.16)

g+ 5 =188, P2k, A ) < g{S,SH?  (2.17a)
and

G =188, M2 <(5, ATy < g+ S +{S,S, 12, (2.17b)
where

g = 9(2, ) == (&,A¥) +{&,m + (¥, &), (2.18)

S;=S(®)=(Ad -, A - &),

S, =S (V) =(A¥ -7, A¥ —17), (2.19)
and

§=5(®, ¥)=A® - §,A¥ —7). (2.20)

The trial vectors & and ¥ must belong to/)(4), and are
approximations respectively to the solutions of (2. 16)
and the auxiliary equation

Ap=n. (2.21)
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We observe that the second pair of bounds may be de-
rived from the first by using — ¢ in place of £, and then
using the trial vector — & in place of ®. (The need for
two pairs of functionals will become clear in the next
section. ) By writing &= ¢ + ¢ and ¥ =y + 53, the
bounding properties of the functionals may be verified
directly.

If we set

A=(1+xL),

x20, (2.22)

L being the operator discussed in Sec. 2A, then A is
linear, self-adjoint, and satisfies (2.15). The func-
tionals in (2. 17) now impose upper and lower bounds on

(&A™ = (&, (1+xL) ") =/(x), (2.23)

which is just what we want.

x =0,

3. PADE APPROXIMANTS AND CORRECTION TERMS

To obtain formulas like (1. 2) we will use trial vectors

N-

N-1
¢=¢N= 7 al"% and ¥=¥¥= 3 b L,
n=0

-

(3.1)

3
n
[=}

in the functionals (2.17), where the parameters «, and
b,(rn=0,1,...,N —1) have yet to be chosen. Here we
assume that both £ and 1 belong to/)(L") for
n=1,2,...,N, and at the end of Sec. 4A we will show
that this is assured by the assumption that F,, defined
in (1.9), is finite (n=1,2,...,2N). Rather than choosing
the parameters in the trial vectors so as to optimize the
functionals in each case, we will instead choose them

so as to make either

g(@Y, ¥ = 9(a, b), (3.2)
or else
G(ON, WM =G (a,b)= g(&", ¥M) + ¢(¥, ¥Y), (3.3)

stationary. The reason for this is that when ¢(a, b) is
made stationary with respect to variations of the a,’s
and b,’s, the value about which it becomes stationary is
precisely the [N — 1/N]PA to f(x). Similarly, making

G (a,b) stationary yields the [N/N] PA to f(x).

The above results are well known in the context of the
Schwinger and Kohn variational principles, as described
by Nuttall, !° and their derivation follows familiar lines.
As an example we will show how (Q(a, b) yields the
[N =1/N] PA. We have

gla, by=—a"Ab+(a* + b*)c. (3.4)

Here A is the N X N matrix with elements A4,
={L't, (1 +xL)L'n)=f,, , +xf (i,j=0,1,...,N=1), ¢

i+j ivjel ! !
is the column vector with elements ¢, = (L't n)=(L'n, &

=f; (i=0,1,...,N—1), where in both of the latter we
have used (2.14), and a,b are the column vectors with
elements a,, b, (i=0,1,...,N~ 1), respectively. We now

find that ¢(a, b) becomes stationary when

ag((l,b) _ ay((l,b)

=0, sothata=b=A"¢c, (3.5)

oa b

and correspondingly
{g(aopt’bopt):C*A-lc (36)
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0 fo e
(fo+ /)

fra
(Faor T2 y)

== f

(fZN-Z + foN-l)

fur Uya +xfy) e

(fo+xf1) (f]v-l +xf)v)

(PR 7% ERILEN VAV 7 AW |

We see by comparison with (1.13) that this is indeed the
[N—1/N] PA to f(x). The [N/N] PA is obtained in a
similar way from ((a, b).

Let us introduce the notation @Z’, \Pa, and & . \115,
for the optimized pairs %, ¥* which yield the [N —1/N]
and [N/N] PA’s on use in ¢ and (;, respectively. Then
we will shortly require the formulas™

0 Jo fra
@ﬁ:— 3 o+ xfy) Fua v %) | +Quyaay mil#)
LY (fya+afy) o oy T ¥ fays)
(3.7
and
0 f1 fN
do==| ¢ (fy + %f;) (Fat 2 ) [+ Quyy i (%),
LN—IE (f,v+xf1v+1) (fzn-1+xf2N)
(3.8)

N
together with similar expressions for ‘Ifg and ¥,
wherein £ is replaced by 1. Here we have used the
notation (1. 1%7).

We are now in a position to obtain bounds on f(x) of
the form (1. 2). We begin by rewriting our variational
bounds (2. 1%7) as

and

- [, P2+ sl<f(x) < g+ [8,8,12 + 5], (3.9D)
for x 2 0. Now consider for example the lower bound in
(3.9a). If we insert the pair of trial vectors d>§, \pﬁ', we
obtain 4

[N-1/N]-b(x)<f(x), x20, (3.10)
where
bN(x)z{Sz(cbg) s"(\pg)}”z - 5(«1»:3,, \1/5) (3.11)

Similarly, using the pair <I>é‘ 1n the right-hand side

of (3.9a), we obtain

f(x) <[N/N]+c %), x=20, (3.12)
where
c,,(x):{s,(zbg) Sn(\pg>}1/2 _5(¢2,w2>. (3.13)

A different pa1r of bounds on f(x) can be obtained from
(3. 9b) Usmg rbg 'IIG in the left-hand side of (3. 9Db),
and <I>g, \Ifj in the right-hand side, yields

[N/N]=B (%) <f(x) <[V =1/N]+C (%), %20, (3.14)
where

B,f(x):{se ({bg) Sn(‘l’z)}”z i 5<<I>%, ‘I’g) (3.15)
and

(3.16)

e Jso3) (o) 5 65, )

We now simplify the above expressions for the cor-
rection terms b ,(x), c (%), B,{(x) and C (x), by showing
that each one can be written in the form (1. 5); that is,

x*¥{positive constant} )
{denominator of corresponding PA}?

We will then explain the need for having the second pair
of bounds (3. 14).

Consider first b ,(x), (3.11). In the evaluation of this

- [s, S} E~sT <f(x) < G+ {s,s, 72~ (3.9a) term we use
0 fo Fya 3 0 0
(E+xLE) (fo + x£1) Fratofyd | |0 (fo+xf) f pur T X7 %)
q,”_ =(1 L @N _ — (LN_1£+xLNE) (fN-1+xf ) b szy.z"’xfu_]l) 0 (f .1+xf ) (f - +xf -)
0{; £=(1+xL) (g £ (I;o“‘xfl) (fN-1+fo) N V2N-2 2N-1
(Fya* 3y = (foyat 5oy)
921 J. Math. Phys., Vol. 16, No. 4, April 1975 M.F. Barnsley 921



: fo e fua
(£+xL¥) (/o + xf,) (Fya t %)

(LY L) (Pt %Fy) o (pyn ¥ Xfpyad)

where in the last step we have subtracted the first row
from the second, taken out a factor x, subtracted the
resulting second row from the third, and so on.
Introducing the notation

e [ Somann1
D, (m, n)= L_g f'f'” f’f“" ,
L.ni O P
cCNOLY (L), (3.18)
we express (3.17) by
Abg— == X *Dy(0, N)/Qyr/ ). (3.19)
In a similar way we obtain
z\\l/; —n== % D (0, N)/Q 1/ mi(X), (3. 20)

the only difference being that £ is replaced by n. In
particular, we now have

s(@;, ﬂf;) =(Ady — £ A¥] —7)

2N
- W"/—](ﬂ?a)e(o,i\r),pn(o,m% (3.21)
N-1/N

s, éz) =40 - £,A%] - 8

2N
B [Q(Nj,m(x)  (D0.N), D{0.N) (3.22)
= [—Q[—ﬁiw Il ,(0, N)IP,
and similarly
f[v
sn(w;> G D (0, N2 (3.23)
Now substituting into (3. 11), we have
b () =52 /1Q v/ m(0)F, (3.24)

where
by =D (0, NYII- 1D (0, NIl - (D (0. N), D (0, N)). (3.25)

In like manner we derive

CN(X) :XZNCN/[Q[N/NI(X) ]Z,v
B () =x2"B /1@y i) P, (3. 26)

C (%) =x"%¢ . /[Q, N—1/NJ(X)J2’
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£ fo ) fN—l
L f
+ QX)) =~ x ¥ .E f} _N + Q@ po1y mi{%),
LY fy fana

(3.17)
where

cy=1ID (1, NI 1D (1, Ml - (D,(1,N), D, (1, N)), (3.27)
By= D1, M- ID (1, Ml + (D (1,N), D (1, N)), (3.28)
C y=ID(0, N)It- lID (0, M)l + (D,(0, N), D (0, N)). (3.29)

Thus, in each case, the correction term takes the form
(1.5): The numbers b,, ¢, By, and C, are independent of
x and nonnegative by Schwartz’s inequality.

We now show how our bounds reduce to the usual PA
bounds, see (1.3), when f(x) is a series of Stieltjes. In
so doing we uncover the reason for having two pairs of
bounding formulas.

From Sec. 2A, the case f(x) is a series of Stieltjes
corresponds to £=7. On making this substitution in
{3.25) and (3. 27) we obtain b, =c,=0, and (1.2) be-
comes the usual PA bounds. Making the same substitu-
tion in (3. 28) and (3. 29) yields

By=2lD,(1, N2, C,=2ID,(0,N)I=, (3. 30)

and the resulting bounds on f(x) are certainly not the
PA ones; indeed, these bounds can be shown to be
broader than the PA bounds. However, if £= -7, which
is the case where f(x) is the negative of a series of
Stieltjes, then just the opposite of the above happens;
(3. 14) gives

[N/Nlsf(x) <[N-1/N],
* =[N -1/N]<s-f(x)<-[N/N],

e x>0, (3.31)
T xz0,

while (1. 2) yields a pair of bounds which are distinct
from the PA ones. Thus, our bounds reduce to the usual
PA bounds in both the cases f(x) =+ a series of Stieltjes.
This is the feature which one would naturally expect of
“PA’s + correction terms”; we see how, for this to oc-
cur, two pairs of formulas are needed.

4, EVALUATION OF THE CONSTANTS IN THE
CORRECTION TERMS

In this section we will be concerned with the evaluation
of the constants b, c,, By, and C,, which occur in the
correction terms. The ultimate objective is to show how
suitable values for the constants can be calculated while
assuming only a set of information about f(x) which is
likely to be easily obtained, over and above the coef-
ficients {f,}2", which are already needed to construct the
PA’s themselves. We begin by discovering that we need
to know the coefficients {F }*" , described circa (1.9).
It is then shown that in many cases F, may be replaced
by F, n=0,1,...,2N, see (1.11), while preserving the
bounding properties of the corrected PA’s.
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A. Evaluation of constants using {F,} 27,

The terms (D,(0, N), D,(0,N)) and (D,(1, N), D,(1,N))
can always be evaluated using only {f,}*",. We have for
example

<D((03 N)’ Dn(09 N)>

E fo fN-l n fO e fN-l

LE f, - fy Ly fi = fx
LY fy = fana L™ fy = fona
(4.1)
and, observing that
n f() e fN-l f,, fo orr fN-l
Ly f, - f}v fnu f1 fu
L | . . . . . =0
L™ fy ** faya T Tu 0 fana
forn=0,1,...,N-1, (4. 2)
where we have made use of (2.17), we find that
{D{0,N), D (0,N)y=D(0,N -1)D(0, N). (4.3)
In the same way we derive
(Dy(1,N), D,(1,N))=D(2,N -1)D(0, N) (4.4)

and in each case only the coefficients {f,!27 are used.

However, the constants also involve the guantities
D,(0, NI, tD,(0, NI, 1iD (1, M)li, and IID (1, M,
where for example

D (0, N)I2 = (D,(0, N), D(0, N))

E fo fua € fo o fr-1
LESu vl N EE S Ty (4.5)
L¥g I fan- LVE fa = fana
In order to evaluate these, we clearly need to know
(¢,L"t) and (n,L™) for n=0,1,...,2N. (4. 6)

Choosing £ and 7 as in (2. 9) and using (1.9), we have
(&, Ley=@m, L) = [" u"|de(w)| =F,, (4.7)
and in this case
D (0, Ml =1iD (0, VIl and 1D (1, N)I=IID,(1, N)II.
(4. 8)
Given that we know {F,}2¥, it is now a straightforward

matter to evaluate the constants b,,c,, B,, and C,. For
example, when N=1, we have from (3. 25)

b, =1ID,(0, D)l D (0, DIt - (B (0, 1), D (0, 1)
=(D,(0,1), D0, 1)) -D(0,0)D(0, 1),
by (4. 3) and (4. 8),
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& 1

I
PlLE A

:<\L£s 7 )7 fr fa

=Ll =Lk, fiE=foLE) ~folfofa= )
= (f1Fo=2/oh\Fy ¥ [3F) = folfofo=f3), using (4.7);

(4.9)
and correspondingly
by(x)= xz[(fiFo - 2fo{§i;£§fz)'fo(flf2 - le’)] . (4.10)
Similarly we find
e (%)= PUSf3Fa =21, LF + fiF;) - fUfofa— fﬂ]_ (4.11)

(fL+ xf)?

In general, there does not seem to be any succinct
method for evaluating the inner products (D,(0, N),
D,0,N)) and (D (1,N), D,(1,N)); for each N one has to
proceed straightforwardly via expansion of the cor-
responding determinants, D,(0,N) and D,(1,N), as
illustrated above.

We recall here the remark made at the beginning of
Sec. 3. The assumption that F, is finite (n=1,2,... 2N)
means in particular that (L™§, L™&) = (&, L")
=F,, (m=1,2,...,N) is finite, using (4. 7). Hence ¢,
and similarly n, belong to H(L™ (m=1,2,... N), as
was claimed.

B. Evaluation of constants using {7, } 2N,

The requirement that in addition to {/,¥¥,, we also
need to know {F,12¥ is a very stringent one. However,
provided we know a function () such that d6{u) = |delu)!
for 0 €su< o, we can often still obtain suitable values for
the constants b,, ¢, B,, and C,.

Let us suppose for simplicity that ¢(u«) is constant
outside 0 <u <1/R, for some 0 <R < =, and that ¢(u)
possesses a continuous derivative ¢’ (u) over this
interval. Then

YR @ (u)du
f(x)"f (1 +ux)

0o
is the analog of a series of Stieltjes with radius of con-

vergence R. Let 6(u) be any monotone nondecreasing
function with a continuous derivative 6’(u) such that

' (u)=| @’ (u)| for 0sus<1/R. (4.13)

(4.12)

It seems generally likely that, while not knowing | ¢’ ()|
and hence not knowing the F’s, one would still have
available a bound 6'(u), such as a constant M = | ¢’ (u)]
for 0su<1/R.

We now claim that, on defining

F,= [Y®uwdsw), n=0,1,...,2v, (4.14)
and putting

(&, L'y =(n,Lmy=F, n=0,1,...,2N, (4. 15)
in place of the F,’'s used in Sec. 4A to evaluate b,, c,,

By, and C,, the resulting constants will be such that the
bounding formulas (1. 2) and (3. 14) remain valid.

In the proof of this result the central idea is the
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following. We consider replacing the distribution de(u)
in the definition of f(x) by a distribution whose value at
each point u € [0, 1/R] is either + d&(u) or —d6(u): f(x)
may be approximated arbitrarly closely in this way for
x20. The result is then obtained by observing that the
“F,’s” associated with the +d6(u) distribution are
exactly the F’s.

More precisely, given 6(u) and ¢(u) as in (4. 13), there
exists a sequence of piecewise continuous functions
{Xu(u)};., with the property that for each M

Xy(#)=either +1 or -1, eachue(0,1/R]. (4.16)
We define
Pu() = [ "X u(ee) d8(u), (4.17)

and an associated sequence of functions {)‘M(x)};;’=1 by

"1/R dpulu)

@)= | Qrw) M=L2- (4.18)
Then the sequence {x,(u)};._, is such that
fu) 5= f(x), 0<xs<X, (4.19)

for any 0 < X < o, We use “*” to mean uniform con-
vergence with increasing M, over the stated interval.
Moreover, if

1/ R
an:fO wdp,(w), M=1,2, -,
then

(4. 20)

}Jiman:~ w Nn=0,1,2,.., (4.21)
These results having been established, the rest is easy.
For large enough M the PA’s plus correction terms fo
fy(x) certainly exist [i.e., the associated determinants
like (1. 16) do not vanish because of (4.21)]. Moreover,
the requisite “F,’s” needed to evaluate the constants

in the correction terms are

fol/;e u"ldpM(u)] :fol/fe u"’XM(u” |d9(u)‘

~1/R n ~
=)~ wdéw=F, n=0,1,...,2V,
(4.22)
independently of M. Hence we have
[N = 1/N - b¥(x) < fy(x) < [N/NP + ch(x), %20,
(4.23)

where the M superscript indicates approximants to
fu(x); and on taking the limit as M —  we obtain

(N = 1/N1=b(x) <f(x) < [N/N]+E %), x20,(4.24)

where the tildes mean that F~,,’s are used in place of the
F,,’s in evaluating the correction terms. A parallel
derivation applies to the other pair of bounds (3.14) and
yields

(N/N]= Byx) <f(x) < [N - 1/N]+ C yx), x20, (4.25)
in the obvious notation.

To prove these results, we must establish the exis-
tence of a sequence of functions {x(«)}}; ., such that the
requirements (4. 16), (4.19), and (4.21) are fulfilled.
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We assume, without any loss of generality, that R =1.
Then we begin by defining a set of partitions {4,}5_, of
the interval 0 su <1. We take 4, to be the set of points

O=u <ulf <...<yf=1, (4. 26)
where

u—y¥ —1/M, m=1,2,...,M, (4.27)
so that

ul =m/M (4.28)

Each A&, is now subdivided to form a new partition ZM in
the following way: Let v¥, w* be such that

uﬁ_1<v:_1wa_1§ux, m=1,2,...,M, (4.29)
where
(1/M) | @ @)| /0 () if & (u¥)#0
uM"de:ég: : M
m m 0 if &u¥)=0
(4. 30)
and
w'Mn-x_vﬁ-lzvxa'“g.l:Vg (4.31)
with
V=3l =ty 1) ~ o] =3(1/M - 57]; (4.32)
then ZM is the set of points
O=ul <v¥ swl <y <... <¥ | (4.33)

swh <uM <.

M
=< —
m-1 \uM_l'

We observe that the relationships (4. 30) and (4. 31) are
in harmony with (4. 29) because by assumption

0< o) < [e@w], 0susi, (4. 34)
so that
0<6¥<1/M, m=1,2,...,M. (4. 35)

The piecewise continuous function Xylu)on 0 su<1is
now associated with A, as follows. We define

M M
S -1, uM | <us<ovlh
M M
XM(u) = 2 + 1! Um-l <u gu)m-l’
M M M
sgnie ()}, Wi, <uSuy,

(4.36)

together with, say, x,(0)=- 1. Then it is clear that
each x,(u) is piecewise continuous and satisfies (4. 16).
We must show that the sequence has the properties
(4.19) and (4. 21).

We will first establish (4.19). From (4. 18) and (4. 36)
we have

Y dpu(x) Y ()6’ (w)du
fM(x):[ (liux) :[ (1 + ux)

ZM) _»/‘”r':-x 0" (u)du + wme1 g (u)du
T\ S (1+ux) g (1+ux)
m- Um-1

p (4.37)
. ;\ /“"' sgn{e (u)} & (w)du
) o (1 + ux)
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=gM(x) + kM(x)y

where g,(x) and k,(x) denote the first and second sums
in the previous line, respectively. We claim that

2y(X) %0 0 <x<X, (4.38)
while
Byx) > f(x), OsxsX. (4.39)
Consider #,(x). Defining
1 & @ lum)
sylx :M—mg T i)’ (4. 40)
we will prove first that
4(%) 2+ 5,(x), OsxsX, (4.41)
and then that
sy(x) % f(x), Osxs<X, (4. 42)
thereby proving (4. 39).
We have
| () - S (%) l
M
_ f "™ sen{o/ WV (wdu 1 o (uk)
& i (1 + ux) T M (1)
M
_l & [ ™ senfor@ite () _ senfy ui)lo eum)), |
- ‘ ,:/_‘:1 oM {1+ ux) - (1+u,x) du|
M 1/,':' | gl(u) 9’(11”)
< - 7 <x €
\,,',Z?’l_/w‘M } (1+ux) (1+ukx) Osx<X.
(4.43)
If we set
¥ = min{6"(u) lu? | <usul,
(4. 44)

M = max{8 (u)|u¥ | su<ul,

then we observe that the assumed continuity of 6’(u) on
0 <u <1 implies it is uniformly continuous over this
interval, and hence there exists an integer M(¢) such
that

M M
- cn<e

for any €>0, prescribed arbitrarily small. Further,
let

/i =max{8’ (u)|0 <u <1},

m=1,2,...M, for all M >M(c) (4.45)

(4. 46)
From (4.43) we now have

lhm(x) = su(x) |

(67 (u) =

0" ()} (1 + ulix) + (ult — u)x 6’ (ulf)
(1 +ux) (1 +ulx)

M
<2
mxl M
“im-1

m m-1

uM
< Eljw;"' [M¥— 2y + (¥ — )X /) ] du

SZL

2037 (4. 47)

M

1
(c+ 3z xm) =<+ 5%
for all 0 <x <X and M > M(€). The latter can be made as
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small as we like by choosing M sufficiently large; this
proves (4.41).

Now consider

_![

;g (<u> w’(uﬁ))du;_

me1 (T+ux) ~ (1+udx)

{f(x)—sux) gluldy —i’L———I

1
A+ux) S MO+d"x)

(4.48)

This last quantity has the same form as (4.43), and its
uniform convergence to zero for 0 <x <X is implied by
the same reasoning as was used in (4.47), except that
this time one relies on the uniform continuity of ¢’(u) on
0 <u <1, Equation (4.42) is thus established, and
together with (4. 41), this completes the proof of {4. 39),

We now prove (4.38). We have
M M
| | _ | & f”" 6" (u)du Wm-l g7 (w)du \ |
,g(x)‘ = ,,121 M (14 ux) _-/v;”n-x (1+ux) ||

< f; (m#(vﬁ-x —ul ) A - v%-l)>

mt A (1+u? x) (1+ux)
{4.49)
for 0 sx sX,
where we have used (4. 44). Since
Ut = Uy = Wiy = Uy =i S 1/2M, (4. 50)

we now have

IgM(x)5 < 1 f} ((Mﬁ—/ﬁ)(l *Eﬁx)ﬂuﬁ—u%.;)X/n)

} 2M &= (1+u_ )1+ ulx)
<5 (- 2+ Ly
2M 21 m m M
<le+ Eb—X/}qforOstX (4.51)

for all 0 =x <X and M = M(¢), where we have used (4. 45)
and (4.46). The last guantity can be made as small as

we please by picking M large enough, and hence we have
(4. 38).

Equations (4. 38) and (4. 39) taken together yield the
desired property (4. 19).

It remains only for us to establish the property (4.21)
of the sequence {x,(u)};.,. We have

M L1 Wy
fom = 22 f u”f?'(u)du—/
m=1 M UM

Uma1 m-1

u™ 6’ (u)du

M

M "rMn U
+3 f " (u)du —/
m=1 ul M
m

-1 wm-l

u"sgn{o’ (ui)}6’ (u)dul,

(4.52)

and, at fixed #n, it can be shown by similar reasoning to
that used above, that both sums here tend to zero as
M — «_ In this way (4. 21) is proved.

This completes the proof that there exists a sequence
{Xu(u)}5., with the properties (4.16), (4.19), and (4. 21).
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FIG. 1. Sketch of
how ¢(u), posess-
ing discontinuities
at u; and w,, might
be altered to form
a smooth function
$(u). The dotted
lines indicate the
modifications.

Thus our result on the replacement of F,'s by F,'s is
established for the case where ¢’(u) and 6'{(u) are con-
tinuous on 0 €u <1/R.

We will now indicate how the above restrictions on
¢(u) and 6(u) might be considerably weakened. First,
we can certainly allow ¢’{(u) and 9’ (u) to be only piece-
wise continuous on 0 <« <1/R provided ¢(u) and 6(x)
are themselves continuous on the interval. Secondly, if
¢ (1) has discontinuities then, by replacing ¢(u) by a
similar but continuous and piecewise differentiable func-
tion @(u) with steep slopes in the neighborhoods of the
discontinuities in ¢(u) (see Fig. 1), we visualize that
f(x) may be approximated arbitrarily closely by

- 1/R ~
f(x):/’ dou)

’ <x <X,
{1+ ux) Osx

(4.53)

We now use f(x) in place of f(x), construct PA’s and
modified correction terms, and then let f(x) approach
f(x). Then the condition (4.13) becomes generalized to

ddu) = {de(w)|, 0<u<1/R. (4.54)
We are led to expect that our result on the replacement
of F/'s by F s will hold true when ¢(u«) and 6(u) are
related according to (4. 54). Finally, with suitable re-
strictions on the asymptotic behavior of ¢(u) and 6(u),
we can picture allowing R — 0.

5. EXAMPLES AND DISCUSSION

A. Examples

Functions of the form (1. 1) occur in potential theory.
The electric potential V(x) due to a charge distribution
of line density o(w) on the negative axis, —b <w s-a<0,

is
“ o(w)dw
= —_—, 2 0; 5.1
V(x) [b Catx x=0; (5.1
this can be rewritten
1/a
V(x)= f (/o= 1/u)du “()f(;ui/)”)d“ (5.2)
1/d
which is of the form (1. 1) with
_jQ/uyo(-1/4),  1/b su<sl/a, 3
do(u) = { 0, otherwise. (5.3)

Similar potential functions arise in two-dimensional
ideal fluid hydrodynamics, when one has a distribution
of sources and sinks on the negative axis, and in certain
problems involving a scalar magnetic potential.
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Functions of the form (1. 1) also arise in scattering
theory. Two examples are: (i) S matrix elements in
Peres-model field theory, !? (ii) Kp forward dispersion
relations. ¥

Here we look at PA’s plus correction terms for the
potential V(x) in (5.1) with a=1, b=4, and

-1, =—-4sws<-3
olwy=< 0, -3<w< =2, (5.4)
+1, -2sws-1,
Then
Vi =(GEEA) - 5 (-, (5.5)
where
In(3), n=0,
fn:{[l_(%)n"(%)"+(%)"]/ny n:1729"°' (5-6)

The exact F,’s required in the evaluation of the constants
in the correction terms are obtained from the expansion
of

Py [ "1 /o= 1/w) 1du :m<(z +x)(4+x)>. 5.7

/4 (1 +ux) (1+x)3+x)

A suitable choice for the F’s is obtained by taking

M1/ wydu,  1/4sus<1,
d@(u)_{ 0, otherwise, (5.8)
corresponding to which we find

F(x)=1n[(4 +x)/(1 +x)]. (5.9)

In Fig. 2 we compare the upper and lower bounds as-
sociated with the [1/2] PA to f(x), using a logarithmic
scale in x. These are the exact bounds

(1/2] - by(x) < f(x) <[1/2]+ Cylx) (5.10)

evaluated with the aid of F, F,, F,, F,;, and F,. The
correction constants themselves are

05

ASYMPTOTIC UPPER BOUND

041
0.3 P

02 FIG. 2. Upper
and lower
bounds assoc-
iated with the

[1/2] PA to V(x).

01

[i/2](x)-ba(x)

-0-1 T"ASYMPTOTIC LOWER BOUND

1 10 100
X—
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[v2lxpeCalx)

1x10" 1

FIG. 3. Com-
parison of
bounds assoc-
iated with the
{1/2] and [2/3]

%102
P/B](X)*Ca(x)

PA’s to Vix)
110°1 /3)(x)-by(x)
[72)(x)-b2(x)
. N
0T %0 40 60
by=1.962X10", C,=8.281x10°, (5.11)

and, when I;n’s are used in place of F,’s, we obtain the
modified constants

b,=5.229x10%, C,=1.154x10". (5.12)
2 2

The modified bounds have approximately the same shape
as the exact ones. The difference between the upper and
lower modified bound is seen to be about sixty per cent
greater than the difference between the exact upper and
lower bound, and thus here the replacement of F 's by
F’s does not crucially effect the tightness of the bounds.

The bounds deteriorate rapidly around x =4, and for
comparison we note that the expansion of V(x), in (5.5)
and (5. 6), has a radius of convergence R =1. Asymptoti-
cally the bounds tend to constants, as is easily deduced
from the structure of the correction terms.

On increasing N from 2 to 3 we find that the bounds
improve considerably, as in illustrated in Fig. 3, where
we compare the exact bounds associated with the
[1/2] PA with those associated with the [2/3] PA. This
time we use a logarithmic scale for the functional
values. The range of x over which the bounds may be
considered useful is increased from around x =4 to
around x =30, In Fig. 4 we compare the exact bounds
associated with the [2/3] PA with the modified ones.
Again, the widening of the bounds is not drastic.

The upper and lower bounds corresponding to the
[2/2] PA are interesting because the approximant has
a simple pole located at x="17.27. Accordingly, both
correction terms also have poles at this point, but of
second order. The resulting bounds become very broad
in the vicinity of the pole, as can be seen from Table I.
The spurious pole blows up the corrections in its vicinity
in such a way as to ensure that the corrected PA’s dis-
play the desired bounding properties.

In general we expect that PA’s plus correction terms
will yield bounds which improve with increasing N,
provided we omit those PA’s with spurious poles. *
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B. Discussion

In this paper we have found a suitable sf{ructure for
correction terms to [N - 1/N] and [N/N] PA’s for func-
tions of the form (1. 1), such that the resulting corrected
PA’s impose rigorous bounds on f(x) for all x>0. We
have further shown how, given appropriate additional
information, explicit values for the constants in the
correction terms may be evaluated. However, even when
such additional information is not available, it is in-
teresting simply to know what such corrections look like
both from the point of view of PA theory and of applica-
tions.

One may still make progress in applications when
neither the F,’s nor F,'s are available. For example,
one might estimate the values of the correction con-
stants by using the difference between the PA’s and /(x)
observed at several x values. Alternatively, assuming
that a particular PA has pole locations and residues
which mimic the shape of the true distribution, then
from these poles and their residues one may construct
an approximation to |dg(u)|. The latter may then be
used to form approximations to the Fn’ s and hence ap-

TABLE 1, Bounds on Vi{x) associated with the [2/2] PA.

x [2/2](2‘)—32(35) [2/2]+ Cz(x)
0 0.40 0.40
1 0.17 0.19
2 0 0.24
3 —-0.38 0.66
4 -1.55 2,12
5 - 5.74 7.34
6 —-28.7 35.6
7 -908 1103
8 -173 207
9 —-40.2 47.8
10 -20.5 24,1
50 —-2.67 2.79
100 -1.94 2.81
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proximations to the correction constants. The correction
constants are not unduely sensitive to inaccuracies in
the F,’s because they depend on them only linearly. Both
of the above methods have been successfully applied to
several different examples.

The idea of forming correction terms to PA’s can be
extended readily in several directions. With alternative
choices of trial functions in the bivariational functionals
one can obtain corrections for arbitary [M/N] PA’s
to f(x). Again, following the method of Epstein and
Barnsley, *® it is possible to develop correction terms
for mullipoint PA’s to f(x). The latter would be useful
in obtaining bounds on Kp forward dispersion relations, !*
where one has a function of the form (1.1) and the given
information, obtained experimentally, is typically
{F BN with 0<x, <, <ov <xpy < o0,
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(1+ux)
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After a schematic examination of the “physical” representations of the Galilei group, a quantum
mechanical description is drawn from a “laboratory” one in the case of a free elementary system with
spin, assuming that the kinematical group is the Galilei group. In fact, the “laboratory states” of the
system naturally fit in a Galilei-Hilbert bundle. Then, according to the general theory of the unitary
representations of groups in the framework of Hilbert bundles which is outlined in this paper, a unitary
representation of the Galilei group is constructed which is shown to contain all the physical Galilei
representations. The quantum mechanical description which has been obtained in this way gives rise
to an algebra of observables by means of a general procedure which connects a unitary representation
of a Lie group with a Hilbert representation of the corresponding Lie algebra. The inner energy is
shown to be a superobservable for the system under consideration. Moreover, the kinematical
properties of such a system are independent of the values of the inner energy.

1. INTRODUCTION

The subject of this paper is the quantum mechanical
description of the kinematical properties of an isolated
elementary system with spin, namely its behavior under
translations, rotations, uniform motions, assuming as
kinematical group the Galilei group. However, such
properties are completely described by a unitary
representation of the group in a Hilbert space, and these
representations are very well known,! Then what is the
novelty of the present work?

Before answering this question, we mention that in
Sec. 3 it is shown that successful means in the construc-
tion of a unitary representation of a group G is to find
a G-Hilbert bundle, Now, we are in the position to ex-
pound the somewhat unusual procedure we adopt here.
Our starting-point is the remark that the “laboratory
states” of an isolated elementary system naturally fit
into a Galilei—Hilbert bundle. Then, we are led to con-
struct a representation of the Galilei group, which is
shown to contain all the “physical” representations of the
the group, Moreover, an “algebra of observables” can
be drawn from such a description. Finally, the inner
energy is shown to be a superobservable for the system
under examination and two such systems have the same
kinematical properties also if the relative values of the
inner energies are different.

The main physical significance and justification for the
the present work are that it furnishes a concrete exam-
ple of a procedure the extent of which is greater than
the definite case which is the object of this work., Such
a procedure is to derive, for a physical system, a quan-
tum mechanical description there this term means that
kind of picture involving Hilbert spaces, self-adjoint
operators, continuous representations of groups, and
so on) from something to be interpreted as a “labora-
tory” description of the system, inasmuch as it is this
phenomenological information which forms in a sense
the phenomenological definition of the physical system
under consideration. To be definite, such a rather gen-
eral procedure can be outlined in the following way:

(a) We consider a physical system and a group G as
its symmetry group.
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(b) The “laboratory” properties of the system lead
us to construct in a rather naive way a “set
bundle” with an action of G, namely to single out
a set (the “base set”) whose elements can be
interpreted as the “geometric” states of the sys-
tem and, for any such geometric state, a set (a
“fiber”’) whose elements are to be added to the
geometric state to get a “total” state (the fibers
then represent the inner variables of the sys-
tem).? Such a state can be called a “laboratory”
state as it represents a definite phenomenological
situation for the physical system. In addition, we
find an action of G on this bundle in a natural way,
namely looking at the fashion in which the states
transform in connection with G,

(¢) We add mathematies (e.g., topological or
analytical or Borel structures, measures of the
elements of volume, connections among the
emerging structures) to the structure of (b),?
For instance, we can try to construct a G-Hilbert
bundle. Suppose we succeed in this purpose,

(d) According to the theory expounded in Sec. 3, a
Hilbert space can be constructed as well as a
unitary representation of G on it. Therefore we
have a quantum mechanical description of the
system. Suppose that G is a Lie group. Then we
can draw a representation of the Lie algebra of
G by essentially self-adjoint operators,*

(e) We take the von Neumann algebra generated by
the range of the representation of the Lie algebra
of G constructed in (d). We are then in the frame-
work of the algebraic approach to quantum
mechanics which has been developed by Jauch and
others.% Therefore we can interpret the mathe-
matical structure that we have got from the stand-
point of the algebra of observables. In this way
we can reach or recover physically interpretable
results, as for instance the presence of super-
selection rules and the way in which the super-
selection sectors depend on the values of
superobservables.
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This procedure is applied in Sec. 4 to a free elemen-
tary system with spin (namely the spin is the only inner
variable), taking the Galilei group for the kinematical
group. Then, in the “set bundle” of (b) the elements of
the “base set” are the energy and momentum states and
those of the “fibers” are the spin states. To perform
the program of (e) it remains necessary to know what
are the “physical” representations of the Galilei group.
Therefore in Sec. 2 we sketch the arguments which lead
to the classification and the construction of these
“physical” representations.

In Sec. 3 we expound some theory about G-Hilbert

bundles., We show that in this mathematical structure

a unitary representation of a group G can be easily con-
structed, The scope of Sec. 3 is wider than its mere
application to the Galilei group which is made in Sec, 4.
In fact, Hilbert bundles can be of notable importance in
theoretical physics, as can be inferred also from the
generality of the scheme outlined above,

2. PHYSICALLY MEANINGFUL REPRESENTATIONS
OF THE GALILEI GROUP

In this section we shall outline the chain of arguments
which lead to the physically meaningful representations
of the proper Galilei group (which will be called the
Galilei group in the sequel). Moreover, we shall write
a definite expression for any such representation. Since
the proof of any assertion of this section will be not
even hinted here, to any assertion a definite reference
is ascribed wherein the proof can be found.

To avoid unessential complications, we replace the
Galilei group with its universal covering group, which
can be identified with the group § = (RXR?)x _(R®
X,SU(2)). By R" we denote the n-dimensional group of
reals, By SU(2) the special unitary group of 2x2
matrices. By X; the semidirect product relative to the
homomorphism 8 of SU(2) into Aut R? defined by Bu)v
=DV (u)v, where D™ is the spin 1 representation
of SU(2). By x, the semidirect product relative to the
homorphism o of R*x SU(2) into Aut(R'XR®) defined by
a(Ww,u)(t,a)= (t,DV ()a+vt). The composition law of
Gis (¢, ,v )¢, v,u)=(+1,a + DV at+vi, v
+ DY W, u'u), denoting an element g of G by (¢,a,v,u).
The group g is a locally compact (l.c.), second
countable (s.c.), and simply connected Lie group. ®

The representations of § of physical interest are pro-
jective representations,” namely Borel homomorphisms
of G into the quotient group {//Z. Here !/ is the unitary
group of a separable Hilbert space endowed with the
strong operator topology and / is the closed and normal
subgroup of the elements of {/ which are multiples of the
identity operator. The Borel structures we consider on
¢ and {//Z are those generated by the respective
topologies., ®

The study of projective representations can be con-
veniently performed by the study of w-representations
of G .® An w-representation of § is a Borel map V of §
into {/ for which a multiplier w for G exists such that
Vpe=wlg 8V, V,. Similarity classes of multipliers

&
exist, equal in number to the values of a label m which
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ranges in R. A representative for the class labelled

by m is w, (¢, ,¥ ), (¢,2,V,u))=exp[im GV 2t + v DD
X (i’ )a)].® For m =0 we have a representation of ¢ which
describes a nonlocalizable Galilei invariant system,
Moreover, an w_,-representation and an w,-representa-
tion, as antiunitarily equivalent, give two physically
equivalent projective representations.* Therefore, it is
enough to study the w, -representations with m > 0.

The study of the w, -representations of (; is convenient-
ly performed by a central extension g"‘ of 7 by g, where
7 denotes the one-dimensional torus and the composition
law of ™ is (2/,g')(z,8) = (' 2w (¢’ ,8)™', £’ g), With (z,g")
and (2, g) in 7%G. Infact, if V is a continuous unitary
representation (CUR) of g’" such that V(z,e)=2zIl for any
z in 7, its restriction to (; is an w -representation of

¢ and any w,-representation of (; can be obtained in

this way.

With the product topology of 7 and q G" results in
a l.c.s.c. Lie group. The group (;™ can be identified
with the “regular” semidirect product (7 X IRXIR3)X
Xal(lex SU(2)), where o, is the homomorphism defined
by a,(v, u)(z, t,a) = (z exp[- im(vD (u)a + 3v?1)}, t, D'V (u)a
+vt). Since (™ is a “regular” semidirect product,
Mackey’s standard procedure’® can be applied to obtain
all the equivalence classes of irreducible CUR’s (CUIR’s)
of § ™, The results can be summarized in the following
way. An action of g ™ can be defined on the dual Z XIR
XIR® (Z denotes the group of integers) of the group 7 XIR
XIR®. Then, take a point (n, p,, p) of an orbit and a CUIR
L of the “little group” (; - [namely the group of
the elements of (™ which lie in IR®X SU(2) and leave
(1, py, P) invariant] and construct the representation
UtnposPL of ™ induced by the representation (n, p,, p)L
of the subgroup (TXRXIR3)><a1g{'".p0m,. As UtmporwE g
irreducible, this procedure results in the construction
of a CUIR of g ™ starting from a CUIR of the little group
of a point of an orbit. Moreover, all the CUIR’s of g"‘
are obtained by this procedure and any one of them once
and only once (upto equivalence), if all the orbits are
taken and for any orbit all the CUIR’s (up to equivalence)
of the little group of a (definite but arbitrarily chosen)
point of the orbit. ¢

For the case of interest (m >0), the (;™-orbits are the
sets (), , ={(n, Py, P) € ZXRXIR®; p* — 2nmp,=e} with ¢
R and n< Z, and {(0, p,, 0)} with p, IR (0 and O are the
null elements of Z and IR®, respectively). The little
group of a point of the orbit (), , is isomorphic to SU(2)
if n#0 and to the two-dimensional Euclidean group if
n=0, while the little group of {(0, p, 0)} is isomorphic
to the three-dimensional Euclidean group.

The CUIR’s of ;™ which give rise to w,-representa-
tions of (; are (up to equivalence) just those which can
be constructed from the orbits (), ,, with e R. There-
fore, considering the CUIR’s V)= yiL¢/2m,00¢)
[where D9 denotes the spin j representation of SU(2)]
of ™ for any half-integer j and any real number ¢, we
take in fact into account all the physically meaningful
representations of (;. The representation Vi¢+$) can be
expressed conveniently in the Hilbert space Lizs1(IR?, v°)
(v® denotes the Lebesgue measure on IR®)!® as follows:
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In Sec. 4 we shall present a method to get the physi-
cally meaningful representations of § by means of a
definite realization of the mathematical structure to be
examined in Sec. 3. The important point is that such a
realization can be construed from a “laboratory” point
of view,

3. G-HILBERT BUNDLES

In the next section we shall draw representations of
the Gatlilei group from a Galilei—Hilbert bundle, which
will not be transitive. Since Hilbert bundles with the
action of a group are not commonly treated in the litera-
ture, at least in the nontransitive case, it is convenient
to expound here the elements of this subject which are
needed in the next section,

First of all, we prove a theorem which provides us
with a tool to construct a Hilbert space out of a field of
Hilbert spaces. For the definitions of Borel field and of
direct integral of Hilbert spaces and of any other re-
lated concept that we use in this paper, see Ref. 16
(hereafter denoted DW).

Proposition 1: Let Z be a Borel space and {//(£)}¢
€ Z) a field of Hilbert spaces'® such that [denoting by
d(t) the dimension of #/(¢)] Z,={t <€ Z; d(¢t)=p} is a
Borel set of any p. For any p let H, be a define p-
dimensional Hilbert space and for any { < Z let U(Z) be
a definite unitary isomorphism of #/(¢) onto H,,. De-
noting by Hcezz‘/(l;) the complex vector space of the
fields of vectors, let

o={xe 1 A{t); Z,2¢~U&)x(0)cH,
ez

is a Borel map for any p},

where in H, the Borel structure induced by the norm is
cons1dered Depending on o, {# (&)Ht € Z) results in
a Borel field of Hilbert spaces on Z,

Pyroof: From Lemma 8.4 in Ref, 19 we have that, for
an element x of M,/ (¢), x€ o iff Z, ¢~ (| U(£) % (£))
€€ (where € denotes the complex plane) is a Borel
function, v « € H, and for any p. Then it is easy to show
that ¢ fulfills the conditions of Definition 1 and Rem. 3
in DW-11.1.3, First we notice, in fact, that ¢ is ob-
viously a linear subspace of H:EZH(L'). Next, for any
xe0, Z,3¢—~lx({M R is a Borel function for any p,
as lx(Enz=y, ) (u,ff” [U(£) % (£)))2 for any orthonormal
basis {#®'} in H,, Hence lix(¢)I is 2 Borel function on Z,
since the z, ’s are Borel sets whose (countable) union
is Z. Let, moreover y €M< ,#(£) be such that Z >¢
- (x(é‘)ly(é’))cd! is a Borel function, ¥ x c 0. For any p,
take then x® in H, and define the field of vectors x(¢)
=U(£) x| As x is obviously an element of o,

(4 U(L)y(¢)) is a Borel function on Z, whence (x®|
U(£)y(£)) is a Borel function on Z, for any x* in H,

and for any p, namely y € 0. For any p let finally {x"’}
be a sequence of elements of H, which span H,. Then the
field of vectors x,(¢)= U(;)'lx“’f") is obv1ous1y an ele-
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ment of o for any # and {x,(¢)} span #(¢) for any ¢ as U()
is a unitary isomorphism. This completes the proof.

When the conditions of this theorem hold, we can con-
struct a direct integral f@z‘/(é‘ du (L) of the H(g)’s when-
ever a o-finite measure u is given on Z.% Take in fact
all the elements y & I, ;#/(¢) such that the function Z
22— (&)l x (£)) is n-measurable for any x € o, With
the set of such elements, {#(¢)}(¢ € Z) results in a p-
measurable field of H11bert spaces. Therefore, we can
define J‘@H(C)du(E) as the direct integral or1g1naj:1ng
from th1s p-measurable field, It is remarkable that any
element of J’EB/'/(C)du( ) is an equivalence class which
contains an element of ¢. We shall denote the elements
of the direct integral and the representatives thereof
with the same notation and, when it will prove useful,
we shall choose representatives which lie in o,

Now we define G-Hilbert bundles, assuming for G a
l.c.s.c. group.

Definition 1: A G-Hilbert bundle is a standard Borel
space Z on which a field {//(£)}(¢ € Z) of Hilbert spaces
is given, such that, denoting by B the set B=U, /()
and by 7 the map

mB—~Z,

mw)=¢t if wet(t),

the following conditions hold:

{(a) Zis a Borel G-space, namely a homomorphism
t of G into the group of the automorphisms of
Z exists such that GXZ 2 (g,z)~#(g)fc Z is a
Borel map.

(b) Bis a G-space, namely a homomorphism 7T
exists of G into the group of the bijections of B
with itself,

(¢} = is an intertwining map for T and ¢, namely
Hg)em=mwoT(g) for each g G. Moreover, T(g
restricted to //(£) is a unitary isomorphism of
H1{¢) onto H(t(g)t) for each gc G and ¢ Z.

(d) Z, (defined as in Proposition 1) is a Borel set
for any p and for each { < Z a unitary isomor-
phism U(¢) of #/(¢) onto H,,, (H, denotes a de-
finite p-dimensional Hilbert space) exists such
that

GXZ,>(g,t)~UOT(UE(g™) el @H,)

is a Borel map for any p, if on the unitary group L/(Hp)
of H, the strong operator topology is assumed,

This definition seems somewhat different from the
usual ones of G-Hilbert bundles. To recover, for in-
stance, the definition of Ref, 19 (p.86), we have in fact
to replace (d) in the definition above with the following
condition: (d’) Z is transitive with respect to ¢ and B is
a standard Borel space such that 7 is a Borel map, B
is a Borel G-space with respect to T and, for each ¢
€ Z, the natural Borel structure of 7(¢) is the one
induced on it by B, Definition 1 is indeed a generalization
of Varadarajan’s definition since they are fully equiva-
lent when Z is a transitive G-space. In fact, if (a), (b),
and (c) hold, it can be proved that (d) follows from (d’)
and that, whenever in (a) Z is transitive and (d) holds,

Abbati, Cirelli, and Galione 931



one and only one (up to isomorphism) Borel structure
exists on B such that (d’) holds,*

Such an equivalence is really also a motivation to
call the structure defined in Definition 1 a G-Hilbert
bundle, since this term is the usual one for the struc-
ture of Varadarajan’s definition. We notice in partic-
ular that a result from the previous discussion is that
in a transitive G-Hilbert bundle {(namely in a G-Hilbert
bundle with Z transitive) a Borel structure can be de-
fined on B such that {#/(¢)}¢ € Z) is a Hilbert bundle (in
the sense of the definition in Ref, 19, p.86).

Finally, we construct a CUR of G in a G-Hilbert
bundle.

Proposition 2: Let a G-Hilbert bundle be given (whose
constituents we denote with the same symbols as in
Definition 1) along with a o-finite measure u on Z and
let u be invariant with respect to the action ¢ of G. De-
noting by // the Hilbert space [P/(£)du(t), for g G
define the mapping V,: # —~ H, (V %) (©)=T(g)x (t{g™)L).
Foreachg&G, V, is a umtary operator and the mapping
v: G~UWH), V(g V, of G into the unitary group {/ (+/)
of His a CUR of G.

Proof: First we notice that the possibility of defining
# in the framework of a G-Hilbert bundle derives from
Proposition 1 and the remarks following it, Moreover,
# results in a separable Hilbert space, as a consequence
of the Corollary in DW-11,1.6,

Next we have to prove the consistency of the definition
of V,, namely that V,x is indeed an element of zL/ for
each gc G and x € /4. Take then xe /. For any p, GXZ,
5(g,0)— Ult(g™)E)* (H{(g™)t) H, [whose definition is
correct after (c) in Definition 1] is a Borel map since
it is the product of Z, ¢ — U(¢{)x (¢)€ H,, which is a
Borel map by definition of ¢ in Proposition 1, and of G
XZ,>(g,t)—~ (gt 22,, which is a Borel map since
Z, is a Borel set and (a) in Definition 1 holds. Hence,
as a consequence of (d) in Definition 1,

GXZ,2(g,8)—~ UOT(U(g™)E)?,
Ult(g™e)* (tg
is also a Borel map and this in turn implies that
Ue)T(g)x(t(g™)

is a Borel map, as {/(H,)XH,> (V,u)}—~ Vu € H, is easily
shown to be a continuous map with respect to the strong
operator topology and to the norm of H,. Therefore, for
each g€ G, V,x is an element of Il (¢) which lies in
o [as follows from (c) in Definition 1], In fact, it is an
element of //, since square integrability follows from

fZIIT(g)x(t(g'l)c)llzdu(’;):fzHx(c)llzdu(l):llxllz,

which is a consequence of (c¢) in Definition 1 and of the
invariance of u,

) el (H,)x H,

GXZ,2(g,t)—~ ¢)EH,

For each g = G it is trivial to show that V, is an iso-
metric operator on #/ and that V,(V,ax)=x,VxC#,
from which it follows that V, is indeed a unitary opera-
tor, Moreover, Vm,2 VHVA’z’V 21,8, € G, as can be
shown by an easy computation. Hence V is a unitary
representation of G in /. To complete the proof of the

proposition we have to show that V is continuous.
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Now, let v be a finite measure on G equivalent to a
Haar measure on G. Such a finite measure exists since
inal.c.s.c. group a Haar measure is o-finite.™® We
notice also that, for any x and y in 4,

P:GXZ—=C, ¢(g,0)=((Vx)OIp()
is a Borel map. In fact, since GXZ, 3 (g, )~ U)(V,x)
X (£)€ H, has been prev10usly proved to be a Borel map
and G><Z 2(g,£)—~ Utly(t) e H, is a Borel map by de-
finition of o in Proposition 1, it can be easily shown that
¢ restricted to GX Z, is a Borel map for any p, whence
@ itself is a Borel map as the Zp’s are Borel sets whose
(countable) union is Z, Then, by Tonelli theorem,?? the
integral

1=fc (fz lo(g,8)| du@))av(t)

exists, Moreover, by Schwarz and Hdlder inequalities,
J lelg, 0) au@< (| V1P du €)'/
([ Iy ©IF au @) /2= lixllyll,

whence I < v(G)ixIiyll, Then, again by Tonelli’s
theorem, ¢ is vX u-integrable on GX Z, Therefore, by
Fubini’s theorem,*

[ olg,Ddu®)=

is v-measurable for all ¥,y c#/. Since this amounts to
the continuity of V,?* the proposition is proved.

G>g— (Vex|y)

To conclude this mathematical section, we point out
that Proposition 2 would hold in a similar form also if
the measure u were not actually invariant, but just
quasi-invariant. Anyway, since in the quasi-invariant
case the proof is slightly more involved than in the in-
variant one and since the measure we shall use in the
next section is invariant, we have preferred to assume
v invariant,

4, A “LABORATORY’” GALILEI-HILBERT BUNDLE
AND THE INNER ENERGY AS A SUPERSELECTION
RULE

In this section we shall be concerned with the de-
scription of an isolated elementary system with spin,
namely of a free system with no inner variables other
than spin, In fact, we shall study its kinematical prop-
erties in the framework of Galilean relativity.

We shall present here a way to deduce, from the
“laboratory” kinematical properties of a free elemen-
tary system of spin j and mass m, its quantum mechan-
ical kinematical properties in the following sense. A
triple of values of the energy, the momentum, and the
spin can be assumed to be a “laboratory state” of the
system, while its quantum kinematical properties are
completely described in the framework of a unitary
representation of the Galilei group § in a Hilbert space.
Then, we shall deduce a unitary representation of g
from the behavior of the energy, the momentum, and the
spin of the system with respect to the transformations
of G . In this deduction we shall use the theory expounded
in Sec, 3.

From the conclusions of Sec. 2, the “right” group to
study the physical representations of g is the extended
group g m_ Then, the approach to Galilean invariance
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from the point of view of the Hilbert bundle techniques
is to construct a G™-Hilbert bundle and a CUR of G™
therein.

With the notations of Definition 1, we assume Z=R*
and construct on it a field of Hilbert spaces {#(p,,p)}
((po, P) € R?) setting #(p,,p)=C* for each (p,,p) c R*.
On R* and ™ we take the standard Borel structures
generated by the respective topologies, Moreover, we
define a homomorphism ¢ of (™ into the group of the
automorphisms of IR* setting ¢(z,g)(p,,P)= (p5,F ),
where pl,=p,+ (m/2%*+ DV (u)pv and p’ =D{!’p + mv,
for each (z,g)cG™ and (p,,p) € R:. We also construct
a homomorphism T of ™ into the group of the automor-
phisms of B=U, memi?! (pg,P), defining T(z,g)8 to be
the element ¢(p,,D;2 ,2)DY ()8 of 4 (p},,p’), where
@ (po,P32,8)=2zexpli(—pit +p a)], for each (z,g)cG™
and each 8 € Bwhich lies in #/(p4,p). % Finally, for each
(po,P) ER?, we choose the identity map of C¥* to be
the unitary isomorphism U{p,,p) of Definition 1. Then,
all the conditions of Definition 1 are easily shown to
hold. *

The action ¢ we assume on the “base space” R* can.
be easily interpreted from the “laboratory” viewpoint.
In fact, #(z,2)(p,,p) depends only upon the element g of
the Galilei group and not upon z and represents the
transformation of the laboratory values p, of the energy
and p of the momentum of the system for two Galilean
observers related by g. The action T we assume on the
“total space” B is related to the laboratory behavior of
the values of the spin, but it cannot be interpreted as
easily as ¢ could. Indeed, the rays in €¥* and not the
vectors represent the spin states. Therefore, in the
“laboratory” determination of an action on B, a phase
factor is at our disposal. We have in fact introduced the
function ¢ in the definition of 7., A motivation for the
7z” part of ¢ can be found in the link between the rep-
resentations of ™ and the projective representations of
G, which has been explained in See. 1, The convenience
of adding to z the exponential part in ¢ can be under-
stood after the following considerations. In fact, with-
out this exponential part, T would provide a trivial
action of time and space translations, Therefore, from
the ¢™-Hilbert bundle a CUR of (™ would be drawn in
which the translations are represented in a trivial way.
This is hardly acceptable since it can be easily shown
to lead to a quantum mechanical picture without a posi-
tion operator and without evolution, Finally, the definite
form we have adopted for the exponential part is sug-
gested by the classical relation of energy and momentum
with time and space translations.

To draw a CUR of ™ from the Galilei—Hilbert bundle
constructed above, according to Proposition 2 we need
a g-finite invariant measure on R%. Let v* be the
Lebesgue measure on R* and o the Borel automor-
phism of R* defined as a(py,p)= ®2 - 2mp,,p). The
function u on the Borel structure of R, defined as u(A)
=v*(a(a)) for each Borel set A of R*, is obviously a
o-finite measure on R*, Moreover, a brief calculation
proves that u is invariant with respect to ¢, since »* is
invariant with respect to the action 7(z,g)(p,,p)
= (pos DV @)+ mv) of G™ on R* and 7= aotea™?
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Then, from Proposition 2 it follows that

Vot H*ﬁy (V(z.g)f)(poap)= ZeXp[i(‘Pot+Pa)]

x D) (u)f(po + %’—vz —pv, DD mv)),

is a unitary operator on A/ = J'69 H(po,P)di(py,P) for each
(z,8) €G™ which gives rise to'a CUR V of G™, We shall

now show that V contains all the physical representa-
tions of § for the values m for the mass and j for the
spin,

Let /, denote the Hilbert space Li2ja(R3,v?), Take
the field of Hilbert spaces {//()He € R), where #(e}=#,
for each ¢ R, It is a Borel field with respect to the
set of the fields of vectors which are Borel maps from
R into //,. Then we define /" = ffﬁ'(e dv), where v
stands for the Lebesgue measure on R, This will re-
sult in a Hilbert space where V decomposes into a
direct integral of all the CUIR’s of ™ which give rise
to physical representations of §. Construct in fact the
map

wH=H®, R = [ (a6, p) v (o).

It is shown to be a unitary isomorphism of // onto /@
in the following way. First, after some technicalities
the definition of W is shown to be consistent, Next, W
is shown to be isometric from the following equalities:

S IwDEIR dvee) = fm‘fm Il f(a (e, I dv @) dv(e)
= [ Ilfla e, P dvie, D)= [ 11/ (po, PP du(po,P),
R4 R4

of which the second one follows from Fubini’s theorem
and the third one from 111,10, 8 in Ref, 27, Finally,
take three orthonormal bases {f,}, {g,}and {x} for
L*(R,v), L*(R%v°) and €¥*, respectively. Then {f, .},
where

Fue= [ 1,07 = 2mpy)g, @hin A (po, ),

is an orthonormal basis for /.28 Moreover {3, , .},
where ¢, . .=Wf, ., is an orthonormal basis for H®,
since

(Wf,., DE)

=) [18, @ v’ (D)
and {g, .}, where

fra= £ @ @),

is an orthonormal basis for /,.%® This completes the
proof that W is unitary.

Now, we can determine the form taken by the rep-
resentation V, when it is transferred in /@ through the
unitary isomorphism W. We have, for each (z,g)cG™
and for any ¥

Ny TRy

(WY, o W, 2 )E)

D
= lf (Vc,g)W-llb,.,,_k)(a'l(e,p))du3(p)

m3
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D
=j 2 expli((= m) @ - )t +pa)]

e
XD ()W ,,,,k)( (p"’—e)+—v2 pv,
D“’(u")(p—mv)) dvi(p)

v f s )

=V, 0, ,x6) (Ref. 29)

where V© is the CUIR of §™ introduced in Sec. 2,%
First of all, from these results it follows that e — V© is
a v-measurable field of CUR’s of §™ (for the definition
of v-measurable field of CUR’s, see 18,7.1 in Ref, 31;,
hereafter cited as DC). The field of unitary operators

e— Vi), is in fact v-measurable for each (z,g)€G™, as
WY (6o W3, ,.» is obviously an element of /®* for any

b, n a0d the representatives of ¢, , , make up a funda-
mental sequence of v-measurable fields of vectors (DW-
11,1, Proposition 4, 11,2, Proposition 1). Moreover,
WV, ., W™ coincides with fg V&L, dve) for each (z,g)
€G™, since they are two unitary operators which
transform in the same way the vectors of an orthonor-
mal basis of /@, Therefore, the representation V is
unitarily equivalent, by means of W, to the CUR Vv
= IE VEdve) of Gmin HD,

In fact, the discussion above is the proof of the fol-
lowing theorem,

Theorem: For a Galilei-invariant free elementary
system of mass m and spin j it is possible to introduce
in a fairly natural way a Galilei—Hilbert bundle with a
o-finite invariant measure, which leads to.the construc-
tion of a CUR V of g”‘ in a Hilbert space /., By a unitary
1somor%h1sm of // onto a direct integral of H1lbert spaces
H® =19 HE)dv), where H (€)= L2, ,,(R?,1°) for each
ccR, V can be decomposed into the direct integral
[‘GF V“’du(e) of the CUIR’s V, which are all the spin j
representations of (™ whose restrictions to § are the
physical representations of § for the fixed values of the
mass and the spin,

Hence, a representation of (™ has been constructed
which contains any physical representation of § relative
to the values m for the mass and j for the spin, We re-
mark now that in correspondence to the decomposition
of V into f@ V€ dv(e) we get a continuous infinity of
copies of the same projective representation of g in zL/o,
as in V’ the index ¢ is completely embodied by the term
explile/2m)t] which is of no significance in passing to
projective representations, Therefore, the quantum
mechanical description of a free elementary system of
mass m and spin j which is provided by V splits into a
continuous infinity of mutually equivalent quantum
mechanical descriptions. We shall now set forth an
interpretation of this fact in the framework of the
algebraic formulation of the foundations of quantum
mechanics,

From a foundational standpoint, the algebraic ap-
proach to quantum mechanics based on W*-algebras® is
a very good one as it can be drawn in a sense from the
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logical approach,3® which in turn is directly inherent in
the phenomenological interpretation of the physical ex-
periments.3* We expound here just the few elements of
the algebraic formulation based on W*-algebras that are
used in the sequel. A detailed treatment can be found in
Refs. 5 and 33. To a physical system a W*-algebraA of
operators in a Hilbert space X is assigned, such that the
self-adjoint operators affiliated with 4 (namely whose
spectral projections belong to 4 ) are a representation of
the observables of the system; they are briefly called,
in fact, observables of 4. The observables which are
not multiples of the identity operator and are affiliated
with the center C(4)=A' NA of A are called superob-
servables.* When superobservables exist, namely when
C(A) is not trivial, the picture based onA is said to
have superselection rules, In this framework not every
W*-algebra is assumed to be a sensible algebra of ob-
servables. It seems in fact necessary to assume that
algebra of observables contains a complete system of
commuting observables.* This assumption seemed to
be denied in its generality by the case of parastatistics, *"
On the contrary, a correct interpretation of the algebra
of observables in parastatistics shows that no contradic-
tion arises between this case and the general assump-
tion made above about complete systems, %

In a W*-algebra of observables A, the existence of a
complete system of commuting observables is equiva-~
lent to 4’ c A. When this condition holds, a unitary
isomorphism of K with a direct integral of Hilbert
spaces KV —f K(\)dp(x) (A denotes a locally compact
space and p a measure on it) exists through which ' (4)
can be identified with the W*-algebra D(K™) (Z in the
notation of DW) of the diagonal operators on K‘l’. In
this isomorphism A4 is found to correspond to the W*-
algebra R(K™)=D(K™Y of the decomposable operators
onA. Hence, decomposing C(4), we get in fact a de-
composition of /. Moreover, the operator

SDP® KD =x(),

with )@ ={p e KD; [ 221012 dp(\) < =}, is easily
shown to be a self-adjoint operator which generates
DK™, since the range of its projection-valued measure
coincides with the family of the projections of D(K),
Hence any superobservable is a function of S, denoting
by S the operator in K corresponding to S, For this
reason S can be called “the” superobservable of the
system represented by 4. The physical interpretation
of S depends obviously on the specific situation under
consideration, As 4 corresponds to R(E®), it reduces
to the family of the algebras of the bounded operators
on the K(1)’s, which are called superselected sectors
relative to the values ) of S,

S0

We shall now associate to V a W*-algebra in such a
way that it will be interpreted in a natural way as the
algebra of the observables of the system described by
V.

Take the W*-algebra A = V(G™Y of operators on //.3®
It will be possible to consider 4 as an algebra of ob-
servables according to the scheme outlined above only
if a complete system of commuting observables can be
found in A4, namely only if A’ € A. To state that this is
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indeed the case, we need the following proposition as a
technical lemma,

Proposition 3: Let ¢, be the isomorphism of the al-
gebra / (/) of the bounded operators on # with the al-
gebra [ (4 ®) of the bounded operators on /¥ defined as
¢, (A)=WAW™ for each A</ (//). When restricted to
V(G™Y it is an isomorphism of V(™Y onto the W*-al-
gebra D(H™) of the diagonal operators on the direct in-~
tegral of Hilbert spaces A,

Proof: First we notice that G™ is a group of type I. It
is in fact a regular semidirect product whose little
groups are SU(2), the two-dimensional and the three-
dimensional Euclidean group. Besides, for these
Euclidean groups the little groups are, for the two-
dimensional case, the one-element group and the group
of the rotations in two dimensions and, for the three-
dimensional case, the groups of the rotations in two and
in three dimensions. Moreover, from DC-15.5.2,4.3.1,
and 13.9.4, it follows that a s.c. compact group is of
type I. Then; as a consequence of Th,11.1 in Ref. 40,
G™ results in a group of type I.

We shall now construct a direct integral of Hilbert
spaces which will be suitable to study V(™Y in a con-
venient way. For any positive integer p let H, be a de-
finite p-dimensional Hilbert space and let H, =//,. Let
Rep G™, Irr G™, G™ have the same meaning as in DC-
18, Take the map.

1R-G", 1=V,

where V'© denotes the element of G™ which contains V'®,
This is a Borel map, since it results from the composi-
tion of the canonical map of Irr(;™ onto (™ with R ¢

— V@ cIrrg™, which is a Borel map.*"Moreover, 7 is
one-to-one as the CUIR’s V of (™ are mutually in-
equivalent, As G™ is of type I, both R and {™ are stan-
dard Borel spaces (see DC-18,5.3, 4.6.1, 13.9.4),
Then, from DC-B21 it follows that n(IR) is a Borel sub-
set of G™ and that 77 is a Borel isomorphism of IR onto
7(R). Take now the measure ¥ on ™ defined as D(A)
=v(n™(a)) for each Borel subset A of G™, 1t is o-finite
as v is o-finite, Take also the field of Hilbert spaces
(@5 eGm) with H(g)=H,,,, where d(Z) denotes the
common dimension of the representations of 2. As {g
€Gm: d(g)=p} is a Borel subset of §™ for any p (as it
follows from DC-18,5.1.), the set of the elements of
1l,c(;n#/(g) which are Borel maps from G™ into the sum
Borel space of the H,’s makes H(PHg (™) .a Borel
field of Hilbert spaces. Then we can define /= f%m/%(@
X dH g).

We shall now construct a direct integral of CUIR’s of
G™ on the direct integral of Hilbert spaces //. Such a
CUR of ™ will be found to be unitarily equivalent to Vv,
Define then the field {V(2}(g=G™) of CUIR’s of ™
setting, for V(2), V& if 5< n(R) and any representa-
tion of g if § & n(IR). This field of representations is 7-
measurable as easily follows from v-measurability of ¢
— V' and from the definition of P, Then it is integrable
(DC-18.7) and we can define V= fg@m 7(2)dp(g). To

show the equivalence of ¥ with Vm, construct the map

UH - HD (Up)e)= o).
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This definition makes sense, since {+7 is a Borel map
of R into //, whenever y €/ as n is a Borel map and
d(n))= for each e R, and since

fm”lb(n(e))llz dve)

which follows from 111,10, 8 in Ref. 27, as 7 is one-to-
one and 7n(R) is a Borel subset of ™, and from »(¢™
-n(R))=0, Since U _is obviously linear, it is an iso-
metric operator of // into /", Moreover, for éach f
EHD construct fe HEEQAW/-/(‘Q) setting f(£)=rn"(2)) if
ZEnM) and 7(£)=0 if 2 ¢ n(R). 1t follows from an easy
calculation that fe # and U7 =f. Therefore, U results in
a unitary isomorphism of /7 onto /), Finally, for each
pejyand (z,g)eG™ we have

UV 4,y 0)E) = (Vi 0 V0N = T .., @0 (D)
=V, (UNE) = (VE,, UPE), v e R,
whence
UV(z.g)U-1= nggn v (Z,g)€g’”.

The main point of the present proof is that V(G™Y =
:D(f/), where D(/Q denotes the W*-algebra of the diag-
onal operators on #/., In fact, ™ has been previously
proved to be a group of type I and V(#) belongs to the
class g for each g €™, since Vo éN ¢ 5 by definition
of 17. The result then follows from DC-18.7.6, 8.6.4,
13.9.4.

It is now easy to prove that V®V (GmY =D# 1), where
D@ ™) denotes the W*-algebra of the diagonal operators
on /™, Since V" and ¥ have been proved to be unitari-
1y equivalent through U, we have in fact that A</ (D)
is an element of V(™Y iff UAU ¢ D(/), namely iff 1
e L*((™,p) exists such that (UTAU$)(§)=r(2)(Z) for
each g (™ and y<//, which is equivalent to (Af)()
=x(E))(e) for eachecR and fe /¥, Besides, by de-
finition of 7, we have that {Xon; A L* (™, D)} = L" (R, v).
Therefore, we can conclude that A V(™Y iff 1
e L”(R,v) exists such that (4f){)=1({)f(e) for eache
€R and fEH P, This shows that v®(G™Y and DH ™) in
fact coincide.

Finally, since V and V® are unitarily equivalent
through W, a brief calculation leads to ¢, (V(G™Y)
=V®(GmYy, which, along with the result of the last para.
graph, completes the proof of the proposition.

We are now in the position to prove that A’ - 4, We
have in fact DH P)YcRHD)=DH DY (see the Corollary
in DW-11,2.5), whence ¢, (V(G™Y)C ¢ (V(G™)") and this
in turn amounts to A’ = (V(G™)"Y = V(GrY cv(G™)' =A
[the second equality holds as V{G™)Y is a W*-algebra].
Therfore A is suitable to be assumed as an algebra of
observables.

We shall now show how it is indeed possible to in-
terpret A as the algebra of the observables of the free
elementary system of mass m and spin j described by
V. First; we notice that from V a representation of the
Lie algebra LG ™ of ™ can be drawn. For each « c LG™
we have in fact a strongly continuous one-parameter
group R 3 ¢ — V(exp ta)c {/{//) of unitary operators on
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#. By a theorem of Stone there is a unique skew-adjoint
operator T(a) in / such that V{expta)=exp[¢T(a)] for
each £ €IR.*? A linear subspace / of /# exists which is
dense in / and contained in the domain of each T(a)®
The restriction of each T(a) to /) is essentially skew-
adjoint.** Moreover, / is invariant with respect to each
T(«) and the mapping LG™ 2 a — T(a), [the restriction
of T(a)to/M]is a representation of LG™, Next, as the
“right” Lie algebra for a free elementary system of
mass m is the mass m extension of the Galilei Lie al-
gebra and this in turn coincides with LG™,* it is sensi-
ble to associate with the representation V of ¢™ the

W+ -algebra A generated by the self-adjoint operators
(1/)T(a), a €LG™, as the algebra of the observables
of the elementary system of mass m and spin j, We
point out that, since T(«) is not in general bounded, A
is generated in fact by the spectral projections of the
operators (1/i)T(a), and these observables are thus af-
filiated with A, Finally, we can prove that A =4, In
fact, the spectral projections of (1/i)T(a) coincide with
the spectral projections of V{expa), as Viexpa)
=expT(a). Hence they are included in V(G™)" =A,
whence 3 c A. Take conversely any element (z,g)cG™,
Then elements @,,@,, . . ., @, of LG™ exist such that
(z,g)=(expa,Hexpa,)+-- (expa ), whence V., =[exp
X T(a,)]- - [expT(a )]. Therefore, V,,,, <8 for each
(z,g)€G™, namely V(G™) A, whence 7 = Vg™ B”

Thus, we have related in a definite way the algebra
of observables / = V(™) to the representation V. We
notice that C(4)=v(G™Y, as A’ A, Hence the reduc-
ibility of V amounts to the presence of superselection
rules in the picture based on 4. Therefore, a decom-
position of A through € (4) is possible in the way ex-
plained above, with // in the place of K. From Proposi-
tion 3 we get that 7V is a direct integral of Hilbert
spaces in which C(4) diagonalizes, since C(4)=V({G™Y.
Correspondingly, A splits into a continuous infinity of
algebras of observables. The superobservable which
rules this decomposition is S= WS W, where S® is
defined as above, with / in the place of K, Its
physical interpretation is easily performed by simply
looking at its form. It can be shown, in fact, in a rather
trivial but lengthy way, that

(Sf)(Po,P ®* - 2mp, f(pO,p)

for each f in the domain W™(J) ™) of S. Hence it is
natural to interpret S as the “inner energy” observable
of the system, since p and p, have been introduced just
from the outset as the momentum and the energy [to be
definite, the inner energy would be the multiple — (1/
2m)S of S]. Therefore, the superselected sectors are in
this case relative to the values of the inner energy.

Finally, as to the problem from which our discussion
has originated, we can conclude that the continuous
family of representations into which V decomposes is
in correspondence with all the possible values of the
inner energy of the free elementary system of mass m
and spin j whose kinematical group has been assumed to
be the Galilei group. Therefore, the fact that all these
representations generate the same quantum mechanical
description for an elementary system amounts to the
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fact that the kinematical behavior of a system, for fixed
values of the mass and of the spin, is independent of the
relative values of the inner energy, as long as it can be
considered free and elementary,
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The differential equations and boundary conditions describing the behavior of a finitely deformable,
polarizable and magnetizable heat conducting and electrically semiconducting continuum in interaction
with the electromagnetic field are derived by means of a systematic application of the laws of
continuum physics to a well-defined macroscopic model. The model consists of five suitably defined
interpenetrating continua. The relative displacement of the bound electronic continuum with respect
to the lattice continuum produces electrical polarization, and electrical conduction results from the
motion of the charged free electronic and hole fluids. Since partial pressures are taken to act in the
conducting fluids, semiconduction boundary conditions arise, which have not appeared previously. The
resulting rather cumbersome system of equations is reduced to that for the quasistatic electric field
and static homogeneous magnetic field. In the absence of heat conduction, for the n-type
semiconductor, nonlinear equations quadratic in the small field variables, for small fields superposed
on a bias, are obtained from the latter, more tractable, system of equations. These small field
equations reduce to four equations in four dependent variables. The linear portion of the small field
equations is applied in the analysis of the propagation of both plane and surface waves in
piezoelectric semiconductors subject to a static biasing electric field. On account of the
aforementioned semiconduction boundary condition, the assumption of zero electric surface charge
employed in previous treatments of the surface wave problem is not employed here.

1. INTRODUCTION

Subsequent to the work of Toupin! on the interaction
of the electric field with a polarizable and deformable
solid in the static case, numerous authors®~!? have ob-
tained rotationally invariant descriptions of the interac-
tion of the electric, magnetic, and electromagnetic
fields with deformable solids under a variety of cir-
cumstances. A discussion interrelating much of this
work from the viewpoint of the present authors is given
in Ref. 12. Although insulators, both electric and mag-
netic, and ohmic type electrical conductors have been
treated in the aforementioned rotationally invariant de-
scriptions of the interaction of the electric and magnetic
fields with deformable solids, none of that work treats
semiconductors. Existing theoretical descriptions'*—18
of deformable semiconductors simply consist of the
equations of linear piezoelectricity coupled to the some-
what nonlinear current density relation from semicon-
ductor physics. 19 Although this theory has been useful
in the description of the behavior of piezoelectric
semiconductors for small fields under a variety of
circumstances, it is not rotationally invariant, lacks
consistency in certain other respects also, and does
not provide proper electrical boundary conditions,
which are required when surfaces are present, as in
the case of surface wave propagation among other cir-
cumstances. Consequently, only linear deformation can
be treated within the framework of the existing theory,
and other limitations inherent in the description are
unclear.

In this paper the differential equations and boundary
conditions describing the behavior of a finitely deforma-
ble, polarizable, magnetizable, heat conducting and
electrically semiconducting continuum in interaction
with the electromagnetic field are determined by means
of a systematic application of the laws of continuum
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physics to a well-defined macroscopic model. The
model consists of five suitably defined interpenetrating
continua. The five continua consist of the positively
charged lattice continuum coupled to four distinct
charged continua. The four electrically charged con-
tinua are referred to as the bound electronic continuum,
the free electronic continuum, the hole continuum, and
the impurity continuum, respectively. The negatively
charged bound electronic continuum can displace
slightly with respect to the positively charged lattice
continuum and, thereby, produce the electric polariza-
tion. The impurity continuum, which can be positively
or negatively charged and is required for the general
balance of electric charge in the semiconductor, is
rigidly attached to the lattice continuum. Both the free
electronic continuum and hole continuum are charged
fluids that can move with respect to the lattice continu-
um while experiencing a force of resistance. Naturally,
the two conducting fluids are allowed to interchange
charge with each other and with the impurity continuum
in order to allow for a variable degree of semiconduc-
tion. Electric current arises as a result of the motion
of the free electronic and hole fluids and magnetization
is taken to arise from a circulating current density as
in Ref. 12. Since no material resonance effects are
considered, the lattice continuum is assumed to
possess all mass, i.e., linear momentum, and all
other continua are taken to be massless, i.e., to have
negligible linear momentum, The rates of supply of
linear momentum and energy from the electromagnetic
field to the deformable semiconductor are determined
from the Lorentz force in the manner set forth in Ref.
12,

As in all continuum descriptions, the application of
the appropriate equations of balance of charge, mass,

and momentum to the respective continua yields the
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material equations of motion, which, with the electro-
magnetic field equations, constitutes an underdeter-
mined system. The application of the equation of con~
servation of energy to the combined material continuum
results in the first law of thermodynamics which, with
the aid of the second law of thermodynamics®*~# and
the principle of material objectivity, 2424 anables the
determination of the constitutive equations. These con-
stitutive equations along with the aforementioned equa-
tions of motion and electromagnetism and the thermo-
dynamic dissipation equation result in a properly deter-
mined system, which can readily be reduced to 18
equations in 18 dependent variables, In order to com-
plete the system of equations, jump (or boundary) con-
ditions across moving, not necessarily material, sur-
faces of discontinuity are determined from the appro-
priate integral forms of the field equations, which are
taken to be valid even when the differential forms from
which they were obtained are not. These integral forms
result in definitions of electromagnetic quantities, such
as the Maxwell stress tensor, which are identical with
those employed in Ref, 12. Since the very important
fluid pressure terms, 2° which are directly related®® to
the chemical potentials occurring in conventional semi-
conductor theory, are included in the description of the
conducting fluids in a rather fundamental manner,
semiconduction boundary conditions occur at the surface
of the semiconductor, which have not appeared in other
works on this subject, Moreover, previous work!® in
this area tacitly assumes that the electric surface
charge density vanishes at an interface between a semi-
conductor and the surrounding space. Since the materi-
al is a semiconductor and not an insulator, this is a
restrictive assumption., By virtue of the aforementioned
semiconduction boundary condition, this restrictive as-
sumption on electric surface charge density does not
exist in the description of the semiconductor presented
here.

When the electric field is assumed to be qua.sistatic,27
the number of dependent variables, differential equa-
tions, and boundary conditions, respectively, is re-
duced by five. Furthermore, in the special case of an
n-type semiconductor, which conducts by means of the
free electronic continuum only, in the absence of heat
conduction and magnetic effects, the number of differ-
ential equations is further reduced to four equations in
four dependent variables. From these latter equations
nonlinear differential equations and boundary conditions
for small dynamic fields superposed on large static
biasing fields have been obtained in the same manner as
in Ref. 28. The small field equations are nonlinear be-
cause they include terms quadratic in the small field
variables. The linear version of these small field equa-
tions under a homogeneous biasing electric field is ap-
plied to the problems of the propagation of plane and
surface waves in piezoelectric semiconductors with
hexagonal symmetry. The plane wave analysis indicates
the existence of a term in the propagation relation not
present in previous work!® on the subject. The term,
which is probably small in all practical cases, is due
essentially to a mechanical body force caused by the de
electric field and oscillating electric charge density,
The surface wave analysis employs the aforementioned
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semiconduction boundary condition and does not make
the assumption of zero electric surface charge density
on the surface of the semiconductor, which was made
in previous work on this problem. *=!® Furthermore,
previous work!®~18 in this area does not exhibit the de-
pendence of the effective material coefficients on the
biasing dc electric field, which arises naturally in this
consistent treatment and in principle can serve to
change the symmetry properties completely in many
cases. However, the formalism presented here re-
quires the measurement of material coefficients for the
semiconduction boundary condition, which are not
presently available.

Finally, it should be noted that the present theory,
which is for a semiconductor with one valence band only,
can readily be extended to semiconductors with any
number of valence bands simply by increasing the num-
ber of hole and free electronic continua. In the absence
of deformation this theory should be applicable in the
description of high field effects in rigid semiconductors.

2. THE INTERACTING CONTINUA

As stated in the Introduction, the macroscopic model
of the deformable semiconductor consists of five in-
teracting, interpenetrating continua. The five identifia-
ble continua consist of the following:

1. The lattice continuum, which has a positive charge
density and, since material resonance effects are not
taken into account, is assumed to be the only continuum
possessing a nonzero mass density, All other continua
experience force interactions with this continuum only
and not with each other. This continuum is denoted by
the superscript /.

2. The bound electronic continuum, which has a nega-
tive charge density and a circulating current density
and is denoted by the superscript 8. In a (finite) motion
this continuum can displace slightly with respect to the
lattice continuum and thus produce electric polarization.
It produces magnetization also by virtue of the circulat-
ing current density it possesses,

3. The impurity continuum, !* which is rigidly bound
to the lattice continuum and not allowed to displace at
all with respect to it and is denoted by the superscript
z. The impurity continuum can have either a positive
or negative charge density and for many purposes can
be regarded essentially as a part of the lattice continu-
um. However, since it is a source of electric charge
and is required in order that the degree of semiconduc-
tion can be variable, it is advisable to treat it as a
separate continuum,

4, The free electronic continuum, which has a nega-
tive charge density and is denoted by the superscript e,
This continuum is a conducting compressible fluid
possessing negligible inertia and experiencing a force
of resistance from its motion with respect to the lattice
continuum.

5. The hole continuum, }* which has a positive charge
density and is denoted by the superscript 2. This con-
tinuum also is a conducting compressible fluid possess-
ing negligible inertia and experiencing a force of re-
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Lattice continuum
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Bound electronic continuum

FIG. 1. Schematic diagram showing the relative displacement
of the bound electronic continuum with respect to the lattice
continuum,

sistance from its motion with respect to the lattice
continuum,

Initially, the lattice continuum, the impurity continu-
um, and the bound electronic continuum all occupy the
same region of space and, hence, have the same refer-
ence coordinates X;. The motion of a point of the lat-
tice continuum is described by the mapping

y=yX, 1),

which is one-to-one and differentiable as often as re-
quired. In (2. 1) the y; denote the present coordinates of
material (lattice continuum) points and X, the refer-
ence coordinates, and f denotes the time, We consis-
tently use the convention that capital indices denote the
Cartesian components of X and lower case indices, the
Cartesian components of y, Both dyadic and Cartesian
tensor notation are used interchangeably. A comma
followed by an index denotes partial differentiation with
respect to a coordinate, i.e.,
_ 9 _ 90Xk
yi,L‘EX—L; K,j‘a__y;';

V=9 (X, 1), 2.1)

(2.2)

and the summation convention for repeated tensor in-
dices is employed. In a (finite) motion the bound elec-
tronic continuum is permitted to displace with respect
to the lattice continuum by an infinitesimal displacement
field n=7n(y, t), which, by virtue of the charge density in
the bound electronic continuum, accounts for the elec-
tric polarization. A schematic diagram indicating the
relative displacement of the bound electronic continuum
with respect to the lattice continuum is shown in Fig. 1.
Although the bound electronic continuum and lattice con-
tinuum can displace with respect to each other, 7 is
constrained to satisfy

Ny = 0, (2.3)
in order that the two continua have equal volumes at all

times and the proper electric charge equation may be.
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obtained®® from the present bound charge model of the
polarization. The lattice continuum is assumed to have
a positive charge density u’ and the bound electronic
continuum, a negative charge density ;f’, which differ
by a residual lattice charge density p”, which in ele-
mentary conduction is simply the positive charge den-
sity that neutralizes the negative charge density of the
free electronic continuum, Since the total lattice charge
and bound electronic charge, respectively, are con-
stants, we have the conservation of charge for the lat-
tice and bound electronic continua, which, with (2. 3),
yields

pry) + uly +m) = 7). 2.4)

In addition to possessing a negative charge density
the bound electronic continuum possesses at each point
a circulating current density, which in the appropriate
limit accounts for the magnetization in the manner set
forth in Ref. 12, i.e., we have

Lim § co x xi'ds = Limi'nS} =M, (2. 5)

FAETY PR
C*=0 ina plane nfixed

where ¢’ is the current in magnetic units, ¢’ is an
arbitrary vanishingly small circulating current loop
taken to be stationary with respect to the instantaneous
local rest system of inertia, 3 and M’ is the magnetiza-
tion referred to the same instantaneous rest system. At
this point it should be noted that with the exception of
the circulating current density 2/, which is in magnetic
units, and Secs. 8 and 9, in which MKS units are em-
ployed, Gaussian electromagnetic units are employed
throughout this paper. Although the lattice continuum
and bound electronic continuum have no charge source
densities, the free electronic continuum, the hole con-
tinuum, and the impurity continuum all have charge
source densities, which are denoted by v¢, »", and +¢,
respectively, Then, in order to satisfy the overall con-
servation of charge, we must have

Y +yteyi=0, (2. 6)

—%yfr x(i'dsxB L)
Cl

FIG. 2. Schematic diagram showing the linear momentum and
force and couple vectors acting in the lattice continuum.

H.G. de Lorenzi and H.F. Tiersten 940



cr x[i'ds x(B+Bl)]

2N

L
c

FIG. 3. Schematic diagram showing the force and couple
vectors acting in the bound electronic continuum

Since the free electronic and hole continua are fluids,
only the present position is meaningful, which naturally
is taken to be the present position of the lattice continu-
um ;. The charge densities of the free electronic and
hole continua are denoted by u° and u", respectively.
Clearly, the present and reference locations qf the im-
purity continuum, which has charge density u’, are
identical with those of the lattice continuum.

The free electronic and hole continua interact with
the local lattice continuum by means of defined local
electric material fields denoted by E° and E*, respec-
tively, which cause equal and opposite forces + u°E’
and = u"E" to be exerted between the lattice continuum
and each of the respective conducting fluids. Each con-
ducting fluid interacts with neighboring elements of the
same fluid by means of pressure forces p¢ and p", which
act across the surface of separation in the respective
fluids. The impurity and bound electronic continua in-
teract with the local lattice contimium by means of de-
fined local electric material fields E' and E?, respec-
tively, which cause equal and opposite forces x uiEi
and £ u’E® to be exerted between the lattice continuum
and each of the two respective continua, No force of
interaction is assumed to exist across a surface of
separation in either the impurity or bound electronic

FIG. 4. Schematic
diagram showing
the force vectors
acting in the impu-
rity continuum,
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FIG. 5. Schematic diagram showing the force vectors acting
in the free electronic continuum,

continuum, While the fields E°, E* and Ef act through
the point y;, the field E® acts through the point (y; + ;).
In addition a defined local magnetic material field B’
exists, which causes equal and opposite couples + M’
xB¥* to be exerted between the lattice continuum and
bound electronic continuum, which contains a circulat-
ing current density i’ as in Ref. 12, The lattice con-
tinuum, which experiences the above mentioned forces
and couples from its interaction with the other continua,
interacts with neighboring elements of the lattice con-
tinuum by means of the usual traction force per unit
area t acting across the surface of separation. As noted
in the Introduction, the Maxwell electric field E and
magnetic induction field B exert the usual Lorentz force
on all elements of charge and current density. Schemat-
ic diagrams illustrating the above-mentioned interac-
tions in the model are shown in Figs, 2—6.

3. THE EQUATIONS OF BALANCE AND
ELECTROMAGNETISM

Since, as noted in the Introduction, all mass is con-
sidered to reside in the lattice continuum, the equation
of the conservation of mass may be written in the form

FIG, 6, Schematic diagram showing the force vectors acting
in the hole continuum
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dit VpdV:O, (3.1)
where d/dt denotes the material derivative®! for the
lattice continuum, V is an arbitrary element of materi-
al volume of the lattice continuum, and p is the mass
density. The conservation of electric charge for the
lattice and bound electronic continua, which do not in-
terchange charge with the three other continua, has
been discussed in Sec, 2, and the result is given in

(2. 4). Since the remaining constituents of the model
consist of two conducting fluids with different velocities
and the impurity continuum which moves with a third
velocity, all of which interchange charge with each
other, the only meaningful way to write the equations of
the conservation of charge for the three continua is to
consider a stationary element of volume, Accordingly,
the equations of the conservation of charge for the im-
purity, free electronic, and hole continua, respectively,
may be written in the integral forms

2 f;ﬁdw fn-vuids: f’yidV, (3.2)
ot 14 s 14

2 fmzw fn~veu2ds: fy'-’dv, (3.3)
af 14 8 v

3

= fu"dV+ fn-v"u"ds: fy"dv, (3.4)
at J, s v

where v:dy/dt is the velocity of the lattice continuum
and v* and v" denote the velocities of the free electronic
and hole continua, respectively, From (3.2)—(3.4),
with the aid of the divergence theorem and the arbi-
trariness of the spatial volume V, we obtain

!

S TV ()=, 3.5)
v (uv) =, ©.6)
B g vy =y, (3.7)

ot

where V= e,a/ayi and e; is a unit base vector in the ith
Cartesian direction, Equations (3. 5)—(3.7) constitute
the differential equations of the conservation of charge
for the impurity, free electronic, and hole continua,
respectively. Since, as noted in Sec, 2, the conserva-
tion of charge holds for the bound electronic continuum
and lattice continuum separately, we have, with the aid

f (2.4), the conservation of residual lattice charge pu”,
which may be written in the form

’} r
LV (V) =0.

o7 (3.8)

Since the electric charge equation derived in the Appen-
dix indicates that the total actual electric charge den-
sity p is given by

T AN TA R AR TAS 3.9)
the total electric current density J is given by
J=pu"v+piv+ utve + utvh, (3.10)

which, with (3. 5)—
v.Jrop/ot=0

(3.9) and (2. 6), enables us to write

8.11)
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which is the equation of the conservation of total elec-
tric charge® that must be satisfied for consistency with
Maxwells equations. In most cases the material velocity
v is negligible compared with the velocities v® and v* of
the free electronic and hole continua, and, consequently,
for practical purposes the current density J can be

written as
J=peve+ uhvih, (3.12)

The equations of the conservation of linear momentum
for the five continua are, respectively,

ftds+ /[u’<E+lva>—u"Eb—u"Ee—
s v C

d

urE" - ;ﬁE*]dV

== pvdV (3.13)
f [ (y+n)+—(V+dt>><B(y+n)+E:|

f fz dsXBdV=0, (3.14)

fv ui<E+16va+Ei>dV:O, (3.15)

— lnpeds+-/.ue(E+%ve><B+Ee>dV:0, (3.16)
v

- j;np"ds+/p"(E+1Ev"XB+E")dV:0. (3.17)
v

The equation of the conservation of angular momentum
for the bound electronic continuum takes the form

f (y+mxu® [E(Y+17)+l<v+%}7)XB(y+n)+E”:|dV
14

+f(y+n)xfi’dstdV

14 c’

+f(f rx(i’dsXB)+M’XBL>dV:O.
12 c’

We do not write the equation of the conservation of
angular momentum for the other continua because for
three of them—the two conducting fluids and the im-
purity continuum—the conservation of angular momen-
tum yields the identical information as the conserva-
tion of linear momentum and later we impose the condi~
tion of invariance of a thermodynamic state function in
a rigid rotation, which has been shown to be equivalent
to, although more far reaching®®? than, the conserva-
tion of angular momentum in many circumstances, -3
including one!? considerably more complicated than the
one treated here, In the case treated here only the lat-
tice and bound electronic continua are involved in any
significant way and the result is well known. We have
written the one equation of the conservation of angular
momentum in (3. 18) because one result of this equa-
tion, which is independent of the above considerations,
is needed for our purposes. Since 7 is an infinitesimal
displacement field, we expand E(y +7) and B(y+7) ina
Taylor series about y and retain the first term to obtain

E(y +n) =E(y) +n- VE(y), (3.19)
B(y +71) =B(y) +n- VB(y). (3.20)

However, as in Ref, 12, since the infinitesimal dis-

(3.18)
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placement field n constitutes an integral part of the
model of the polarization, but bears no relation to the
model of the magnetization M’, which consists of the
circulating current density terms ¢’ds, the expression
(3. 20) is employed in charge density terms only and not
in current density terms. In Ref. 12 it is shown that

lim $ori'dsXB=M' - BY, (3.21)
c‘:o i:a.pla.ne

lim $or TXi'dSXB=M'XB, (3.22)

0

jeco

1
Cc*~0 in a plane

Application of (3.13) to an elementary tetrahedron in
the usual manner yields the definition of the ordinary
mechanical stress tensor 7; thus

t=n.r7, (3.23)

Substituting from (3. 23) into (3.13), taking the material
time derivative of (3. 13) while employing (3.1), apply-
ing the divergence theorem to the surface integral
terms in (3. 13), (3.16), and (3.17), and employing
(3.19)—(3. 22) and the arbitrariness of V, we obtain

tj =N Ty

1 pt b _ , eme _ Ak i _ AV
V*T+u E+EVXB—;L E°—~ u?E°—~ u"E"= u*E TS
(3.24)
ub pb
p.bE+p."'r]°VE+—EV><B+6VX(17°VB)
b
pldn byab ’
Laliadl V3 . =
* Tt B+u’E’+ M -BV =0, (3.25)
. I“Li . .
u‘E+—C—v><B+u‘E’:0, (3. 26)
—Vpe+ueE+%vexB+u'~’E"=0, (3.27)
L “hv"x hph _
- ‘b+“E+_C_,‘ B+u"E"=0, (3.28)

which constitute the differential equations of motion of
the five defined continua consisting of the lattice con-
tinuum, the bound electronic, the impurity, the free
electronic, and the hole continua, respectively. Sub-
stituting from (3.19)—(3.22) into (3. 18) and employing
(3. 25) and the arbitrariness of V and M’, we obtain

BLZ=-B, (3.29)

Adding (3. 24)—(3. 26), defining the electric polarization
P by

P=uln, (3.30)
employing (2. 4) and the relation®®
anm _ »dn

where 7 is the polarization per unit mass given by
7=P/p,

and retaining terms linear in 7 only, we obtain

(3.32)

v p dm
V' T+P-VE+ L x(P-vB)+ 24 x '
+ irs P-v )+Cdt B+M'- BV
. d
+(u’+u‘)E+(u'+u')% XB - uE° - u"E":pd—: ,(3.33)
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which are the stress equations of motion for our de-
formable solid. The differential equations of linear
momentum for the semiconductor system consist of
(3.27), (3.28), and (3.33). We now note for later use
that adding (3.27), (3.28), and (3. 33) and employing
(3.9) and (3.10) yields

. T THE Ep. y . pdm
V- 7-Vp* - Vp'+P-VE+ X (P-VB)+ £ 70 xB
J dav
- S xB=p<
+M'-B +;LE+C B PF (3.34)

which are the stress equations of motion for the com-
bined semiconductor continuum consisting of the de~
formable solid and free electronic and hole fluids,

The equations of electromagnetism, which must be
included in the theory, consist of the Maxwell field
equations, which in Gaussian units take the form?®

CV XH =9D/8t +4nd, (3.35)

CVXE=-3B/dt, (3.36)
where C is the speed of light,

D=E+47P, H=B-47M, (3.37)

and
M=M' - (v/C)XP’, P=P’'+({¥/C)XM’, J=J" +uv,
(3.38)

are the low velocity limits of the relativistic transforma-
tions®’ from one inertial coordinate system to another,

In (3.38) P/, M’, and J’ are the polarization, magneti-
zation, and current density, respectively, in the instan-
taneous local rest system of inertia for the point y(X, #)
moving with velocity v relative to our rest system of
inertia and P, M, and J are the polarization, magneti-
zation, and current density in our rest system of iner-
tia. In addition to (3.35) and (3. 36), the auxiliary
Maxwell equations

v-B=0, V.D=4rp (3.39)
are satisfied identically. From (3.9), (3.10), and
(3. 38); it is clear that

I = pl (v = v) + pt (" = v). (3.40)

Equations (3. 35), (3.36), and (3. 39), respectively, may
properly be regarded as consequences of the integral
forms

C§cH-dy=(3/2t) [ n-Dds+4r [ n-Jds, (3.41)
CécE-dy=~(3/20) [ n-Bds, (3.42)
Jsn"Bds=0, [in-Dds=4r[, pav, (3.43)

which are taken to be valid even when the field vectors
are not differentiable, such as across moving surfaces
of discontinuity. In (3.41)—(3.43) C denotes a closed
curve surrounding an open area s, and S denotes a
closed surface surrounding a volume V, all of which are
stationary with respect to our inertial reference system.

By means of a procedure essentially identical with the
one employed in Sec. 4 of Ref, 12, the electromagnetic
body force term
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dﬂk

Vr
f1=PiEsp+e G PiByy+ gem B,

+Mf'¢kai+“Ej+ejkligBl (3.44)
in (3.34) may be written in the form

fi=Tir = 0g,/dt, (3.45)
where

TiM = (1/4n)[4nP,E} + E,E; + B;B, ~ 4TB, M),

— 5(E,E, + ByB, — 8TM}B,)5;,], (3.46)

gi=€;1,E:B,/4nC, (3. 47)
and

E}=E,+e;,v,B,/C. (3.48)

The quantity T?}‘ is the Maxwell eleciromagnetic siress
tensor for our polarizable, magnetizable, and deforma-
ble charged semiconducting continuum and g; is the
linear momentum of the electromagnetic field. Thus, as
expected, the Maxwell electromagnetic stress tensor is
identical with the one obtained for the insulator in Sec.
4 of Ref. 12, Substituting from (3. 44) and (3. 45) into
(3.34), integrating over an arbitrary material region,
and employing the divergence theorem, the transport
theorem, *® and (3. 1), we obtain the material integral
form

fn-['r— (pe+p")I+TEM+vg]ds=% (pv+g)dV,
\ 4

(8.49)

where Iis the idemfactor. Similarly, integrating over a
spatial region, which instantaneously coincides with the
aforementioned arbitrary material region, we obtain the
spatial integral form

fn-[f— (pe+p")I+TE“—vpv]ds:§Z (pv+g)dv,(3. 50)
s v

which is entirely equivalent to (3.49). We now take
either (3. 49) or (3, 50), it does not matter which, * to
be valid even when the field variables are not differen-
tiable and the differential form (3. 34) cannot be ob-
tained, such as across moving surfaces of discontinuity.
As usual in any continuum theory, at this stage the sys-
tem is underdetermined and constitutive equations are
required in order to obtain a determinate system. To
this end we consider the conservation of energy for the
deformable semiconductor in the next section.

4, THERMODYNAMIC CONSIDERATIONS

The principle of the conservation of energy for the
combined semiconducting material medium—consisting
of the lattice, the bound electronic, the impurity, the
free electronic, and hole continua, respectively—states
that, in any stationary volume V bounded by a surface s
with unit outward normal n, the rate of increase of en-
ergy, which consists of the kinetic plus the stored in-
ternal energy of the deformable solid (lattice + bound
electronic + impurity) plus the stored internal energies
of the free electronic and hole fluids, is equal to the
rate at which work is done by the mechanical surface
tractions and fluid pressures acting across s, less the
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flux of heat outward across s, less the convective flux
of energies of the deformable solid and conducting fluids
outward across s, plus the rate at which energy is sup-
plied to the combined semiconducting continuum from
the electromagnetic field. Thus

i‘[(%DV"V+pe+uee"’+u"e")dv
at J,
= f[t-v—,ben-ve—p"nov"—nuq
S

—n-(v%pv-v+Vpe+veueee+v"u"e"):|ds+ jZdV,
14
4.1)

where 3v-v is the kinetic energy per unit mass, ¢ is
the stored internal energy per unit mass of the deform-
able solid (lattice + bound electronic + impurity), € is
the stored internal energy per unif charge of the free
electronic fluid, €* is the stored internal energy per
unit charge of the hole fluid, t-v is the rate at which
work is done per unit area by the mechanical surface
tractions, —p°n-v® and - p"n- v* are the rates at which
work is done per unit area by the pressures acting in
the free electronic and hole fluids, respectively, q is
the heat flux vector, n-vp(iv.v+e¢) is the convective
flux of energy of the deformable solid, n-v°u’° and
n-vtu’e® are the convective fluxes of energy of the free
electronic and hole fluids, respectively, and Z is the
rate of supply of energy per unit volume to the entire
semiconducting continuum from the electromagnetic
field. In order to obtain the expression for Z, we must
return to our model of the combined semiconducting
continuum.

From the fundamental electric charge, current, and
circulating current model of the continuum, the rate
of supply of energy from the Maxwell electromagnetic
field is

E:u’E=v+u”(E+n-VE)-(V+%’)+;L"E'V

+UE- v+ u*E-v'+C @ i'ds-E, (4.2)

C
in which the entire supply is from the Maxwell electric
field E, There is no rate of supply of energy from the
magnetic induction field B because fundamentally the
force exerted on any moving charge element is always
normal to the instantaneous total velocity of that charge
element. The constant C appears in the last term of
(4. 2) because i’ is in magnetic units. In Sec. 5 of Ref.
12 it is shown that

oB

lim Cfi'ds-E:-—M'-—.
cl

4.3
PN ot 4.3)

C’~0 in a plane

Substituting from (2.4), (3.30), (3.31), and (4. 3) into
(4. 2), we obtain

. dm
Z:(p.'+p‘)E°v+P°VE'v+EopE

0B
..M'n-a—t+p.eE~v2+u"E°V"o 4. 4)

Taking the time derivative in (4. 1), substituting from
(3.23) and (4.4), employing the divergence theorem,
(3.6), (3.7), (3.27), (3.28), (3.33), (3.48), the arbi-
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and the relations
3 .2 A& 8 40

trariness of V,

d @ 2 d°

4_5 ,0 & 9 2 L 0 pl 45
di "9t TGy, dt ot ""*By,’ dt ot %oy’ @.5)
and assuming

e =e(u), e=euh), (4. 6)
we obtain

de e e’ et d'ut
p?ﬁ*(“ea 8'2‘_’) dat +< e p) dt
n n
; dB
:Tij”i,ﬁP%E' M dti °Ef(vf-v;)

hyh(, e _ef e h ﬁ_h h (47
_"‘LEi(vi_vi)— € +ue Y - € +p,h Y qi,i’ . )

which is the first law of thermodynamics for the de~
formable semiconducting continuum.

Since we are considering a heat conducting, electri-
cally semiconducting, polarizable and magnetizable,
deformable elastic continuum with a first law of thermo-
dynamics of the form shown in (4.7), the mathematical
expression of the second law of thermodynamics may be
written in the form#0—4

de e pe\deu’ det VAT
o5 (g - ) (e - e - e
dn; daB; dn
7 l 4
- Elp P M = Bdf s (4. 8)

where 6 is the absolute temperature and 7 is the entropy
per unit mass. From (4. 7) and (4. 8), we have the dissi-
pation equation

e
- KB - ) - WEI - v - (4 L)y

k d
(6 +-i—> -q, i—pc’?ﬁ ,

and the entropy inequality may be written in the form

4.9)

d 17q,9,;
pz? (q,) =3 [———lq‘e + LB = )+ W EMNwE = v)

b ()

€+ = +(e?+ r=0, 4.10
( ) " =p )
where I is the (positive) rate of entropy production. At
this point it should be noted that this theory can readily
be generalized** to account for more general func-
tional constitutive response in the manner set forth in
Ref, 11,

Before proceeding to a determination of the constitu-
tive equations, we will write the equation of the conser-
vation of energy in a particularly interesting integral
form in which no volume source terms appear. To this
end we substitute from (3. 10) into (4. 4) and follow a
procedure essentially identical with the one employed in
Sec. 5 of Ref. 12 to obtain

oP; 0B;
Z=EJ;+E;— -M a_t‘ + (0 PiE;) 4.

i of i (4~ 11)

From (3. 35) and (3. 36) in the usual way, with the aid
of (3.37), we obtain
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(4.12)

where
hi = (C/4Tr)eukEij’ UF

and UF may be interpreted as the electromagnetic field
energy and k; is the usual Poynting vector. Equation
(4.12) is a particularly interesting and useful form of
Poynting’s theorem for conducting, polarizable and
magnetizable continua. Since the form in (4. 12) depends
only on the validity of Maxwell’s equations [Egs. (3.35)
and (3. 36)] and the relations (3.37), and is independent
of any particular constitutive assumption, it is always
valid. Substituting from (4.11) and (4. 12) into (4.1) and
employing the divergence theorem and the transport
theorem, *® we obtain

(1/87)(EE, + B,B,), (4.13)

4 (3pv-v+pe+pe+ plet UN) AV
at J, o

= fn-[-r-v—peve—p"v"— - (V¥ = v)use

— (V' =v)ulet +vP - E+vUF}ds, 4.14)

which is the particularly interesting integral form of the
equation of the conservation of energy we have been
after. Similarly, integrating over a spatial region,
which instantaneously coincides with the material re-
gion considered in (4. 14), we obtain the entirely equiva-
lent spatial integral form of the equation of the conser-
vation of energy for our deformable semiconductor

%f (30V-v+pe+ o+ phet + UDY AV
v

:f n-[7:vepV ~ p'V —h~q—-Vp(Ev-v+e)

- Ve ~ vt + vP - Elds (4.15)

5. CONSTITUTIVE EQUATIONS

The state function constitutive equations may be de-
termined from the thermodynamic state function equa-
tion (4. 8), which, by virtue of the relation

Vi, i :XM, id(yj,u)/dt,

may be written in the form

de o€ po\d°u° [ p0et  pt\atut
- 4 e - — —_—
Pat (“ au’ ue) at +(“ aut ~ Wt/ at

_ d , am; ,dB; dn
_TiiXM.idt(yJ,M)+Eip dt Ml At pedt

(5.1)

Since the entropy inequality is of the form shown in
(4.10) and Faraday’s law (3. 36) contains the electromag-
netic field variables E and B only, it turns out to be
convenient to define the thermodynamic state function

x by the Legendre transformation
x=¢— E{m;—nb. (5.2)

The substitution of the material time derivative of (5. 2)
into (5.1) yields

éx ea—ee__p_e)deue 5 0€" Jeh ph amt
pdt+(pl ou®  u¢/ dt T\ aut dt
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d dE} dB; d9
:TinM,im(yj,M)_pﬂi ai Y

- gy TPy 6.3)
Since (5. 3) is a state function equation, we must have
X:X(yj,mEz{;Bi;e)- (5.4)

Substituting the material time derivative of (5. 4) into
(5. 3), we obtain

(T”XM,z pa(yj,,v,)>dl(v"") p<nl+8E,f 7

— ol 2X\EB: _ Ax\dé
p<y‘+aB,.)dt P\ 36 ) at

. de? pe deue R aeh /)h dhuh
i A il Ve ey =0,
aM wt/ dt U U dt
in which the magnetization per unit mass v} in the in-
stantaneous local rest system of inertia, defined by
V1{ = “[:/py

has been introduced.

(5.9)

(5. 6)

Since all the material time derivatives appearing in
(5. 5) are independent and (5. 5) holds for arbitrary
d(v,,y)/dt, dE}/dt, dB;/dl, de/dt, d°u°/dt, and d"u"/at,
we have

Xy, 1T1;=p X/ (V5,4 (5.7)
7, =— ox/2E], vi:-—BX/BBi, n=-23y/26, (5. 8)
pe=(u?aec/aus, ph=(uh?oet/apn. (5.9)
Solving (5. 7) for 7, with the aid of the chain rule of
differentiation, we find
15201, X/ (35, ). (5.10)

Although €® and €* can be arbitrary functions of w® and
u®, respectively, because such functions are automati-
cally invariant in a rigid rotation, y cannot be an
arbilravy function of v, ,, E,, B, and ¢ because in
order to satisfy the principle of material objectivity,
€ and, hence, y must be a scalar invariant under rigid
rotations?®” of the deformed, polarized and magnetized
body, and any arbitrary function of the 16 variables
(five vectors and a scalar at the point v,) will not be so
invariant. However, there is a theorem on invariant
functions of several vectors due to Cauchy, *® which says
that y may be an arbitrary single-valued function of the
scalar products of the vectors and the determinants of
their components taken three at a time. ** Application of
this theorem shows that y is expressible as an arbitrary
function of 15 scalar products and ten determinants, as
well as 6, for a total of 26 quantities. However, the 26
quantities are not all functionally independent, and it
can be shown, by means of procedures similar to those
employed in Sec. 6 of Ref, 4, that the 26 variables are
expressible in terms of the 13 arguments consisting of

45, 46

CKL:yi,Kyi,L5 WL:.Vi,LEz!a Np=vi, B, 0. (5.11)
Thus we find that y may be reduced to the form
X:X(EKLy WL: ]VL’ 9)3 (5012)

in place of the form shown in (5.4), and we have re-
placed Green’s deformation tensor Cy;, which does not
vanish in the undeformed state, by the entirely equiva-
lent material strain tensor E;, which does vanish in

946 J. Math. Phys., Vol. 16, No. 4, April 1975

the undeformed state, and is related to Cy; by

EKL:%(CKL"' 6KL)- (5. 13)
From (5. 8) and (5.10)— (5. 13), we obtain
d
PV s G +py,,L—5-%,—E’ py,.La—]é-Bj, (5.14)
X X K
yz,LaW ) Vz yt,LaN » T’ 89’ (5-15)

in which we have introduced the convention ax/aEKL
=0x/0E 1y, and it is to be assumed that 3E y/9E yz =0
in differentiating x. From (5. 14), (5.15),,, (3.32), and
(5. 6) note that

713 =2(E}P; = P,E}+B;M}- MB)), (5.16)

which is the equation that would have been obtained from
the conservation of angular momentum had it been
employed.

This brings us to a consideration of the dissipative
constitutive equations, which are obtained from the
entropy inequality (4.10) which with the aid of (5. 9) may
be written in the form

(:9,:/6) + L°E5 (0% — ;) + PP ERDE = v;)
+° (e /op +y 8 (ueM/aut < 0.

Motivated by (5.17), we take the dissipative constitutive
equations in the form

:=0;(6,;, u°, pt, ES, EY)
'_7)’:V?(9i7““ /*‘LrEiyE:'l)

(6.17)

b

e

i

?_ﬂ ‘V(Q 1,!.1 I“Lh E‘? E’z‘)7
e

Y=y (6,5, 1, ut ES, EY,

')’ =Y (9,i5 IJ'e’p' ’Eny,il)9 (5- 18)
but since the nondissipative constitutive equations (5. 14),
(5.15) depend on the v, ,, £}, B; and 6, there is no

logical reason to exclude them from the dissipative con-
stitutive equations. * Hence, on account of the chain rule

of differentiation, we may write

qi :qi(e,My /J-g, IJ-hy E?, E:'l, Vi M7E1{’Bi’ 9)’
i =0, =Vi0, y, 16, ES, vy, yy EL, By, 6),

h

V= U; *Vh(e,M’IJ’ E,,V,,M,E Bne)
e_

Y (B,M’U- ;Ei’yi,M’Ez{,Biy 9),
:7 (0,M9 uh, E:'zyyi,M’ Et{7Bi) 9)7
for the general functional dependence of the dissipative
constitutive equations. Since the free electronic and
hole fluids have been assumed not to interact directly
with each other, we have excluded the dependence of
V¢ and ° on p® and E and V¥ and " on u® and E{. Now,
in order that the dissipative constitutive equations
(5.19) may be able to satisfy the principle of material
objectivity, 44 3] variables in (5.19) must be objec-
tive, i e , they must transform as tensors under
time-dependent proper orthogonal transformations. AL
variables in (5.19), save (v$—v;) and (v}~ ), satisfy
this latter requirement trivially, since they are not
time-differentiated quantities, and (v¢—v;) and (- v;)
may readily be shown to be objective vectors. To see
this, consider

(5.19)
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¥ = Qij(t)yj + b,-(t), (y?)* = Qij(t)yl; +b @), (5. 20)

where Q;,(t) represents an arbitrary time-dependent
proper orthogonal transformation and b;(f) represents an
arbitrary time-dependent translation. In (5. 20) the
starred quantities represent either the motion as seen
from an orthogonal coordinate system in arbitrary rigid
motion with respect to ours or the motion plus a super-
posed rigid motion as seen from our coordinate system.
From (5. 20), we obtain

(05 = 2,)* = Qy;(v - v,) + (dQy,/dt)(¥5 - v,), (5.21)
but since at the point under consideration,

Y=Y (5.22)
we have

s — v;)* =Q;; (WG~ vy, (5. 23)

which shows that (v§~v;) is an objective vector. In the
same way we may readily show that (%~ ;) is an objec-
tive vector. Now, the quantities on the left-hand sides of
(5. 19) cannot be arbitrary functions of the variables
shown because arbitrary functions of the variables shown
will not satisfy the principle of material objectivity, 5%
which requires the constitutive equations to transform
appropriately under proper orthogonal transformations.
However, if ¢;, V%, and V are expressed in the form

qi=vi,kle, Vi=9:i, k% Vi=yi,x%, (5. 24)

where L., Q%, and Q% are functions of the variables
shown on the respective right-hand sides of (5.19), it
may readily be shown using established methods®® that
the principle of material objectivity is satisfied if Ly,
Q%, and Q% are vector invariants in a rigid motion and
+¢ and y" are scalar invariants in a rigid motion, Then
the previous application of Cauchy’s theorem on in-
variant functions of vectors shows that the required in-
variance is assured if Ly, Q%, 9% 7°, and v", respec-
tively, are of the form

LK:LK(Q,M9 p’ey p‘h’ u’ia wliy ELM’ WL7 NvL; 9)’
Q?{ = Qi((e,My “e’ wiy ELM’ WL! NL, 9)5

Q= Q%(6, y, u", 0w}, Epy, Wi, Ny, 0), (5.25)

Ve =90,y 0, Ty Ep gy, Wi, Ni,y 0),

P :y"(G' w bt EL . W, N, 8), (5. 26)
where

wy =v;, 1E5, wh=v; L, (5.27)

and E;,, Wy, and N, are defined in (5. 13) and (5. 11),, 5,
respectively. Now, it must be remembered that, al-
though the dependence of L, 9%, % ¢, and " on Egj,
Wy, N, and 6 is arbitrary, there are conditions on
their dependence on 6, ,, w7, wh, u® and u” on account
of the Clausius—Duhem inequality (5.17). Thus the dis-
sipative constitutive equations in the general case are
given by (5. 26) and

gi=yi,xlx, Vi-vi=y,; k%, v?_vi:yi.KQ’Ilﬁ (5.28)

with Ly, Q¢ and Q% as given in (5, 25).
Equations (5. 14), (5.15), (5.26), and (5.28) determine

the constitutive equations for our heat conducting,
polarizable and magnetizable, deformable semiconduct-
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ing continuum, Thus, all that remains in the determina-
tion of explicit constitutive equations is the selection of
specific forms for €, €", x, L, 9%, @&, %, and »*. At this
point it should be noted that the generation rates ° and
y" implicitly determine the degree of impurity of the
semiconducting continuum. I 4°++*=0, we have a pure
(intrinsic) semiconductor, but if 1°+1"# 0 we have a
semiconductor with either a donor or acceptor density,
Once the constitutive equations have been determined,
we have a determinate theory, which by appropriate sub-
stitution can readily be reduced to 18 equations in the 18
dependent variables v;, 6, E;, B;, ES, E}, p° and p*
The 18 equations are the three each of (3. 27), (3.28),
(3.33), (3.35), and (3.36) and (3.6), (3.7), and (4. 9).
Clearly, the system can be reduced further to 16 equa-
tions in 16 dependent variables with the aid of the elec-
tromagnetic potentials, 5° In order to have a complete
field theory, the boundary (or jump) conditions at moving
surfaces of discontinuity have to be adjoined to the
aforementioned system of equations. This is done in the
next section,

Before proceeding we note that the quantities
3(1%¢)/a ¢ and 3(ute")/a " are identical with the chemi-
cal potentials ¢° and ¢ for the free electronic and hole
continua, respectively, which are used in place of the
partial pressures p° and p* in most literature!® 54 on
semiconductors. Indeed, from (5.9) and

@°=3(u%e)/aps, @"=a(ul")/aut, (5. 29)
it is relatively easy to show that
(/w0 = 98, (/uMpl = ol (5. 30)

which indicates that in the equations of the conservation
of linear momentum (or conductivity equations) for the
free electronic continuum (3. 27) and hole continuum
(3.28), the terms containing the pressure gradients are
identical with the gradients of the respective chemical
potentials. However, the use of the partial pressures,
which are more fundamental than the chemical poten-
tials, indicates the existence and proper form of semi-
conductor boundary conditions, as shown in the next
section, and results in the correct rates of working and
attendant thermodynamic description appearing in Sec.
4, which underlies the constitutive equations of this
section. Moreover, it should be noted that the sub-
stitution of (5.29) in the last two terms on the lhs of the
rate of entropy production inequality (5.17), which was
obtained from a systematic continuum thermodynamic
treatment, results in terms identical with those present-
ed in Section 3. 5 of Ref, 54 for the equivalent situation,
which terms were obtained in a completely different
manner,

6. THE BOUNDARY CONDITIONS

In this section we determine the boundary conditions
which must be adjoined to the system of differential
equations, as noted in Sec. 5, in order to formulate
boundary value problems. As usual, these boundary
(or jump) conditions are determined by applying the
integral forms of the pertinent field equations to ap-
propriate limiting regions surrounding the moving (not
necessarily material) surface of discontinuity®® with
normal velocity #,, and assuming that certain variables
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remain bounded. The pertinent integral forms are
(3.1)—(3.4), the integral form associated with (3. 8),
(3.41)—(3. 43), either (3.49) or (3. 50), the integral
form of (4.10), which takes the form

[pndV+/ 2 gs = [pdezo,
v

where pT is defined in (4. 10) and integral forms are as-
sociated with (3. 27) and (3. 28), neither of which can be
used directly to find integral forms for the determina-
tion of jump conditions without making some sort of
physical assumption about the manner in which the
Lorentz force for each conducting fluid and E¢ and E*
become unbounded, However, before proceeding we
observe that since we have the correct integral form

(3. 50) for the combined semiconducting continuum, any
assumptions concerning the integral forms for the con-
ducting fluids must be consistent with (3. 50) and,
can be expected to be related to the Maxwell tensor TEM,
which results in the force exerted across the surface by
the electromagnetic field on the combined semiconduct-
ing continuum. Since the conducting fluids possess no
polarization or magnetization, the aforementioned sur-
face force on each conducting fluid should be directly

(6.1)

related to the Maxwell stress tensor TES which contains

the terms in T®™ independent of P and M’, i.e.,

T3P = (1/4m)[E E; + B;B; — 3(E,E, + B,B,) ;). (6.2)

Although the jump in the Maxwell tensor across a sur-
face of discontinuity depends only on the discontinuity in
the field vectors and is not directly dependent on the
surface charge, from a discrete microscopic viewpoint
the resultant macroscopic surface force is due to the
sum of the microscopic volumetric forces exerted by
the electromagnetic field on the free electrons (and/or
holes) and lattice charge in a microscopic volumetric
region that can be identified with the macroscopic sur-
face. As a consequence of this reasoning, the surface
force on, say, the free electronic continuum and the
residual charge of the lattice continuum must be op-
positely directed because the above-mentioned micro-
scopic charges are of opposite sign. In fact it can be
reasoned that the magnitude of the surface forces on the
separate continua can be considerably larger than the
magnitude of the resultant force due to the jump in the
Maxwell tensor TE® on the two mentioned continua com-
bined. In view of the above discussion it seems rea-
sonable to assume that there are scalar material coeffi-
cients o, o and o°, which are related to appropriate
ratios of the above-mentioned microscopic volumetric
charge densities within the macroscopic surface of the
semiconductor, that when multiplied by the Maxwell
tensor TE® in (6, 2) give the forces exerted by the elec-
tromagnetic field across the surfaces of the respective
continua. Thus, we postulate that the integral forms
associated with the differential forms (3. 27) and (3. 28),
respectively, which are valid in the vicinity of a surface
of discontinuity are

fn- (= p°I+ a®TES) ds + f WeE®SdV = 2 a’gdV,
s 1 4 at 14

(6.3)
atgdv,

fn-(—p"l+ahTES)ds+fu"E"st:—aa—ff
: Y 6.9
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indeed,

where E°*# E° and E**# E" in order that (6. 3) and (6, 4)
be consistent with (3. 50), and we have introduced g in
(6.3) and (6. 4), even though we deem it to be negligible
in actual cases, also for logical consistency with (3. 50).
Clearly then, in the vicinity of a surface of discontinuity
in addition to (6. 3), (6.4), and (3. 50), we have

fn-[-r+TEM+(as—1)TES-va]ds— /(ueEeMu"E"s)dV
s 14

9
== (pv+a®g)dv, (6.5)
ot Jy
as the integral form associated with the differential
form (3.33), where
afratiat=1, (6. 6)

which assures that the sum of (6.3)—(6.5) yields (3. 50).
The scalar material coefficients @, o and o® can be
regarded as either macroscopic quantities to be mea-
sured or coefficients to be determined from a micro-
scopic quantum mechanical surface state calculation. *
In any event in this description they are taken to be
known parameters, which may be determined by either
of the above mentioned means.

Since the normal component of electric displacement
can be discontinuous even across nonmaterial surfaces
of discontinuity, the charge density p and, hence, all
the other charge densities, as well as the charge gen-
eration rates, can become unbounded at nonmaterial,
as well as material, surfaces of discontinuity. How-
ever, at nonmaterial surfaces of discontinuity the ma-
terial fields E° and E® are assumed to remain bound-
ed, while at material surfaces of discontinuity they can
become unbounded. For all integral forms considered,
except (3.41) and (3. 42), a volumetric region is taken
in the usual way,*® and it is assumed that all pertinent
variables remain bounded except the aforementioned
charge densities and charge generation rates, The jump
conditions obtained from the respective integral forms
consisting of (3.1)—(3. 4), the integral form associated

with (3. 8), (3.43), either (3.49) or (3.50), (6.1), (6.3),

and (6. 4) are
n-[pvl-u,[p]=0, (6.7)
n-[uiv]—u,[uil+2Q /ot =T, (6.8)
n- (o] = w,[u]+8Q%/ 0t = T°, (6 9)
ne [pv' -, [u"}+2Q" a1 =1, (6.10)
n- (uv]—u[p]+eQ7 /3l =T, (6.11)
n-[B]=0, n-[D]=47Q, 6.12)
n- (7= (p°+p"I+ T = vpv] +u,[pv+g]=0, (6.13)
n-[(a/6) +von] - u[pn]= 0, (6.14)
n- (- p°1+ 0°T®5] +u,[a%g] =0, (6.15)
ne[-p"+ "]+ u,[ag] =0, (6.16)

where we have introduced the conventional notation [C]
for C*—C~, n denotes the unit normal directed from the
— to the + side of the surface of discontinuity, @', @°,
Q", and " denote the surface charge densities for the
impurity, free electronic, hole and lattice continua,
respectively, while @ is the net surface charge den~
sity, ¥’
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Q=Q"+Q"+Q°+Q", (6.17)

and I, T¥, T°, and T'"* are the respective surface
charge generation rates, which satisfy

"+ T4 Te+Th=0, (6.18)

The jump conditions on H and E, respectively, are
determined from (3. 41) and (3. 42) by considering the
circulation around a limiting open surface intersecting
the moving surface of discontinuity in the usual way, %
and are given by

nx[H]+ (,/C)[D]=0, nX[E]- @,/C)(B]=0. (6.19)
If the surface of discontinuity is material,
Up=M-V =NV, (6.20)

and (6. 7) evaporates, (6.8)—(6.11) and (6. 13) reduce to

aQ/at=T", (6. 21)
n-[u*—v)]+aQ°/at=T°, (6.22)
n. [ptev*t-v)]+ 2@/ 5t =T", (6.23)
2Q"/et=T", (6. 24)
ne (7= (p°+pMI+ TE" 1 vg]=0, (6. 25)

(6.12) remain unchanged, and (6. 15) and (6. 16) take the
respective forms

n-[-p°T+ a*T S+ vaigl+ 7°=0, (6.26)
n-[-pIl+ " TES rvalgl+ 71 =0, (6.27)
where
J,3eds=lim JypeEssav, [ Fhds=lim [, p'E*QV.
(6. 28)

The vectors 7¢ and 7" denote the surface forces that
are exerted by the deformable solid on the free elec-
tronic and hole fluids, respectively. Now, from (4. 10),
(3.27), and (3.28), with the aid of (5.29), (5.30), (3.6),
(3.7), the divergence theorem and an integration over
an arbitrary volume, we can write

d?] l( eM hauh )]
/V[pdt+9 TR i
+ f”ile (q; + o®puevs + P" MM ds
s

1 1
= /;(— i (g; + @°uvi+ "Mty 0, + r (uovt+ uohE,

+ % (LEES + u"E?)v,-) dav. (6. 29)
If 6 is continuous, i.e.,
(6]=o, (6.30)

across the surface of discontinuity, the application of
(6. 29) to the appropriate limiting region surrounding
the moving material surface of discontinuity, along with
the assumption that all current terms remain bounded,
yields the jump condition

0Q°
ot

n- g+ @'V + "V + 3¢ + 0%)

~ i
s 3+ oty 2L 0,

af (6.31)
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provided we assume that the terms containing v, i.e.,
w®E®- v and u*E": v are bounded in the limit even though
E¢ and E® are not bounded, This is a reasonable physi-
cal assumption since [v| is so much smaller than {v®|
and |v*|., This latter situation, consisting of the jump
conditions (6.12), (6.19), (6.21)—(6.27), (6.30), and
(6. 31) along with Egs. (6.17) and (6. 18), is of primary
interest to us and these jump conditions are sufficient if
the semiconductor abuts free space. However, if the
semiconductor abuts another semiconductor, the addi-
tional condition

which states that the two bodies are attached, must be
satisfied. The normal components of the surface forces
7% and 7" exerted by the deformable solid on the respec-
tive conducting fluids must be determined from constitu-
tive relations, which, by virtue of considerations dis-
cussed in Sec. 5, may be written in the form®

"Lj}f': ny;, G, ”J}? :njyj,KG’!l{y (6.33)
where

G?( = G?{(Q' My “e’ weL, ELM; WLa IVL’ 9)7

G’;( = G’!lr(Q.M, Hh, w}i, Epw Wi, Ny, 0). (6.34)

Since, by virtue of (5.9), (3.27) and (3. 28) constitute
first-order differential equations in y? and p*, re-
spectively, the boundary conditions

[-p°+a’n- (TS +vg)-n]+n- F°=0,
[~p"+a"n. (TES+vg)-n]+n- F*=0,

(6.35)
(6. 36)

which are obtained by taking the normal components of
(6. 26) and (6. 27), respectively, are sufficient when
the semiconductor abuts either free space or another
semiconductor. The tangential components of the sur-
face forces 7° and 7%, i.e., nX7°and nX7", may be
determined a posteriori if desired when a solution has
been obtained. Now, all terms in boundary expressions,
which are not prescribed, may be expressed in terms
of the same 18 field variables as the 18 equations men-
tioned near the end of Sec. 5 by making the appropriate
straightforward substitutions.

Thus, at this point we have obtained the nonlinear dif-
ferential equations and boundary conditions describing
the interaction of the electromagnetic field with polariz-
able and magnetizable, heat conducting, deformable
semiconductors. The description consists of the afore-
mentioned 18 equations and 20 boundary conditions,
which are the one each of (6.12), ,, (6.21)—(6. 24),
(6.30), (6.31), (6.35), and (6. 36), the two each of
(6.19)y,2, and the three each of (6. 25) and (6. 32), all
expressed in terms of the 18 field variables y;, 6, E,,
B;, Ei, E}, 1u°, and p” In addition, at a boundary,

Eqs. (6.17) and (6. 18) must be satisfied. All that re-
mains is the selection of specific forms for
€ eh’ LK, Q?{) QI}(’ 72’ Yhy G?{) G};ﬂ Fe’ and Fh'

¥

7. THE QUASISTATIC ELECTRIC FIELD

Since the wavelengths of elastic waves are much
shorter than the wavelengths of electromagnetic waves
at the same frequency and we are concerned with solu-
tions at the shorter wavelengths, it proves convenient
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to reduce the eguations that have already been derived
to those that hold when the electric field is quasistatic.?’
Although in this section the magnetization M is assumed
to vanish, the magnetic induction field B is permitted

to exist but must be static and homogeneous, At this
point it should be noted that since the velocity v of the
lattice continuum is very much smaller than the speed
of light C, to this approximation terms containing v/C
may be neglected without loss in accuracy and, from
(3.38)y,,, (3.48), and (5.6), we have

M=0, P=P/, E=E, v=0, (7.1)
In this approximation in place of (3.36) we have

Ey==9,;, (7.2)
where ¢ is the electric scalar potential, and the
Poynting vector h defined in {4, 13); reduces to

h;=—(¢/47)3D,/dt, (7.3)

Moreover, the electromagnetic momentum g defined in
(3.47) can be neglected. Under these circumstances the
resulting description becomes Galilean invariant,

When the electric field is quasistatic and the magnetic
induction is a static homogeneous field, Eqs. (2.6),
(3.1), (3.5)—(3.12), (3.23), (3.27)—(8.32), (3.37),
(3.38);, (3.39), (3.40), and (3,43) remain unchanged,
Eqgs. (3.33) and (8. 34) take the respective forms

v. T+P»VE+(u’+ui)E+£ﬂ><B+(ll'+lii)"éxB

Cdt
dav
- °Fe - h: —_
u°E’— L*E [ (7.4)
. Te UHe — UpHh . ﬁﬂx g_x _,av
V.T-Vp-Vp'+P-VE+ uE+ B EXBr ZXBop
(7.5)

and it is understood that the prescvibed homogeneous
magnetic induction field B has a character in the de-
scription mathematically analogous to that of a pre-
scribed gravitational field in mechanical systems. In
this description, primarily because of (7.2), Eq. (3.35)
may be replaced by

v [(3D/at) +47J] = 0. (7.6)

Equations (3.41), (3.42), (3.44)—(3.46), (3.49), and
(3. 50), respectively, are replaced by

(3/3t) [ n-Dds+ [ n-Jds =0, 7.7
§.E-dy=0, (7.8)
dam J;
.fi:PkEJ'.k+u'Ei+gejkl?ifBl+ejkl§Bh (7.9
PkEj,k+“Ei:Tf:i,i’ (7.10)
TE = % (47P,E; + E;E ;— 3E,E,d;;), (7.11)
fn-[T— (p‘“’+p")I+TE]ds+flJ><BdV
s v C
d 1
=3 fv"(V'"c'”xB)dV’ (7.12)

fn-('r— (p°+pMI+T? - VPV+%PXB> ds
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+ L%JXBdV=a—at Vp(v—%ﬂxB)dV. {7.13)
Except for the fact that the magnetic terms in Sec. 4 are
dropped and 4; in (4. 13), is replaced by (7.3), all equa-
tions in Sec, 4 are unchanged. Aside from the fact that
the magnetic terms are dropped in Sec, 5 also and E’

is replaced by E, the constitutive equations in Sec. 5
are unchanged, The resulting theory in this section

can readily be reduced by appropriate substitutions to
13 equations in the 13 dependent variables y;, 6, @,

E¢, E% p° and p". The 13 equations are the three each
of (3.27), (3.28), and (7.4) and (3.6), (3.7), (4.9), and
(7.6),

At a moving nonmaterial surface of discontinuity the
jump conditions (6. 7)—(6.12) and (6. 14) remain un-
changed, (6.13), (6.15), and (6.186), respectively, are
replaced by

ne[7- (p°+p"I+TF - vpv + (v/C)P xB]

+u,[pv-(1/C)P xB]=0, (7.14)
n-[-p°I+a*TE9) =0, (7.15)
n-[-p*I+ o"TEQ] =0, (7.186)

where
T7R = (1/47)(E,E; — 3E,E,5;,). (7.17)

Equations (6.17) and (6.18) remain in effect, (6.19), is
nonexistent, and (6, 19), is replaced by

[o]=0.

At a material surface of discontinuity Egs. (6,20)—
(6. 24) remain in effect and (6, 25)— (6. 27), respectively,
are replaced by

(7.18)

n-[7- (p+pM1+TE]=0, (7.19)
ne - p°I+a°TEQ 4 F¢ =0, (7. 20)
ne[-ptl+ a*TEQ) 4 32 =0, (7.21)

The remaining equations, i,e,, (6.28)—(6.34) are un-
changed except for the fact that the dependence on N,
in (6, 34) is omitted and the vector g in (6. 35) and

(6. 36) is omitted.

8. NONLINEAR EQUATIONS FOR SMALL FIELDS
SUPERPOSED ON A BIAS

In this section we obtain the nonlinear equations in
the small field variables for small dynamic fields super-
posed on a static bias for the n-type semiconductor from
the equations for the quasistatic electric field presented
and discussed in Sec. 7. For an r-type semiconductor
L"=+"=0 and since the semiconductor is intrinsic, 3*
=0 and, hence, from (2.6) »*=0, We ignore all tem-~
perature effects and thus eliminate 8 and the dissipation
equation (4. 9) and take the static homogeneous magnetic
field B to vanish, Under these circumstances from (3. 6),
(3.9), (3.27), (3.38);, (3.39),, (3.40), (5.14), (5.15),
(5.30), (7.1);, (7.5), and (7.10), we may write the
governing differential equations in the form

aue/ot+ (uv9),; =0, 8.1)

(15 + TEF = p°8;)), s = pdv/dt, (8.2)

Ei=(0+¢%),;, Dii=u, w=p"+u% (8.3)
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Jy = wug + pf - vy), (8.4)
where
75 = oy, ay/2E (8. 5)
i pyt,Ky].L KLs
TFS =6 EE;~ 26)ELE,0;, (8.6)
D;=¢E; = py;, 1 3x/dWy, 8.7
v - v; =Vi=y;, %, Ju' =ou", (8.8)
Qi( = Q%{(“‘ey 1’0‘1?',’ ELM) WL)y J= detyi, Ky (8- 9)

and in this section we employ MKS units in place of
Gaussian units, ¢ is the permittivity of free space,
and ,u” is a constant for a given material, From (3.11),
(8. 8)q,3, and (8. 4) we obtain

[Le@é=v;) + (6Di/at) +Dk,kv,~],,- =0,

which with (8. 2) constitute four governing differential
equations for the n-type semiconductor., From (5. 9),,
(5.11),, (5.13), (5.27),, (5.29), (7.1);, (7.2), (8.3},
and (8. 5)—(8. 9} it is clear that the four differential
equations can readily be expressed in terms of the four
dependent variables y; and ¢. At a moving material
surface of discontinuity the pertinent boundary condi-
tions that remain are

Qe

60

(8.10)

Q" _

= tmlptei-v)]=T°, —-=17, (8.11)

nil[ 75+ TEF - %6451 =0, (8.12)

(- 1%+ an; TiP ;) + 0, 75 =0, (8.13)

niDi]=Q, n;[J;)+9Q/3t=0, [¢]=0, (8.14)
where

Q=0°+qQ", I'"+I"=0, (8.15)

Clearly, the boundary conditions (8.11)—(8.14) can
readily be expressed in terms of the same four depen-
dent variables as the differential equations.

At this point we note that in obtaining the equations
for small fields superposed on a bias, certain results
and equations contained in Secs. I-III of Ref. 28 are
employed here. In fact the content of Secs. I—III of
Ref. 28 is assumed known in this section and the nota-
tion is the same. As in Ref, 28, £, denotes the inter-
mediate coordinates of material points and is related
to the reference coordinates X; and present coor-
dinates v; as shown in Egs. (35) and (36) of Ref, 28,
The small mechanical displacement field #; and small
dynamic increment of electric potential ¢ are defined
in Egs. (37) and (38), respectively, of Ref. 28. Equa-
tions (39)—(59), (61), and (62) of Ref, 28 and the dis-
cussion associated therewith apply here without essen-
tial change, and in place of (60) and (63) we have

Kajya=Paj a=ptdv;/dt, (8.16)

Agya=JH, 8.17)
where

Kaj:plga,Lyj,M(aX/aELM)+j§a.iT{Ejs! (8° 18)

paj:fga,jpeﬂ (8- 19)

We now define the intermediate relative velocity U?, of
the free electronic fluid by
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Ua=Ea,4Vis (8.20)

from which, with (3.11), (8.4), the chain rule of dif-
ferentiation and the identity

(jga,i),a = 0’ (8. 21)
we may write
(WTU), o+ (0T Eq, 03, o + T 31/ 2E=0, (8.22)

which, with (8.3), (8.17), the chain rule of differentia-
tion, (8.21), (4.5), and

v;, 1= (/D) dJ/dt=(1/T)a/dt, (8. 23)
enables us to write

[(Aﬂ.B— “‘rl)[}fx],a"'d(Aa, a)/dt:oy (8. 24)
where

pt=Jgur, (8. 25)

Referred to the known intermediate coordinates, the
jump (or boundary) conditions (8.12)— (8, 14); at moving
material surfaces of discontinuity take the respective
forms

Va[Kuj_paj] +fja:0, (8. 26)
[~ vaPamni+ aeVuJEa, ;Tin;)+ Fon =0, (8.27)
volasl=g, (8. 28)

where f; and g are defined in Eq. (97) of Ref. 28, do
and v, denote the magnitude of and unit normal to the
differential element of material area in the intermediate
configuration, the relation between »; and v, is given

in Eq. (94) of Ref. 28, and F; is defined by

Jids =F;do. (8. 29)

In order to refer the boundary condition on current
(8.14),,, to the krnown intermediate configuration, it is
advantageous to consider the integral from of the con-
servation of charge

S nidids == (2/31) [ udv, (8.30)

where V is an element of volume fixed in space and J;
is given in (8. 4), With the aid of the transport the-
orem, *® Eq. (8.30) can be written in the form

Sondids == @/dt) |, pav+ | npo,ds, {8.31)

where V in (8. 31) is an element of volume, which in-
stantaneously coincides with V in (8. 30) but is moving
with the velocity v of the lattice continuum. Substituting
from Eq. (89) of Ref. 28 into (8. 31}, employing (8. 4)
and (8. 20) and defining the surface charge densities @
and g, we obtain

J, veTutvsdo =~ (d/dt) | qdo. (8.32

The application of (8. 32) to a limiting region surround-
ing the moving material surface of discontinuity, with
the aid of (8. 3),, (8.17), (8.25), and the material

derivative of (8. 28), yields
vo[(8g 5~ LHUZ +dA,/dl] =0, (8.33)

which is the most appropriate form of the jump condi-
tion on current for the electroelastic semiconductor.

Since the equilibrium intermediate state is assumed
known, we have Eqs. (64)—(70) of Ref. 28 along with
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pe=pt+Rie, pt=pttp, (8.34)
Pai=Phs+Pasy UL= UL+T, (8. 35)
where

pel - (uel)z aee/a“ei

and p°! denotes the static intermediate free electronic
charge density and p°! the associated pressure, and ¢
and /° denote the small dynamic increments of free
electronic charge density and pressure, respectively,
/30“- is the small dynamic increment of intermediate
Piola—Kirchhoff traction due to the free electronic
pressure, V¢! is the steady relative velocity of the free
electronic fluid, (7‘; is the small dynamic increment of
the relative velocity of the free electronic fluid in the
intermediate configuration, and £, and EL are known
and #,, AL, PL,p¢, and Ue! satisfy

{xj :peiéaj’ U?xl = Gai Vgiy (8~ 36)

B o= Puga=0, o=ttt (uetvel) =0
(8.37)

valths— Phsl + 15 = [-p° + @y, Thgtvg] + Filv, =0,

volall=q', [']=0, vo[u've]= (8. 38)

and the quantities not defined here are defined in Sec. II
of Ref. 28. The small field dynamic variables satisfy
the dynamic differential equations

Kas, o= Paj, o =p'0,, 2%,/ 38, (8.39)
A, a—(J 1)u91+Ju (8. 40)
[(u®! + Ay ) (VEL 4 T2)], o + (3/38) A4, o =O. (8.41)

The small field constitutive equatlons for K, and A,
are given in Egs. (75) and (76) with the coefficients de-
fined in Egs. (77) and (78) of Ref. 28. The small field
constitutive equations for /,; and U} may be written in
the form

Paj=0; [{ arh® +é°‘”’5aeu“'5 * é"‘"(ﬁe)z]’

(8.42)

. ; , o ~e Te
U“;’,*?zaﬁruﬂ'ywznaﬂw'ﬁ IS Mgkt M agys e, s, ¢

" e Te Te
+7glaﬂ‘y(p B§0,7+7n (Ii ) +7§’la8ue“f8+7g’la87u,eﬂu,y

+%Za816u y<P st aB‘yuﬂ,'yIJ' +masyaua,y# 6

+mas¢7 5I~L +masy(P BIJ',';': (8.43)

where
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_ e elﬁ_ 1r o elz2 8362
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(8. 44)
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where it is to be noted that Egs. (5.25),, (5.27),
(5.28)y, (5.29), (7.2), (8.3),, and (8. 20) were employed
in obtaining the results presented in (8. 45). From

(8. 40), with the aid of Egs. (54) and (76) of Ref. 28,

11° can be expressed in terms of the four dependent
variables u, and @. Now, the substitution of this latter

(8. 45)
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relation obtained from (8. 40) into (8. 42) and (8. 43),

which are then substituted into (8. 39) and (8. 41) along
with Eqs. (75) and (76) of Ref. 28 yields four differen-
tial equations in the four dependent variables u, and @.

The small field dynamic boundary conditions across
moving material surfaces of discontinuity are obtained
by substituting from Eqgs. (64), (65), and (94) of Ref,
28 and (8. 35) into (8. 26), (8.27), and (8. 33) and em-
ploying (8. 37), and (8. 38), with the result

ValR oy = Pas)+F28g =0, (8. 46)

1 n E 51
[_ Vo puj(nj_ VBGBJ) = Va pajnj + aevaaB 6ﬂj(nj— V‘yé'yj)

+a"va1‘l71a,n,-]+17‘;}6aj(nj— Vgbps) + Fn; =0, (8. 47)
val (s + B, )VE +T%) +(3/20)8,] = 0, (8.48)
where
Mo;=J80,iT0 = Tap Os; + My, (8.49)
and
Mai = 571[’} aress, 8t }Z‘oya&. 6t %arebﬂ”c, e(;, €
* h4ayaea. 6P, e+ ’gayaee:ua, e,els (8. 50)

in which the % -+ may be obtained by taking only those
portions of the respective {,{ ... given in Eq. (77) of Ref,
28, containing ¢, e.g.,

}zlﬁra = eo(EéGay“ Eté'rﬁ - Ei5m6)9
(8.51)
;iayﬁe 260(6756(16 - %6417665)-

The small field dynamic surface force F ;n; may be
written in the form

Fony+ F2L6,;(n;— v404;)
= I;ue[ua, B] + I;a[a, a] + EaﬂyG[ua,Bu‘r. ﬁ]

+ ];asy[ua,y(z, a] + gaﬂ[a, a@, B]y (8. 52)
where the I' - - - are effective surface coefficients in this
description which is quadratic in the small field varia~
bles u, and @. Although the effective surface coeffi-
cients II"V -+ can be expressed in terms of the funda-
mental material surface constants with the aid of (6. 33),
(6.34), and Eq. (94) of Ref. 28, we do not bother to do
this here, Moreover, we have simply assumed the
static surface force v, F% to be known and not even
bothered to give a representation, At this point it should
be noted that the tangential components of F& and f‘;’,
i.e., vXF¢ and ane, can be determined a posteriori
if desired. The substitution of the constitutive equations
(8.42), (8.43), (8.52), and (75) and (76) of Ref. 28 into
(8. 46)—(8. 48) enables the eight boundary equations con-
sisting of (8. 46)— (8. 48) and (104) and (121) of Ref. 28 to
be expressed in terms of the four dependent variables
u, and ¢ on each side of the surface of discontinuity.

Since the points of free-space remain fixed in a mo-
tion, the known intermediate coordinates may be taken
as the independent variables and we have?% !

Baa=0, ¥ 4a=0, (8. 53)

as the intermediate static and dynamic small field equa-
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tions for points of freespace, where
p=9'+9,

as in Eq. (81) of Ref. 28. Moreover, since the values

of the variables immediately on the free-space side of

the unknown present position of a material surface may

be obtained by means of a Taylor expansion about their
values at the known intermediate position of the surface

in the unknown displacement u#, of the material surface,
Egs. (105)—(118) of Ref. 28 hold and in place of (119)
and (120), we have

Va("zéj - Eaj + ﬁa!) +fﬂaoﬂi = 07
vo[(8/88) BL — (1 + Ay o) (Ve + U%) - (3/30)K,] = 0.
(8. 56)

(8. 54)

(8.55)

Equation (8. 56) is the counterpart of (8.48) at a free
surface. The counterpart of (8. 47) at a free surface
may be written in the form

(@ TEF 65,00, = 1,8,;) + 0%V oK 0y + v o PL (5 = vgB4;)
N ESt Y
+ Vo Poifty— v Tog bpi(n;— v,6,;) ~ OzeyaMajn,-]

+ F215,,(n; - V3681)+;‘jnj=0, (8.57)

where Tﬁgﬁ denotes the static intermediate Maxwell
stress tensor immediately on the free-space side of the
intermediate position of the free surface and Tc’a ; and Af,
are dynamic small field variables in free space defined
in Egs. (115) and (116) of Ref. 28. Since matter exists
on only one side of a free surface, the jump symbols in
(8. 52) are omitted when substituted in (8. 57).

9. BULK AND SURFACE WAVE PROPAGATION

In this section we consider the propagation of both
bulk and surface waves in n-type semiconductors, which
have hexagonal symmetry and are subject to a static
homogeneous biasing electric field along the hexagonal
axis, Both the plane and surface waves are propagating
in the direction of the applied dc field. The linear ver-
sion of the equations obtained in Sec. 8 are applied in
the analysis. In the problems under consideration, for
simplicity we ignore the explicit representation of the
static deformation gradients under the applied dc elec-
tric field. When the static deformation gradients are
ignored, we have

9.1)

For linear electroelastic wave propagation the simplest
polynomial approximation for y that can be assumed is
of the form

x=(1/20%¢ grunExEun— (1/p%e g uWiE Ly
- (I/ZPO)XLMWLW}IH 9.2)

in which the elastic, piezoelectric and dielectric con-
stants cxyyn, exry, and yp, must be functions of the
applied dc field E!. On account of the use of the sim-
plified expression for y and the fact that we do not pro-
vide the explicit representation for the static deforma-
tion gradients, a portion of the dependence of the re-
sulting effective material constants on the biasing elec-
tric field is exhibited explicitly and a portion is not.
With somewhat greater effort the entire dependence of
the effective material constants on the biasing electric

ga,M: éauy p0 zpl =p.
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field can be exhibited explicitly. However, this is not of
particular interest here and, consequently, we do not
take the trouble to provide the relation.

The functions €* and Qf, are taken in the restricted
forms

€=a’y®, (9.3)

Q5 =y, 9. 4)

where my, the electronic mobility, and a®, which could
quite properly be called the electronic pressure coeffi-
cient, are functions of the biasing electric field, It
should be noted that since the entropy inequality (4. 10)
holds for any process and p° is negative, positivity
conditions are imposed on #z,y.

Now, from (8. 37) we see that the static intermediate
equations are satisfied if we assume that all bias quanti-
ties are homogeneous. Hence we have to be concerned
only with the dynamic small field equations (8. 39)—
{8.41), which in the linear case reduce to

e
(eras - EOELGFB)W (ua,mr) - [(eaeB_ EOEﬁﬁaB)WI‘nE:’
+ zae(uie)27nrﬂéae]us, oy + 2(16“12"17&(6768 - GOEibyB)ue,-yBar

0, ~ s ~ ~
- 2 . 1
—Cap At ((p' aB) FUTM 5P, apt EasﬂlnEv(P, By

- 2aeuiemaﬁe‘}‘6&, @By © 0’ (9- 5)
[Cuﬁ [-7: enﬁeEfraau - EOE}/EL 565 + 2ae(“1e)26w6a8]ua’ 86
- 2”2“'16(6 17 EOE’ééaB)ue. et t (eaﬁv - €0E1116a5)9’5, ab
~ 2%
+2a° % 0, aﬂ,,:p—?—fzi , 9.6)

where we have introduced the dielectric constant €4,
which is defined by

€as =€00as + X as- 9.7
The linear dynamic small field boundary conditions
for a semiconductor abutting free-space can similarly
be reduced to
Vel op = €0ELD,8)(3/31) (1 o8 = [, ELe qep = €EL045)
+2a°(1110) 21, O ge e, qp+ 20511111, (€ e = € E LD aplUe, gy
=€, (8/BND, o) + 1,0 D, 0+ €asp Er P, 0
- z(lglliemneasa, aBr}- == Vr{fca;[j,x/at})' {9.8)
Vﬁ{[éG\lEéE}s(ésvéaﬁ - 85,04 +50E111 (Eééa,s - E}aéw - Ebﬁaa)
+ € B (ERby, = E804,) +Cpgag = CropErday
+a@® (118 (544 By + Dol it g, a— 2aeule(caw
- eﬁElséag)éavue, agt € as— EoEééa») + €0E1a§5v
- €0E|116a6]¢, ot 2“'3#12%3&, aBéﬁv}-
= Veo{[ES(E§Sag— Efd o) + 5EE (864 0g,
- 65116(15)]”&,3 + (Eizéﬁv - Eéﬁav - Eiésa)a, a}+’
9.9)

Vﬁ{— ae(u1e)2(6m6 681/ + 6&866u)u @B €y ae[E%x(Eééﬁv - Eééﬂu)
+ EL(E305— EX0g0 = EL855) + ZELEL(D,045 = 05y 0ap) , 5
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+2a°01%(€ yep = €9EL045) Bgytte, up= €90 (EL Sy, — ELO4,
- Eiéab)&, o 203#“%55@5, QB}-VV

= 1;o¢euu, st I;a 5, « eoaeyb{[Eni:(EééuB_ E}séaﬁ)

+ %E}-Ei(éﬁaé&' - 66:160:6)]”&,8
+ (Elaéév - Eéﬁav - Elj;éﬁa)a, a}‘\yw
(@)= (= Elu,)".

We now apply these equations to the propagation of
both plane and surface waves in a hexagonal crystal in
class Cg, =6 mm with the axis of symmetry in the X;
direction. The static biasing electric field is in the
direction of the axis of symmetry and, in the surface
wave problem where there is a surface, of equal magni-
tude on both sides of the boundary, i.e.,

(E)*=(E})*=0, (E})*=E.

(9.10)
(9.11)

9.12)

Since in the surface wave problem the surface is taken
normal to X,, all variables are taken to be independent
of X;. The four differential equations then take the form

(a/at){(015 +€3q )y, 3 + CT5Ug 99 + 353, s3b— mgz{(eys +e3y)E
+2a% (1) Jutg, 233 — 2a° (1) g1ty 999 = [Mgze BE
+20°(1110) my 4 Y, 320 — MgsleHE +2a% (1) g 55
+2a° e [myy (e g5+ 31)uy, 2923 + Mgl qs + 3 )ta, 933
+my1e5tts, 2000 + (My1€%5 + Mggef5)us, 9033
+ Mygefitty a3aal— (0/21€11 B, 99 + €533, 55}
+ ey B, g + 1 1Mga B 5y + €113 E D, 205 + €33M 33 E D, 533
- 2091119[”1116115,2222 + (my1€33 + M33€11) B, 2233
+Mg3€330, 3333] = 0, (9.13)
Clithy, 2z +Clitty, 33 = p 3%uy/ 38, (9.14)
ity 2 + Clatia, 33+ (Cy +Cyg)ug, 05+ (€15 +€31) P, 2
- 2a°u [ (eq5+ €310y, 923 + €53, 200 + €503, 233
= €11@, 200 = €33, 233] = p dup/ 3L, (9.15)
{cTy + gty 25 + I us, 90 + €35 U5, 1 + 5P, 20 +€§‘3<75, 33

e 1 * *
- 2a°u'[(ey5 + €310y, 233 + €153, 203 + €353, 333

= €113, 03— €333, 333] = p 8%/ 317, (9.186)
where
efs=ey5— 6F, {9.17)
ef=ey - §F, (9.18)
cfi=cy - Eey, ciff=cf+2a°(u')?, (9.19)
chy=cyy— Eegy, cff =ch+2a°(u')? - E?, (9.20)
cli=cu— Eey, cfif=cqy - Eey—¢FE, (9.21)
cfs=ce— Eeyy, (9.22)
cly=cy3+2a°(u'), . 23)

and the compressed notation for tensor indices® has
been employed.

Since the boundary is normal to X,, we have

Vo =894, (9. 24)
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and the jump conditions (9. 8)—(9. 11) can similarly be
reduced {o

=~ ley2
{(8/8t)[eysuy, 3 +eTsts, 2 ~ €11, 2] = 2a°(11 1) my4 (ug, 93 + 43, 25)
~ 1
+ #“mufﬂ,z +2a%utemyy[(eys + €310y, 993 + €543, 222

+e¥s 33— €11P, 200 — €337 2330} =~ €{(8/00) (T, 1)},

(9. 25)

(u1,2)7 =0, (9. 26)
{etiug, g + cluy, 3+ e$19,3 - 2a°u [ (ey5 + e51)un, 25 + it 0

+edis, 53— €11 P, — €339, 331} ={ B9, 5}, (9.27)

{cti*uy, 3 + Clfus, 1 + 558,21 ={= &EY, o}, (9. 28)

{~ 2a°(119)%uy, o — [@%(11)? + € 0°E?Juy, 5 — @E @, 5 +20°p
X[(ey5 +eaq)ug, 23 +€Fsus, 09 +edsthz, 33~ €117, 22— €339, 330"
= Fygtty, 2 + Tagtt g + 138, - {e2ET o}, (9.29)
{0} ={d- Eugl, (9. 30)
where
el =cyy v ER v af (), (9.31)
c* =cy+at(n'®), (9.32)
efy=ey +6E, (9.33)

From Eqs. (9.13)—(9.16) and (9. 25)—(9. 30) it is
readily seen that the uy displacement completely un-
couples from the three other variables, The solution
for uy is elementary, and we are concerned only with
the solutions containing #,, u;, and ¢, For a plane
wave traveling in the direction of the applied dc electric
field in an infinite solid there is no dependence on X,,
and in this case u, uncouples from u; and ¢. Conse-
quently, we take the plane wave solution of interest in
the form

u; =Reld; exp[i(kX;~ w?)]}, &=Re{d,expli(kX;~
(9. 34)
and substitute into (9. 13) and (9. 18) to obtain
1192 = i2a8 e m e k7]
+Ag[— wegy — Emygheqs +1(2a° 1 mggeqak® + u1¥mgy)] = 0,
(9. 35)
Ay pw? - etk +i2at ket + Ay[— elh® — i2a°u 1% %,,] = 0.

Ay[weds + mysk(eHE +2a°(

For a nontrivial solution the determinant of the coeffi-~
cients of A{ and A, vanishes, i.e.,

Qyy @y

=0, 9. 36
ay Ay ( )

where
a,, =wely +mygk (Eely +2a%(1119)%) + i ) e sk,
gy =~ Wegg = Emyghegy ~ 1 ([ ysesqk’ +033),

¥k =i Dgy/map)kel,

agy == e3gk” +3([ 33/ ma3)k’ey;,

and we have introduced the conductivity tensor ¢4 and
the diffusivity tensor /) ,; which are defined by

ay =pw’ - c3 (6.37)
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wt)]})

Oug== W M ap, [ ag=—20u"m (9. 38)

Equation (9. 36) determines the dispersion relationship
for our plane wave, It has four complex roots &, (n
=1,2,3,4) for each value of w and has to be solved
numerically in each specific instance. However, if we
write (9. 36) in the form

2 2 2
YY o ( ZE“ SN _.03_3) ]
p(k) 033 1 +K +2wD 1 (.L’ch km3363‘3

oS0
where
= (ef)/cless, wo=035/€,
wl,:wz/k )as, U=1+mgEk/w, {9. 40)

we see that, except for the last term on the right-hand
side, we get the same form White!® obtained using a
simplified theory. Another difference between White's
result and the result obtained here by this more gen-
eral theory is that we have taken into account the
modification in the elastic and piezoelectric constants
caused by the static electric field bias. However, as
noted earlier in this section, we have not bothered to
obtain the full explicit dependence of the effective mate-
rial constants on the biasing dc field. Consequently, the
dependence considered here is essentially implicit.
Nevertheless, as noted earlier, the full explicit depen-
dence can readily be obtained from the general descrip-
tion, with some effort if desired.

For a surface wave propagating in the X; direction of
the semiconductor occupymg the region X, < 0 the three
variables u,, 3, and ¢ remain coupled on account of
the three equations (9.13), (9.15), and (9. 16) and the
boundary conditions (9. 25) and (9. 27)~(9. 30). In this

case we consider as a solution of (9,13), (9.15), and
(9.18)

uy = Re{A, exp(8X,) expli (b X, - wh) 1},

u; = Re{A, exp(8X,) expli (kX; - wt) ]}, (9. 41)

¢ = Re{A, exp(8X,) exp[i (X5 - wi)]},
which satisfies (9.13), (9.15), and (9. 16) provided
Adlegs +eqkBlwT = (D18 = D 3k?)] + Bu'®(D B - D)}
+As{(etp’ - efs ) D118 = Doy +iwT)
+ ikt (D118 = 1) 35k")} + Agl ey B = €35k%)
X[N8 =D yf® +iwT = (0B ~ 05567} =0,
A pw? st - chi? —i2af 1t (e s + ey R}
+Ay{~ 2a°uteBle kB ~ edsk®) +i(cty +cyy) B}
+Ag{2a8 1 Bley B = €3R2) +ileys +egy) Bk} =0,
A{2a%u(e 5+ e5))BRY +i(cky + 1) Bl + Ag{ pw? + cf B
- cfFRk?~ i20° ek (e} B ~ edkP)} + Agle ki B ~ efk®
+12a° 1% (e B — €35kY)} = 0.

(9.42)

(9.43)

(9. 44)

For a nontrivial solution the determinant of the coeffi-
cients of A, A,, and Ay in (9. 42)—(9. 44) vanishes,
which leads to an algebraic equation of fourth degree in
BQ, which has eight complex roots that may be written
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in the form
8™ =28"%, w), n=1,2,3,4.

However, in order that the solution not become un-
bounded as X, — « only the 8"’s with a positive real
part are admissible, For each of these four roots we
can then find the corresponding amplitude ratios from
any two of the three equations in (9. 42)—(9. 44)

AP A A, n=1,2,3,4,

(9. 45)

(9. 46)

At the surface X, =0 the five boundary conditions
(9. 25) and (9. 27)—(9. 30) must be satisfied. Now, the
electric field at X, > 0 must satisfy the equation

P 0a=0, (9.47)
which is satisfied by
J=Re{B exp(— kX,) exp[i kX, - wt)]}, (9.48)

where % =+ must have a positive real part. In order to
satisfy the five boundary conditions at X, =0, all four
solutions of the semiconductor equations are required
in addition to the solution (9. 48) in free space. Accord-
ingly, we write

¢
Uy :Re(exp[i(kX3 - wzf)nz_)1 cmam exp(ﬁ(")Xz)) ,

1
u, =Re (exp[i(kX3 - wt)%}i c'magm exp(ﬁ(”’X2)> , (9.49)

4
@=Re (exp[i(kX3 - wt) 21 cmam exp(B(")X2)> .

n=

Substituting from (9, 48) and (8. 49) into the boundary
conditions (9. 25) and (9. 27)—(9. 30), we obtain
4
?’:1 C A [egswhr p) 13 (B™) = ileys +e50) 011 (B™) %]
+ Aé")[Ouﬁ(")(e’s‘(sk? - eiks(ﬁ("))z) +iBM () 1k = etsw)]
+A:§")[011/3(")(611(B("))2 - 633k2) _ oiliB(n)
+i6,wB™M )} +ie,wkB =0, (9. 50)
:L:Ii CM{APB et~ i2a°ue(eg; + 5k ] + A [2a° e (e 3k
- efs(B™)D) +ictk] + AP[2a ey (B) - €387)
viedk ]} —ie,EkB =0, (9. 51)
n2=1 C(n){Ai(n)iCh**k +A2(n) Ch*ﬁ(n) +A§")€T5)3(")}— GOEB =0,
(9.52)
¢
25 CAP a7 (= pio vileys +eg k) = Ty
+A2(n)[2ae‘u1e(e>{5(ﬁ(n))2 - e’z"skz) - i(ae(u19)2
+€Q°E® — 1;33)]@] + A=~ 2a%1 (44 (B™)? — €33k7)
- 1€,a°Fk — 12"3ik]} +i€,0°ERB =0, (9. 53)

4
Z,lc‘“{Ag"uEAz‘")}-B:o, (9. 54)
n=

which constitute five linear homogeneous algebraic equa-

tions in the five constants ¢V, ¢ ¢®, ¢ and B.

This system yields nontrivial solutions when the deter-

minant of the coefficients vanishes, which leads to an

algebraic equation in k. The values of £ at a given w

satisfying the system must be determined numerically.

In the absence of conduction, i.e., in the purely piezo-

electric case, at least one surface wave almost always
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exists, ® and it is nondispersive. If in a calculation the
imaginary part of 2 turns out to be negative, the sur-
face wave is being amplified by the dc field E. The co-
efficients Ii‘“, 11"33, and 53, which appear in Eq. (9. 53),
have never been measured. On account of the use of the
normal force boundary condition on the free-electronic
fluid, the condition of no electrical surface charge on
the semiconductor assumed in earlier work on this
problem!®~'8 has not been employed in this treatment.
Indeed, after a solution has been obtained numerically,
the resulting surface charge can be determined a
posteviori from the small field counterpart of (8. 28).
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APPENDIX

The charge equation of electrostatics for the model,
consisting of the five charged continua, may be written
in the form

E;=4n{pty) + po(y) + pt ) + woy) + ). (A1)

The substitution of (2. 4) into (A1) yields
E; i =4m[u’(y)= uP (y +m) + n®(5) + 1t (y) + uly) + w (@),
(A2)

Expanding p®(y+7) in a Taylor series about y, retaining
the first term and substituting in (A2), we find

E;p=4n{p" = mauli+ pt+ pf o+ uf. (A3)
Employing (3.30), (2.3), (3.9), and (3. 37), we obtain

D, =4mp, (A4)
which is identical with (3, 39),, the charge equation of
electrostatics for the electrically polarized continuum.
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A method of generating static and isotropic solutions of the Einstein field equations is presented for
the case in which the source of the field is a perfect fluid. A special case is exhibited. The general

solution for vacuum is derived.

I. INTRODUCTION

It is the purpose of this paper to give a method of ob-
taining solutions of the Einstein equations for the case
where the source of the field is a perfect fluid described
by the energy momentum tensor! T** = (p + w)uu’ — pg*",
(greek indices range from 0 to 3, italic indices from 1
to 3) where p is the pressure and w the rest energy den-
sity. In the comoving frame the only nonvanishing com-
ponents of the energy—momentum tensor for our metric
{see Eq. (1) below] are

Ti=Ti=Ti=-p, Ti=w.
The metric considered in this paper will be static and
isotropic, that is,
ds®=exp[2¢(x, v, z)]dt* — exp[2¥(x, y, ) |(dx? + dy? + dz?),
1)

where ¢(x, v, z) and ¥(x, y, z) are arbitrary functions of
their arguments. No symmetry group is assumed in (1),

It is useful to introduce the three dimensional trace-
free Einstein tensor? G'= G} - G5! (here G =G}) which
vanishes in the comoving frame for our metric and en~
ergy—momentum tensor, allowing us to separate the
field equations as

Gi=0 (2)
and

- 81p =75 exp(- 28{2V%9 + (V)2 - 2(Vo)?}, (3)

81w = exp(— 200 2V2y + (V)%}. (4)

This enables us to compute the pressure and rest en-
ergy density once (2) is solved for the functions
¢(x, v, 2z) and ¥{x, y, 2) since neither p nor w appear in

(2).

In Sec. II we describe a general method for solving
Eq. (2), which is applied in obtaining a physically rea-
sonable solution® to Einstein’s equations.

In Sec. III the method is applied to obtain the general
vacuum solution to the field equations for the spacetime
given by (1).

i{. THE SOLUTION
Writing Eq. (2) explicitly, we get
A e =AX X =0y, (5)
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where we have defined A=v2¢, A=-exp[- (y+¢)], and
T =~ 3{V?A - 2A(V$)?}. The notation I' ; =3T/dx, is
used. The differential form of (5) is

dh ;= AN ;AN =T dx;, (6)
which implies the functional relations

A x=Fx)=-%

A, y=GQ, ) ==Z

Az=H(Mz2)=-Z,

from which it can be seen that Z depends on A alone,
Z=Z(N).

Now (6) takes the form
d(A ; +Zx;) = (AN ; +x,3) dx, M

where £ =dZ/d\. Equation (7) implies that F; =A
+Zx; depends on X alone, F;=F;(}).

Equation (5) written in terms of F; takes the form
x; = F /5= (A/D)N,. (8)

Multiplying this equation by dx;, we can write it as

dR? .24
2_ (820 o .p_22
d(x-Ry(N))2= (dx 2x+R 5 )dx,

where Ro(\) =F/%. From here it follows that

(x- RO(A))Z:RZ(A), (9)
where
dR%()) _dR% . 2A
Py —~W—ZX'R—?. (10)

Equation (9) is that of a sphere centered at Ry(») with
radius R(\), that is, the surfaces X =const are spheres.
(We have assumed here that Z # 0; It can be shown that
the surfaces A=constant are planes in the case where
> vanishes, but we do not consider this case here.)

Equation (10) implies that A has the functional form
A=A(N) +B() -x, (11)
where A(\) =3 d/dx {R%~ R*(\)}, and B(\) = - ZR,.

Replacing (11) in (5), after a long calculation we ob-
tain that A(x) and B(X) must have the form

AN =A,L(VZ
and (12)
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FIG. 1. The distribution of spheres A= const associated with
the solutions of Eq. (5). m =g=1 has been used in the formula
for the radii.

B() =B, (V)T

with T'(A) = 1/ exp(/=/ d\). Rewriting (12) in terms of
R(}) and Ry(»), we get

Ry(N) =Cy + B, [T(M) dx

and (13)
L (R2_ R%) =24, [T(N dr+D
ar - - 0 i)

where A,, B, C; and Djare constants,

Equations (13) imply that the centers of the spheres
A =const must lie along a straight line, that is

(14)

and that the radii are distributed along the line accord-
ing to the law {see Fig. 1).

Ry=xX, +1s,

R%()) =s%+2ms +gq, (15)

where s= [T'(A\)dx. Combining (14), (15), and (9), the
formula for s is

1 (x-x)°-¢

S mox)Fm

(16)

Finally, introducing (14) and (15) in (11), we get
A(s) =(s)[n - (x=xy) +m], an

where the function ¥(s) satisfies the ordinary differen-
tial equations

dy(s)

-2(s)= s

and
I dx\?
—z——d”s(”:y(s)(—gg) .

To generate solutions to Einstein field equations we
procede as follows: Pick an arbitrary function of one
variable ¥(s) such that y* d®y/ds*= 0, integrate (18) to
get A=vZ ¢(s); then from (17) we get A(s) and thus ¥.
With the help of Eq. {16) we express ¢ and ¥ in terms

{18)
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of x, ¥y, and z. Therefore, the solution depends on one
arbitrary function of one variable and two parameters
g,m. p and w are computed from (3) and (4).

As a particular example we choose ¥(s) =s®. The met-
ric we get is

2 4
d§:<ﬁ;q>dﬁ_E?§E¢Mﬁ+m%wz+M%. (19)

From (3) and (4) we find
87p =~ 2ms® — 3qst,
and
87w = 125%m + 15s%g.

The Hawking— Penrose® energy condition — R*'v,v,
= 0 for any timelike vector v, is satisfied for all values
for m and g, showing that the solution (19) is physically
reasonable.

itl. THE VACUUM SOLUTION

Up to here we have derived a general method of solv-
ing the field equations that reduces the problem of solv-
ing Einstein’s equations to that of integrating a second
order ordinary differential equation, and specifying a
distribution of spheres in space. We shall show in this
section that for the vacuum there is a unique y(s) and a
unique distribution of spheres that correspond to solu-
tions of Einstein field equations.

By combining (8) with (3) and (4) for p=w =0, we get

2
3 (s) +~d£;—(s)(m +5s) +—d—f;fz(—sl(sz +2ms +q)=0

(20)
where f, (s)=exp(z ¢/2)/V¥(s).

It is convenient to introduce the new variable s’=s
+m/2vm® —q+1/2. In terms of s’ (20) can be written
as

&Bf, (s’ df, (s’
TEED g D _sen=0.

4 ? +
s'(s’'=-1) Fr

The most general solution to (2) is’

X

FIG, 2. Distribution of spheres A= const associated with the
vacuum solution.
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f.=A,/Vs'+B,/V1_s’
and
f.=A_/NsT+B_/N1-5s’,

Replacing ¥(s) =(f.f)? and ¢ =1n(f./f.) in (18), we get
for consistency m =¢ =0. In solving equation (20) with
m=q=0 we get ¥(s) =2, Thus the metric for vacuum
is (19) with m=¢ =0, that is,

g Xt o, 2 2 2
ds® =—ydi* =~ (dv* +7* dgp* +dz?).

The associated distribution of spheres is shown in
Fig. 2.

Schwarzchild’s solution is a degenerate case of our
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calculation, the distribution of spheres is concentric
and therefore s has no meaning. It can be obtained from
(5) by assuming spherical symmetry for X and A.
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Different treatments of the important potential 1/r* are correlated to understand their interrelations and
to clear up the connection between the eigenvalues of Mathieu’s equation and the poles of the S matrix.
We also derive a new solution of the modified Mathieu equation. Mathematical and physical implications

are also discussed.

1. INTRODUCTION

Considerable attention has recently been paid to the
scattering by singular potentials. ! This interest arose
mainly from the hope of gaining some deeper insight in-
to the infinities which plague nonrenormalizable field
theory, and for using it as a testing ground for regular-
ization and peratization techniques. Although a nonrela-
tivistic potential can hardly be compared with (say) a
nonrenormalizable 4-fermion interaction, there is a
definite analogy between them insofar as a neutrino-
antineutrino loop Feynman diagram? (for instance) be-
haves like a “singular potential” 1/#% near the origin of
coordinate space or like a correspondingly divergent
quantity in momentum space. Particular attention®=?
has always been paid to the potential 1/ 7!, since in this
case the radial Schridinger equation may be trans-
formed into the reasonably well-known modified Mathieu
equation, for which standard texts such as Meixner and
Schifke’ (the most rigorous one, hereafter referred to
as MS) are available.

The present investigation was motivated on the one
hand by a desire to correlate different treatments®=5 of
the potential 1/#¢ given in the literature, to understand
their interrelation and to clear up the connection be-
tween the eigenvalues of Mathieu’s equation and the
poles of the scattering matrix. On the other hand, our
study received impetus from the new trend in semi-
empirical Regge pole analysis of favouring linearly
rising, unitarity-violating trajectories which are be-
lieved™® to be more like those for singular potentials
than for regular Yukawa-like interactions, 1 We wanted
to understand in particular the relation between expres-
sions for the S matrix as given by Spector, ® Bertocchi
et al. % and Challifour and Eden, ¢ the relation between
its poles and the eigenvalues of Mathieu’s equation or
its auxilliary parameters, and finally to see the be-
havior of the Regge trajectories. Moreover, since
Mathieu functions are by no means as popular as, e, g.,
Bessel functions (or more generally functions of hyper-
geometric type), we considered it profitable to rederive
all required solutions as a means of opening the way for
generalization to potentials 1/#™, m#4. However, our
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derivations are different from those given in the litera-
ture—also the solutions differ formally in important
aspects. We derive the solutions by using a powerful
perturbation approach!®'? which has proved (e.g., in
application to Yukawa!® and Gauss!? potentials) to be
superior to customary straightforward power (or
equivalent function) expansion. This program is carried
out in Sec. 2. In Sec. 3 we derive various expressions
of the S matrix, in Sec. 4 we calculate the low-energy
behavior of Regge poles, and in Sec. 5 the behavior of
the phase shift. The corresponding high-energy solu-
tions have been discussed elsewhere. = The calcula-
tions show that the Regge trajectories rise into the first
quadrant of the complex 1-plane. Finally, in Sec. 6, we
derive an interesting new solution of the modified
Mathieu equation which could also be used in the pres-
ent context—in fact, it is this solution which corre-
sponds to the solution of the scattering problem for the
potential 1/7™, m #4,

2. SOLUTIONS OF THE SCHRODINGER EQUATION
FOR THE POTENTIAL 1/r*

We start by considering the repulsive potential
V) =g*/rt. 2.1)

The radial Schrddinger equation may then be written

” I(l+1
v +{k2— % —gz/r“}y =0, (2.2)
where E=k*, m =3, and i=c=1. It is useful to in-
troduce the following substitutions:
y=r12, v=vye?, y=ig/h, h*=+ikg. (2.3)
The Schrodinger equation then assumes the form
2
Lo +{2r% cosh2z — (1 + 5t =0. (2. 4)

dz?

In the literature this equation is known as the modified
Mathieu equation. We now develop a simple procedure
for solving this equation for sufficiently small values
of |%%| so that the expansions exist. First we make the
additional substitution
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w =2k coshz, (2.5)
so that (2. 4) becomes

do 1dg (@ +3) 2n* dy

dw2+wdw+{1— w? =07 ¢+2dw2 : 2.6)
Next we define a parameter v by the relation

P=01+35)7 - 24K 2.7)

Thus 17 is to be a parameter possessing a power series
expansion in %% such that its zeroth-order approxima-
tion is (I +3)%. Alternatively, we may consider (I +3)°
as possessing a power series expansion in %% such that
its zeroth-order approximation is »*. To zeroth order
in /22, (2. 6) therefore becomes

D, =0, (2. 8)
where
& 1 d v
DV:dw2+wd_w+{l—w2}. (2.9)

But (2. 8) is the well-known cylindrical equation; hence
eV =Z,(w), (2.10)

where Z, is a cylindrical function, e.g., J,, N,, Hlf”,
1Y,

The zeroth~order approximation (2. 10) leaves uncom-
pensated on the right-hand side of (2. 6) terms amount-
ing to

2.11)

2
R;°>:zh2{§zu 2 dZy Az}.

+— +—

w? dw?  w?
Using the recurrence relations for Bessel functions,
i.e.,

14

® ZV:%(Z,,_1+Z,,+1), (2.12)
dz, v

dw == ;ZV+ZV-1 = %(Zv-l" Zu+1); (2 13)

we may rewrite (2.11) as a linear combination of vari-
ous Z,. However, it is very much more convenient to
use these relations in order to rewrite (2. 11) in terms
of functions G, defined by

Gyra= (@)1Z,,,,. @.14)
The expression (2. 11) is now particularly simple:
R =h¥ G, +24G,+G,,s). (2.15)

Again for convenience it is now best to rewrite this ex-
pression as

RO (v,v=2)G, 4+ (v, V)G, + (v, v+2)G, 5] (2.186)
where
(v,v+£2)=1, (v,v)=2A, (2.17)

This apparent complication will pay rich dividends as
will be seen later on,

We now observe that
DVZV = 07 DU+OLZV+(1 = 0’
but

D,.o=D, - [a2v+a)/w?], (2.18)
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so that

a2v+a)

D,Z =

A Z,.0=02v+0)G,,,. (2.19)
Thus a term uG,,, on the right-hand side of (2. 6) or—
for instance—in (2. 15) may be cancelled out by adding
to ¢ the new contribution pZ,,,/ ®(2v + @) except, of
course, when « or 2v+a =0, We assume now (in the
following) that 2v + @ # 0; the case 2v + a =0 will be con-
sidered separately at the end. The terms (2. 15) there-

fore lead to first-order contribution

oV =R (v, v=2)*Z, 5+ (v, v+ 2)*Z, 5], (2.20)
the starred coefficients being defined by
(v, v+a)*=(v,v+0)/a@v+a). (2.21)

Now ¢"=Z, left uncompensated R "; therefore, ¢!’
leaves uncompensated

RV =R [(v, v = 2)*R) + (v, v+ 2)*RY]. (2.22)
The next contribution therefore becomes
eV = (v, v-2D*(v-2,v-4)*Z,,

+(v,v=2)*(v=-2,v-2)*Z,,
(v, v+ 2)*¥(w+2,v+2)*Z,,
(

+ (W, v+2)*(W+2, v+4)*Z, ).

(2. 23)

Proceeding in this manner we obtain the solution (the
terms in R, R'Y -+ left uncompensated so far will
be considered below)

= 'O [¢9] @)
=90+ 1o 4

© i
=Z,+ 2 B 20 Pry(2) 2y, 2. 24)
#0
where
Do(x2) = (v, v 2)*,
Pixd)=(v, v 2)* (v 2, v+ 4)*,
Py 2)=(r, v 2)* (v v+ 2)*, etc. (2. 25)

These coefficients may also be obtained from the re-
currence relation

D2i(27) =922 = 2) - (v + 2/ =2, v+ 2j)
+ P 0(2f) - (v +2f, v +2f)

+Do; 025 +2) (v+2f+2,v+25), (2. 26)
subject to the boundary conditions
p2i(2)=0 for |jl>i, py(0)=1,
Po(2#0)=0, ppis(0)=0. (2.27)

The relation (2. 26) may be obtained either directly
from (2. 27), or by substituting (2. 24) into (2. 6).

Finally, we have to consider the terms in G, which
were left unaccounted for in R?’, R'Y, etc. Here we
simply add all these terms and set the coefficient of
G,=0. This gives the equation from which we can deter-
mine A and hence v. Clearly,

0=h (v, v) + WY (v, v = 2)*(w -2, )+ (v, v+ 2)* (v + 2, V)]
+h8 (v, v=2)*(v-2,v-2)*(v-2,v)

Aly, Miiller-Kirsten, and Vahedi-Faridi 962



+(, v+2Y*(W+2,v+2)* W+ 2, V) ]+ ., (2.28)

Higher terms of this expansion may again be obtained in
a manner analogous to that for the eigenvalues of the
periodic Mathieu equation, '* Evaluating the first five
terms of (2.28), we obtain the expansion [ef, (2.7)]

n (502 + )RS
202 —1) " 32(2-1)3(»2 - 4)

(9v* + 5817 + 29)k12
B = 12— 4)(12 = 9)

The expansion (2. 29) is seen to be familiar from the
theory of periodic Mathieu functions where ( +3)? rep-
resents the eigenvalue. We now reverse (2. 29) to
calculate 1#:

@+3)?=1*+

+O(R'9), (2. 29)

1% (13a - 25)n°8
2(a-1) 32(a-13%(a-4)

(4503 - 4550° +1291 o — 116912
64(a-1)(a—-4)(a~9)

Pea-

+0(%)  (2.30)

The solutions ¢ of the modified Mathieu equation are
now completely determined-——apart from a normaliza-
tion factor which we have chosen (so far) such that the
coefficient of Z,,, in ¢ is 1 for a=0.

We are still left with the question as to what will
happen if [cf. (2.21)] 2v+a=0o0r v=+1,+2,**+, We ob-
serve that the latter are precisely those values of for
which successive terms of (2. 29) become more and
more divergent, On the other hand, we observe from
(2.30) that—since 4? is assumed to be moderately
small—v is approximately a half-integer (i.e., I +3 for
! physical). Thus physically these conditions are un-
likely. But mathematically they have a clear signifi-
cance which we discuss later on.

For later purposes it is advantageous to derive yet

another type of solutions. Substituting (2. 7) into (2, 4)
we gbtain

2
49 _ V2 = 2h*(A - cosh2z)g,

P (2.31)
Thus to O(0) in % we have

@ = ¢, =coshvz, sinhvz, or e*? (2.32)
so that

2

D,¢,=0, D,=—— - (2.33)
It follows that

D,.92®vi2=0, D,9,=D,—4n(v+n), (2.34)
so that
Dy @y san =40 (Y + 1)@y (2.35)
Also since

2 cosh2z - coshvz = cosh(v+2)z + cosh(v - 2)z,

2 cosh2z « sinhvz = sinh(v + 2)z + sinh(v - 2)z, (2. 36)

2 cosh2z . e** =exp[+ (v+2)z] + exp[z (v - 2)z],
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we may say that the first approximation ¢’ leaves
uncompensated terms amounting to

R =2hn*(A - cosh2z)g,
= 2h2A(pV - hz{q)vﬂ + (09-2}

th[(v, V= 2)4’1’-2 + (V, V)(pu + (Vy v+ 2)(/7»*2], (2- 37)

where

(v,v)=24, (r,v+2)=~1, (2.38)

The from of R{" is seen to be almost identical with that
of the corresponding expression for solutions in terms
of Bessel functions. In fact, we could have got the same
RV by starting with the modified Mathieu equation for
h? replaced by — k2. In order to avoid confusion arising
from the use of different equations, we prefer to dis-
cuss one equation but different solutions. The use of the
symbols (v, v+ 2), etc. in the present context should not
lead to confusion with the same symbols having a dif-
ferent meaning in the case of solutions in terms of
Beseel functions since it is generally clear which type
of solutions and hence coefficients is being discussed.
Sometimes, however, we shall use subscripts B and
indicating that coefficients of solutions in terms of
Bessel functions or hyperbolic functions are implied.
Defining

(v,v+a)*=(v,v+a)/e@v+a), (2.39)
we now obtain the solution
© i
0@, 1) =0+ 21" 20 Boi(2) Py (2. 40)

j#0
where
P2 2) = (v, v£ 2)*, etc.

We now compare this solution with our earlier solution
(2. 24) and examine the relationship between their co-
efficients p, p. We have

52;’(2]') :52;-2(2]' -2)-(v+ 2j=-2,v+ Zj))’f
+212(25) - (V+ 25, v+ 25)F
+Dyi9(2f = 2)- (v+ 25+ 2, v+ 2)F
== P22 —2)- (v+2j -2, v+2)}
+P2ia(2) - (v + 2, v+ 23
= D222/ +2)- (v + 25 +2, v+ 2/)3,
so that
(= 1p35(2) = (= 1)/ - Pou g (2 = 2) (v + 2 - 2, v + 2))}
+ (= 1) Py 0(2) - (v+2), v+ 2)%
(= 1)1 Py, 5(2 +2) (v+ 2+ 2, v+ 2)%.
Thus
12:(27) = (= 1) by, (2))
satisfies the equation
D9i(27) =222/ —2) - (v+25 =2, v+25)%
=pai2(27)- (v + 27, v+2j)%
=P2:2(2 +2)- (v + 27+ 2, v+ 2))},

(2.41)
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and the hyperbolic solution becomes

© i
0z 1) =9+ 2 1 20 @)= 1Y 0,0, (2.42)
J#0
or
© . i _
92, )=,+ 21 23 032 Bun;; (2.43)
7#0
where
avﬂi':‘ (- 1)j Pya2je (2.44)

One can easily convince oneself [by looking at (2. 28)
and observing that (v, v+ 2)} =~ (v, v+ 2)¥] that the ex-
pansion (2. 29) follows again from the necessary sub-
sidiary condition. The solutions ¢ for ¢, =coshyz,
sinhprz are generally® denoted by Ce,(z, 1), Se,(z, k).

We now consider the following solutions (in the
notation of MS)

(z, h) =exp(vz) +§1 B j?_i D2;(27)(= 1) exp[(v + 2)z]
F£0Q
=Me,(z,h)
[‘Megv = (Ceu + Sev)])

(2. 45)

oz, h)=dJ,(2h coshz) + _Z)lhzi Z). Doi (2§)d,,0;(2h coshz)
i= j==i
#0

=MV, h) (2. 486)
Clearly,
Me,(z +nwi, h) = exp(vnmi)Me, (z, h), (2.47)
Also, since
J,(2h cosh(z +nmi)) =J,(2h coshz « exp(inm))
= exp{invm)J,(2h coshz), (2.48)
we have
Mz +nmi, h) = exp@Envm) MV (2, k). (2.49)

Me,(z), MP(z) are therefore proportional to each other:

Me,(z, k) = a, ()M (z, k), (2.50)

where clearly
a, (B*) = Me, (0, 1) /MJP(0, 1),
We define solutions M, {(j)(z, k) for j=2,3,4 by Z,

=N,, H\V, H®Y| respectively. Then, by using analogous
properties of Bessel functions, we have

MY = exp(zimy) M D, MM =MD 200D,

and thence (for v nonintegral)
+isinvr- Mz, h) = ML (z, h) - exp(Fivm) M (z, k).
(2.51)
We still have to deal with the case 2v+a=0or v
=+1,+2,-+-. As an example we discuss the case v=+1,

choosing the zero-order solution ¢, =coshvz. Proceed-
ing as before we have

R =21%(A - cosh2z) @, =h*[— ¢y + 280, - ¢3).  (2.52)
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This is the part left uncompensated by the zero-order
approximation in 4>, We observe immediately that—
since ¢_; = ¢;—we now have a completely different
situation. Thus

RO =12[@A-1)g; - gy,
so that

R’
W__ PP 2P __ 2 Pus2n
¢ 8 "8 ’ dnv+n) |y mt (2.53)
This contribution leaves uncompensated the terms

R - 2h* (A - cosh2z)g; = EE(A TPs5=3
=3 P3== 1 Q3= 2P5= 2 O1),

(2. 54)
so that
nla
@) _ _ Y3 _ Y5
2 [ 8 48] . (2. 55)

Proceeding in this manner we obtain the complete solu-
tion. A then follows by equating to zero the sum of co-
efficients of ¢, in R‘”’, R’ - - It then follows that

(l+=;—)2:1+h?-—§—'——~- (2. 56)

in agreement with formulas (36) of MS (p. 120).
If we choose instead of the above zero-order solution

¢, =sinhvz, wv=1,

we have

79 = 21%(A - cosh2z) sinhz =h%[(24 +1)@; - @3]  (2.57)

and again obtain the above eigenvalue expansion with h?
replaced by — %%, This applies to all odd-v eigenvalue
expansions and is a direct consequence of the relations

C62n+1 (Zy - hz) = ("' 1)"(- 2.)562,“,1(2 +iﬂ/2’ hz)y

Syt (2, = h2) = (= 1) (= i) Ceqpny (z +in/2, 1Y), (2.58)

which are easily verified. For even values of v the
eigenvalues have to be recalculated separately in each
case, since now

Cegy(z, = B?) = (= 1)"Ceyy(z +im/2, k%)

Se?m2 (Za - hz) == (_ 1)ﬂ582n+2 (Z +iﬂ/2’ hz); <2~ 59)

thus the symmetry between Ce, Se is destroyed. Ex-
plicit expansions for any of these cases may be found in
the standard literature. Meixner and Schifke also deter-
mine their regions of convergence,

Of course, we could also have started with a solution
in terms of Bessel functions and used, for instance, the
relation J_, = (- 1)"J, to derive corresponding eigenvalue
expansions. In fact, one can show (cf. MS, pp. 200,
205) that for m=0,1,2,--- M (z, k) is proportional to
Ce,(z,h?) and similar relations hold for other functions,
For rigorous convergence and validity discussions of
any of the solutions discussed in this section we again
refer to MS.

3. CALCULATION OF THE S MATRIX

We now proceed in the manner of Spector® to calculate
the scattering matrix for the potential 1/74. For this
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purpose we seek first the regular solution of the radial
Schrddinger equation at the origin, and then its analytic
continuation to infinity,

We obtain the regular solution by choosing Z,{(w)
= H{"(w) for Re(z) <0. Then

hod i
Yeee=?" "M% (2, ) =71/ (Hé“(w)@i Ly
= =i

J#0

Xbay (2j>H512’,<w)) , (3.1)
where by (2. 5), (2.3)

w =2h coshz = (k¥ +ig/7). (3.2)

Thus v — 0 implies |w| — «, The asymptotic behavior
of the Hankel functions H*(w) for lwl > |vi, lwi>1,
and - 7 <argw <7 is known to be given by

H.fi'z’(w)z(%)lﬁexp ti(w—%r - %) [1 +O(—i—)].
(3.3)

The behavior of Y, near =0 is then found to be

172
Yieg™ (%) exp(~ g/’r) (exp[— v+ 1)71'/2]

+§J‘1 K2 jé}i 12:(27) exp[~ (n/2)i(v + % + 1)]) (3.4)
720

which tends to zero with 7.

In a similar manner we may define solutions ¥‘*%
by setting for Re(z)> 0

YO 2B gy

hnd i
—pl22 (H§1’2)(w) + Z}1 n% 121 pgi(Zj)Hiiﬁ’(w)) (3. 5)
5

Using the above asymptotic expressions for the Hankel
functions these solutions are found to have the required
asymptotic behavior for » — co;

9 \1/2
y&o z(E) exp(+ ikv) exp[F Gn/2) (v + 3)

X [1 + }5 [ iE{ D2:(25) exp(;inj)] ; (3.6)

=1 jom
7#0
In fact, we can derive Y from ¥*® since one can show

from the circuit relations of Hankel functions that
M3z +7i, k) = — exp(— im)MP(z, h).

We now require the analytic continuation of the regu-
lar solution to solutions behaving like Y% at infinity,
From the relation 7 = (ig/h)e® we see that » =0 corre-
sponds to Re(z) = -, and » —« to Re(z) =+, We re-
quire, therefore, the continuation of M through the
whole range of Re(z).

Now the series M\ can be shown (MS, p. 178) to be
convergent for |coshzi =1 but uniformly convergent only
when |coshz| >1 for otherwise complex values of z.
Since z =1nvk/g¥ ¥in/4, the condition |coshz] >1 implies

VE/gr>@2+V3)1'?>1 and VE/gr<(2~-V3)/2<1. 3.7)
Thus there is a gap between the two regions of validity

which has to be bridged by using another set of solu-
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tions. A suitable set is the pair of fundamental solutions
Me,, defined by (2. 45). These solutions converge uni-
formly for all finite complex values of z (MS, p. 130).
Before we proceed with the actual matching we have to
decide which Riemann sheet we want to choose, since
Vi leads to a double-valuedness of the variable z. We
shall choose the upper sign, i.e.,

Z=-InVk/gr—in/4.

We note that if we replace z by —z in w, k7 is replaced
by ig/v and vice versa. Thus if we let Re(z) — == in
Yieq (i. €., 7 —0) and then replace z by — z, the solu-
tion has the asymptotic behavior of Y'®, i.e., exp(@kr).
To obtain the continuation of Y., to this solution, we
consider the variables z, — z and choose the sheet with
Re(z) > 0. Then by (3.7) we have to choose

z=-1nvE/gy +in/4 for VE/gr <{(2-V3)/?

(8. 8)

and
z=+1nvk/gr—in/4 for VE/gr> (2 + V3172, (3.9)
We may write therefore for 0 <vE/gr < (2= V3)1/2
M (r) =71 2 (aMe, ) + BMe., (7)),

41006001 o8 1152 ad i
d?,[r M (r)]—ady[r Me,,('r)]+ﬁd7[7 Me_, ()],

(3.10)

and determine o and B. The right-hand side now rep-
resents the solution M,(,3) as continued to the right of
VE/gv=(2-V3)!/% In the region (2+V3)!/2<VE/gr <
we require a solution of the form »!/2[AM ¥ + B!V,
A,B+0. This solution may be continued into the region
below vE/g = (2 +V3)!/? by writing

2@’ Me, (r) + B’ Me, ()] =7 *{AMP (v) + BUD ()],
d . d
a'a; ! 2Me, (v) + 8 -d771 "Me_,(r)

d

= AL A PYOG) + BL 2B, (3.11)

We next have to join the branches

1% aMe, ) + BMe_,(r) )z = - InvR/g» +in/4),
12 a’'Me,(v) + B'Me_,(#)|(z =+ InvVE/g v — in/4).
At Re(z)=0, »=vE/g. Then

v aMe, ) + BMe (1) ]z 4

=71/ a’Me,(r) + §'Me ., ()]

zs=in /4>

a i d 150
[adyr Me,,(7f)+;3d1/1 Me_, (v

g=ir /4

d 1/ v d 172
. ’
= [a s Me,(v) + g Me_,(v) (3.12)

z==ir /4

But since Me,(z) = Me_,(~ z) (MS, p. 131) these relations
may be reexpressed for one and the same point z =~ i7/4:

aMe_, +BMe,=a’'Me, + 3 Me,,
d d _,d , d
az- Me_v+de Me, =« e Me, +3 e Me._,, (3.13)

where we have used the fact that for »=vg/%
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d E\!/? d )
dr_qg(g) Tz at z =+in/4.

One now derives readily
a’= B, B = a, d= W[Me-w Me,,]W(M,f”, M154)]y

=V

(3.14)
Using the relation (2. 50) the Wronskians (MS, p. 171)
[1,3]=—=[1,4])=2i/7, [3,4])=-4i/n, (3.15)
and the relations (2. 51), we find [with Me,(0, 2)
=Me_, 0, h)],
2 2_ ,-2ive
~Simsi 0 B e .16)
where
R=0,/a_,=M2(0,h)/M(0, k). (3.17)

The asymptotic behavior of the regular solution is
therefore given by

Yie= 7! /Z[AIW:S)(’V) + BAMIEM('V)]
2 1/2 R2 _ 1 ) . ‘
) <%> 2R sinvr exp[- i1/2(v +32)] exp(ikr)

, B! = exp(= 2ivm) exp[(%)(V +3) - 2ik7’]} [1+0@)].

2{R sinvr
(3.18)
Defining “Jost function equivalents” f(x %,1) by
b 7= EREIY2) (1 1) expir) - f(- I, 1) expl k7]

JE TS 2k
(3.19)

(since Jost functions in the sense of regular potentials
do not exist for singular potentials), we find by
comparison

2\!/* R*~1 .
Fk, 1) :(;> Rois exp[-i7/2(v - 3)] exp[(Gn/2)v),
1/2 p2 .
{2\ L= expi- arvm) X 1 T
f(-k,l)—(727> K ;ziéWszn) exp lg(V—z) eXP<Zg>V
(3.20)
The S matrix then becomes
~ . o fle, ) R2 -1
S=exp(2:0) = exp(wl)f(_ D) - = exp(o 210m)
x exp[—ia(v=1-3)]. (3.21)

Of course, it would have sufficed to calculate just the
ratio A/B, but for a discussion of Regge poles, it is
essential to have the numerators and denominators
separately.

We now note that the S matrix is unitary. To show

this, we use the relation (Aly ef al. ?)
R* =R exp(ivr), (3. 22)

where the asterisk on R as on S in $*S=1 indicates
complex conjugation of the functional form of R or §
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)
dB= W[M,EB), Me-u]W[Me-w M‘('3)] == WTMLEB), ‘Mev]W[Mew lwxczs)]-

together with the replacement & — — %, the latter being
equivalent to the interchange 2 — — ik, Of course!l is
assumed to have real integral (i. e., physical) values,
and v is real by (2. 30). Hence

fX, D) =f(=k, D).

Next we observe that the S-matrix may be reex-
pressed in another important form first given by
Bertocchi et al. ® To derive this, we require the follow-
ing relation between modified Mathieu functions and
their derivatives:

MP0)  MD(0)

MD0) " MD(0) (3.23)
To prove this relation, we recall the following relations:

JW;I)(Z) :lefi)(O)Mey(z)/Me,(O), (2. 50")

Me, el Se’

Me,(0) _ Cey(0)+Sey(0) L(sinCe’(0) = 0) 6. 24)

Me’,(0) ~ Cej(0) - Se;(0)

by (2.45). Then (3. 23) follows immediately, It is now a
simple matter—again using the circuit relations for
modified Mathieu functions, i.e., (2.51)—to derive the
following formulas:

R — exp(Fiva) =+ sinvrM > 4(0)/ M (0),

R +exp(Fivm) =%¢ sinprM 397 (0)/ M (0). (3. 25)
It then follows that
5= (L P M@ L /i (M0 0]
dz dz
xexp[—in(v=1+3)]. (3.26)

To clear up the relation between the derivation of S as
given above and another method used in the literature,®
we now rederive this form of the S matrix by the latter
method, This is nof a triviality, since the plurality of
modified Mathieu functions and their properties can
easily lead to considerable confusion. Moreover, it is
extremely instructive to understand this connection for
dealing with potentials 1/7™, 3 <m0,

Our regular solution is again ¥ ., =#'"2M{¥(z, 1)

172 (2, ). Further, since the modified Mathieu
equation is invariant under the interchanges (@) z — -z,
h— - I (invariant point 2 =0) and (b) z = -z —in/2,

Ji —~+ih (invariant point z =— z'n/4), we may define—
using (a)—two solutions ¢,(z, k) by

=9

@, (2, 1) =MD (= z,£h). (3.27)
We note that (by the circuit relation for Hankel
functions)

@_(z,h) == exp(—im)MP(z, k). (3.28)

¥1/2¢, are therefore solutions possessing the large — 7
asymptotic behavior of Jost solutions, i.e., exp(ikr).
The S matrix then follows by setting

Orealz, k) =A@, (z,h)+Bo_(z,h)

and requiring continuity at the invariant point z=0. One
readily finds

(3.29)

2 (L P MO ) A P M ) ) 0 70,

(8.30)
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The S matrix S=exp(2i6) being defined by the limiting
behavior

Yree = C sin(kr —I7/2+06), C const,
is then again found to be given by (3. 26).

On the other hand, if we choose the interchange (b)
(invariant point z = —47/4), we define the solutions

@s(z,h) by
ﬁpx(za k) =

The asymptotic behavior of these solutions for large »
is

M3 (— z — dim, £ ih). (3.31)

Y, = /Z(Px
~V27F 7k exp(xiky) exp[-in/2(v + )]

o i
X [1 +Z}1 (= 1D 25 b)) exp(inj)} . (3.32)
= i==i
’ 7#0
Proceeding as before, and demanding continuity at the
invariant point z = — in/4, we now have

S=exp(2i6)

d .
:(E [M‘(,a)(z, M (z, zh)]z:_,-,/,i/
gg [M,(,3)(Z, k)Msb(Zy - Z‘h)]z.e-i:r /4> exp(iﬁ/z - %)’

which is the expression we have used before, °

Here we have calculated S only in terms of small - 4,
i.e., low-energy expansions. The equivalent high-ener-
gy derivation has been discussed elsewhere,

4. REGGE POLES

In order to determine the Regge poles and their be-
havior with varying energy, we next have to investigate
the zeros of the Jost function equivalent f(—%,1). These
are given by
R* — exp(— 2inv)

0= R sinvw

exp(inv)

sinvr - M2 (0, )M (0, 1)
M(I):(O ;’l)M“)(O, }L) .

=exp(iay) 4.1)
Clearly v=n, n=0,£1,+2, -+ are zeros of f(~k,1).
However, they are “phoney” zeros or indeterminacy
points, being also zeros of f(k, 1) as a glance at (3. 26)
shows. We next determine the zeros of M.>(0,%). The
zeros of M¥/(0, k) can be determined in a similar man-
ner and will not be considered here. We also assume
that the zeros of the functions in the numerator do not
coincide with those of the denominator—which is plausi-
ble for small #® since J,, H{, etc., have different
zeros. Thus we consider

0=,(0, 2)

=H£“(w>+2h2* Z P2:(27, VIHS;(w),

i=1

4. 2)

]#0

where w =2k coshz =2k, It is clear that as h®— 0 the
zeros of M approach those of H’, Let w,, n=1,2,---
be the positive zeros of HV(w) or, alternatively, those
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values of w which correspond to zeros v=v, of H? in
the v plane, Then these are also zeros of Mf)(z, 0), In
view of their analyticity in hz, we may write for the
nth zero

W =w=w,+ 21 aPR, 4.3)
i=

The coefficients oz;."’ may be determined by substituting
the expansion into (4. 2), expanding around w=w,, and
equating coefficients of the same power of 2%, Particular
care is necessary with our coefficients p,;(27, v), since
a factor (v+2,v+2), for instance, contains A which is
proportional to k2. Since H"(w;) =0, we obtain

p dH(i)

0= o™=l s py(v, 2)H3(w,) + pa(v, - 2VH (),
w w
dH(i) O((") dZH(i) dH %

_ A v 1 v (n) V¥
0= gu |, "2 Tawt |, tRW DT

+pa(v, = 2)a (")(11;1:;2 +po(v, HH ) (w,)

+D4(v, — O H (w,). 4. 4)

[Note: Terms p,(v, + 2)H'Y contain by (2. 25) a tactor

(v£2, v£2) which is 2A by (2.17) and is therefore pro-
portional to 4%; these terms therefore belong into the
next equation, | With the help of the recurrence relations
{2.12), (2.13) one can show that the following relations
hold at the zero point w,_, of H(w):

(1)
B w,) = = B w,) = L

v ALY

3

“n

2(v+1) dHﬁ“

H __
(@) Wy dw

v ki

2(v=1) di?
1)
H ( n) " dw w",
4 2= 1) (v 2)(vs 3N dHY

(1 v
Hi(w,) = i—{(v 2) - o el I
dszi) - —1. dH:l)

dw? Cow, dw )
dH$3 2(v+ D) (v 2\ dH
—dw"* = (-1 + = = (4.5)

Substituting these expressions into (4.4}, we see that
all factors (dH,"/dw)|,, cancel out, and we obtain

0= O‘;n)"' 1/(.0,,,
n\2
_ ok _ .(___)_ - 1_ 1 . _6_ (n)
0=a w, 4w <V2—1 T W ! §,+2(V2—1))'
We thus have for (4. 3)
® ht 6
Zh=wn+ - = o yas HOUO- (4. 6)
Hence
: 3
W, =h+ ——— + O(1®). )
2= 0" @

The zeros w =w, of the Hankel function H'!> may be
determined in the manner of Keller et al. '® or Magnus
and Kotin, ** We start from the relation

i sinvrH (W) = J_(w) - J, (@) exp(=ivr) (4. 8)
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and substitute for the Bessel functions the power series

v+2m 1

J,(w) = T( l)m( ) m 4.9)
We then have for
0< Iw[ <1 (or IV] > 1+ |w|2),
W=Wy,, Hil)(wn) = 09
w g , > nf@\*" T(y+1)
(2) exp(—w‘rr)<1+"7l_31(— b (E) m!I‘(V+m+1))
_ Tw+1) m T(-v+1)
T I(—v+1) (l+2(—1) ( > m!T(—v+m+1)
(4.10)

Taking the logarithm of both sides, this becomes for
w/2=v explig)

w .7 . L(v+1)
2V(1n5 - z§>+2mn— 1n—_I‘(- 1)
2 9 1
- (2&/32) - zrl(z_l}v;)zl()ioi/f2)) +O0(w®). (4.11)

Here n is an integer # 0. We now use the following series
for the logarithm of gamma functions:

T(v+1)

_ 2@m+1) g,
m =2y, —22——112 1,

T am 1 v] <1,

In

4.12)

where y is Euler’s constant and ¢ is the Riemann zeta
function. Substituting this expansion in (4.11), we
obtain

w__dm dn_ s t@mel)
TR T G Y e wl
2)? 207 + 1){w/2)"
* V‘éi/. )uz> - ((1 = Jz)z)((ff ,,)z) +0WY).  (4.13)

Inserting w/2 =+ exp(ig), we have

__dm (T > £@m 1) o
oy == v H(Z (p)—y—"é;l om+1

7 exp(2ig) (208 +1)rtexp(die) .
* v(l=12) ~  (1-1)2(4-17)

Reversing this series, we obtain for n#0, v=yv,,

it v [.{n 7P exp(2i¢)
””“E?*lm»[l(z' )‘7‘E+

0%, 4.14)

v(l - v?)
(202 + D)t exp(die)
“TA<Aa-h ¢ 0(76)]
imn (1 [i(r/2= @)= ¥] [Z(ﬂ/z 99) yI
~ Inr 1nr (In7)?
[i/2- 9) =y~ e@)* Y3 )
(In»)3
1’2 exp(2i@) 't imn 7'exp(di@)
Inr (1 ENTTYS ) iy )z 7
lz] <1, |v] <1, (4.15)

We now recall that w,=w =27 exp(f¢) is the position
of the nth zero of the Hankel function of the first kind in
the w plane. Alternatively, if w is given, (4. 15) gives
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that value of v for which H*(w) vanishes. Similarly, the
Mathieu function M, ) vanishes for those values of v,

for which the zeros of the Hankel function are given by
(4.7). Thus M> vanishes for those v of (4.15) for which
w =w, is replaced by (4. 7). Hence

2rexpli@)=hz +O¢%

h2
2Ve -1
=Vkg exp(in/4)+kg/2v1 = 12+ O(h%). (4.16)

Substituting this expression into (4. 15) and thence v
into (2.29), we find /= ¢, the Regge trajectories. By
2. 29)

h4

l+%=V—;1—V'(1___V25 +O(K®), 4.17)
or to lowest approximation
1 m/2-9)
" 2 (lmf)2
2.2
il e SE), .10
where
and
@=tan™[17% (kg/2)'/?] for |kg| <1, n+#0, y=0.577.
4.19)

In Table I we give some values of « calculated from
this formula in the region 0, 08 <kg <0.1, The last
column in the table gives ¢4 for kg =0. 2; we believe
this value to be already too large to give a reliable
estimate. We observe that in the region under consider-
ation and for a fixed coupling constant, the real part of
the trajectory rises!” with the energy k°. At kg~0.15
(approximately) our formula presumably becomes
meaningless—in agreement with the behavior of the
zeros of the Hankel function observed by Keller et al. ,!°
who found it necessary to use a completely different
approximation scheme in the higher (though not infinite)
region of kg. We shall not explore this here. The find-
ing that Regge trajectories for a singular potential do
definitely have a reasonable behavior in the low energy
region is reassuring for models where such a property
is assumed,

Keller et al.!® have also derived zeros of derivatives
of Hankel functions, which are seen to have similar
characteristics as those of Hankel functions. Thus a
similar analogy may be expected between zeros of
Mathieu functions and those of their derivatives.

Finally, we remark for the sake of completeness that
the high-energy behavior of the trajectories is con-
siderably easier to study—in fact, one can use simply

TABLE I. Regge poles for | kg|<<1.

kg 0.08 0.09 0.1 (0.2)
Re a4 -0.2 —-0.15 0.73 1.1)
Im o 0.75 0.9 1.5 .1)
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the large-h expansion of the Mathieu eigenvalues as ob-
served by various authors. & 6-8

5. THE PHASE SHIFT

We obtain the phase shift § and hence the scattering
amplitude by componendo et dividendo applied to the S
matrix element (3.21). Then

cot[6,+1r/2(v-l—%)]—cotmr:——R—Z—S%l%%—yl) , (5.1)
where

R=R, (1) =[M3)(0,1)/M,(0, 1))

_ Jo(2h) + 21 1h2: Lie-io Pas (= ¥, 20y (20) (5. 2)
I @R) + 2y B Tieise D2s (Vs 2}) v2;(2h)

Thus for energy 4 —0

Ry - Je@R BV T@sRoey)

J,(2h) S(v)  (ikg)*1 /AT (=1 +3)0(v)

where

5y - 3 p == 1)! (5.3)

VT A (v = 20!

and hence (for integral )

C 1 (1043 )2 (L) for g2,

Cot ey I\T= 1+ ) \o0+ D) .
(5.4)
The scattering length a(l) defined by’ 18
_ k2l+1 t6 5- 5
a(l) 113)1 cot?d,; (5. 5)
is therefore given by
1 =1 frE+d) L fa-1-)® (5. 6)
al) ~ g |T(-1+3) 5(+3) | ’

To minimize confusion we recall that some authors!®
define the scattering length as A(l)=—-a(l). The series
(5. 3) may be rewritten as

r{ - v/2)T{(1 - v)/2] v v+l )
AT T (= 1) 2F1<1_2’1_T’1—V’1)'

o(v) =

(5.7

By Raabe’s test of convergence it may be shown that the
hypergeometric function on the right is only conditional-
ly convergent for the argument and coefficients given
here—i. e., the series of moduli diverges. One finds,
however, that the series here has in any case (i.e.,

for physical 1) all terms real and positive, Thus the
series (5. 7) diverges. In the special case I =0 we find
that the ratioc 8(— v)/8(v) is finite. To see this, we
recall the formulas

cosaz =cosz F{3 + 3a, + - a; 3; (sinz)?),

(5. 8)
Thus although the ratio cosasn/sinasm does not exist,

the limit of (cosaz/sinaz) as z — /2 does; in fact, set-
ting a=3%, we have

tim (cosz/2> FL,

sinz/2 4 s

sinaz =asinz cosz F{1 + 5a, 1 ~ 3a; %; (sinz)*].

1]
] (5.9)

11,
4y 29
334
4925
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On the other hand,

6(2) —_ %, %‘
TS R FRE

Hence by (5. 6)

This [or rather A(0) =~ g] agrees with the value given in
the literature, 1°

;1]
- {5.10)
(5.11)

If we now tried to compute higher terms of the expan-
sion (5. 5), we would soon stumble into infinities. This
is due to the fact that the effective range expansion is
not ideally suited for phaseshift calculations in the case
of singular potentials. In fact, the detailed study of
O’Malley et al.'® shows that even a scattering length,

i. e., the first term of the low-energy expansion, can
be defined only for n> 2l +3, where #» is the integral
power of the singular potential. Corresponding inequali-
ties hold for the existence of higher terms. The source
of these difficulties, of course, lies in the long-range
character of these potentials which competes with a
power falloff of the solutions. Thus new calculational
techniques are generally required—such as approxima-
tion suggested by Calogerozo—since the phase shift is
otherwise well defined.

6. A NEW SOLUTION OF THE MODIFIED MATHIEU
EQUATION

The modified Mathieu equation

& <p + {2k’ cosh2z - (1 +3)*} =0

o (6.1)

may be transformed into yet another equation with solu-
tions having interesting properties. Setting

z=In(r/y), r=a/R, y as before, a*=-g* (6.2)
and

¢=R'Yy, (6.3)
we find

&y 2dy rto1+1)

dR2+§EI—?+{+ﬁ_T Y=0 (6.4)
or, writing ¥ =¢/R, k®=igk,

4 1(+1 k

d_é”2+<_ (RZ) L6, o, (6. 5)
It is important to note that ¥ satisfies the equation

&Y (., W+1) g’*)

ot (k 5z T a)fe0 (6.6)
or, since Y = (v/a),

d%p 2 dy (2 1(I+1) g2>

ot ) 6.7)

The symmetry relating (6. 4) to (6.7) may be seen by
writing

= pWr/a. (6. 8)
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Then (6. 4) becomes

2 JECI

%+%%§+(1_(l;z) -%)¢:0 6.9)
and (6. 7)

o 1 do_ ( (2 +3)? g2k2> )

AeryY T rater) 1~ e~ (k1) ¢=0. (6.10)

Thus, if ¢,(gk, R) is a solution of (6.9), a solution of
(6.10) is ¢,(gk, k7). This implies, of course, that both

¢,(gk,R) and ¢,(gk, +igk/R) (6.11)

are solutions of the same differential equation (6. 9). We
note again, that the solutions ¢ are modified Mathieu
functions in terms of the variable R.

We now proceed to solve (6. 9) by our perturbation
method. Setting

@ +2)% =12+ ah, (6.12)
we may rewrite (6. 9) as

d¢ 1d¢ VZ) _ 1

dR2+RdR+(1_R2 ¢>—R2 (A-RZ)¢. (6.13)
Proceeding as before, we have the zeroth-order
approximation

0V =2,(R), (6.14)

and the right-hand side of (6. 13) leaves uncompensated
the terms

4
R(O) = —1;— [(V, V- Z)Gv-Z + (V, V)Gv + (V, v+ 2) Gv+2]’ (6' 15)

where

G,(R) = (R})"Z,(R) (6. 16)
and

w,v=-2)==1/v(v-1), (v,v+2)==1/v(v+1),

(v, v)=46-2/(F=1). (6.17)

The calculations now proceed along exactly the same
lines as in Sec. 2, the main difference being the power
1*/4 instead of h*; the coefficients (v, v+ a), of course,
also differ and are now given by (6. 17). Hence

_ fd h4 i i .
$(R)=2,(R)+ 2 (Z) 25 52:(2)2,25(R), (6.18)
3
and A again follows from the expansion
t nt\?
0= —Z (V7 V)+<-Z> {(V9 V- 2)* + (Vy V+2)*(V+27 V)}+' Tt
(6.19)

Evaluating the first few terms we again obtain the ex-
pansion (2. 29) for (1+1/2)°—precisely as one would ex-
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pect. Also, the solution ¢,(k?, + #*/R) remains un-
changed under the simultaneous interchanges R — - R,
n——h, a property which the solutions of Sec, 2 do
not possess,
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Heat conduction model with finite signal speed*
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A simple physical model is derived which has a finite signal speed for a heat pulse in a linear medium.

The most general E3 invariant constitutive equation for energy flux & which allows the finite signal speed
is given. The assumptions which are required include continuum mechanics, thermodynamics of adiabatic
processes, and a generalized Fourier heat law for the energy flux ¢ . Then we use singular perturbation
theory with the finite signal speed « ™ as a parameter to reduce the hyperbolic heat equation to the usual

parabolic heat conduction equation.

1. INTRODUCTION

One venerable question concerning the heat conduction
equation, which Cattaneo' seems to have first raised,
is that it implies an infinite signal speed for a thermal
pulse. Cattaneo added a small “inertial term” of €(3%/
3t%) to the heat conduction equation based on long argu-
ments from his previous papers using both thermody-
namics and statistical mechanics.?

Since Cattanea’s original work there have been sev-
eral other approaches to this problem. First, Gurtin
and Pipkin® showed that the addition of a nonlinear mem-
ory to the medium that the heat pulse propagates through
produces a finite signal speed for the pulse. This leaves
open the question of obtaining heat propagation at a
finite speed in linear media. Next, Miiller? showed that
special relativity restricted the heat pulse velocity « to
values equal to or less than the speed of light ¢. Most
recently, Meixner® has shown that certain modifications
in continuum mechanics of the medium of propagation
also produces the desired finite signal speed. Since the
present writer believes continuum mechanics to have a
far more sound foundation, both mathematically and
physically, then most of physics, it seems desirable to
seek some other mechanism to generate the finite signal
speed.

In Sec. 2, we will present our notation and assump-
tions. In Sec. 3, it will be shown that replacement of the
Fourier heat law for energy flux € in terms of tempera-
ture T as

€ == xVT, (1.1)

where « is the heat conductivity function, by the gen-
eralized Fourier heat law®’
, 8 aT

E==kVT-h¥p _kijéz_ TR
where % is a small, positive constant %;; is a constant
matrix and p is the mean stress of an elastic body
(which reduces to the pressure of fluid) produces the de-
sired result. We emphasize that Eq. (1.2) is the most
general E*-invariant generalization of Fourier’s law
which produces a finite signal speed. It includes
Chapman and Cowling® and Roetman’ as a special case
when all %;; =0 and Ruggeri'' *? whenever #=0. That is,
one gets the hyperbolic generalized heat conduction equa-
tion of the form

1 %7 aT
+8%5 —_v. +
= 3E TP (xVT) +terms.

(1.2

(1.3)

971 Journal of Mathematical Physics, Vol. 16, No. 4, April 1975

For comparison the ordinary heat conduction equation is
of the form

aT

_t:— V(kVT) +terms. (1.4)

This raises the mathematical question of how Eq. (1. 3)
which is hyperbolic, approaches Eq. (1.4) which is
parabolic.

In other words, Eq. (1.3} requires knowledge of both

T(x, 0) =g (%) {(1.5)
and
9 (1.6)

whereas Eq. (1.4) only requires the first. Let Ty(X,1, €),
with €2=1/u?, denote a solution of Eq. (1.3) and let
T,(x,t) denote a solution of Eq. (1.4). In Sec. 4, we will
study the singular perturbation theory®'? of the limit
lim(7y(x, ¢, €)]=T(x, t), 1.7
€0
in the parameter €, for the special case of a one-dimen-
sional spatial coordinate x. Our arguments only hold for
linear media. Then in Sec. 5, our conclusions will be
presented.

2. NOTATION AND ASSUMPTIONS
Notation

© and A are the symmetric stress and strain tensors,
respectively, v is the velocity field, « is the speed of
the heat pulse, T is the temperature distribution func-
tion, F is the external force density, ¢ is the energy
flux vector, £ is the internal energy density, ¢ is the
internal heat source density, « is the heat conductivity
function, X locates points in R®, V and V2 are the gradi-
ent and Laplacian operators on R® functions, ! is the
identity tensor in R% « is the volume coefficient of ther-
mal expansion, ¢, and ¢, are the constant pressure and
constant volume specific heats, respectively, p is the
volume density function, w=1/p is the specific volume,
€? is defined as 1/4%, ¢ is the instantaneous time and “:”
denotes the contraction of a pair of tensors.

Assumptions

Our model is based upon three sets of assumptions:
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(i) continuum mechanics,

(ii) the thermodynamics of adiabatic processes, and

(iii) the generalized Fourier heat law, i.e., Eq.
(1.2).

From one of the classic sources of modern continuum

mechanics*’ we take the equation of continuity,

ap

—+ V. =

TR (ov) =0, 2.1
the equation of motion,

Gl

é’;") +9 - (ovXv) = V. © +pF, 2.2)
and the energy flow equation,
9§
p<§+V°V£>:9:A-q—V-(f, (2.3)

We restrict attention to linear media which are iso-
tropic, homogeneous and free of shear stresses so that

o=-pl. (2.4)

Also, the thermodynamics of adiabatic processes im-
plies that the equation of state is given by

=tw, T) (2.9
and
di=c,dT + (-;i (c, - cv)) dw (2. 6)
because
p=p(T) (only) 2.7

for adiabatic processes. We shall also use the local
relation

p(T) =py(1 - aT), (2.8)

later but only to simplify our analysis. Although Eq.
(2. 8) is very much a special case of Eq. (2.7), it is
still far more general than p==p, which follows from
Meixner’'s second assumption that, “we shall neglect all
notion of deformation.”
Given the preceeding assumptions one now has
| :A=V-u. (2.9

Qur other assumption is the generalized Fourier heat
law

& =—kVT - hvp. (2.10)
In the next section, these assumptions will be used to
derive a hyperbolic heat conduction equation.
3. A HYPERBOLIC HEAT CONDUCTION EQUATION

Applying the assumptions in Eqs. (2.4)—(2.10) to
Egs. (2.1)—(2.3) produces the equations

—2—?+V-(pv):0’ (3.1
M:_Vp +pF, (3.2)

at
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and

oT Cp—Cy, D

—_— Y 42 . T - -— .
Py ( 2 5 V-(pv)==~q-7-€. (3.3)
Next, take the gradient of Eq. (3.2) and interchange
space and time partial derivatives to obtain that

d
Vzp:V-(pF)—ﬁ[V-(pv)]. (3.9
Using the continuity equation, Eq. (3.1) above, for the
second term on the right-hand side of Eq. (3.4) yields

82
Vzp:V.(pF)_?ﬁg, (3.5)
which has the desired second derivative with respect to
time. Now using the local behavior of p in Eq. (2.8),
we find that

%p 22T
-a-Zz‘——Poa T (3.6)
Define the function gy(p, p) as
_ (g=c)p=-a
&lp,p) =~ op L 3.7
and define the speed « through the relation
1/ut=poha, (3.8)

Putting Egs. (3.5)—(3.8) into Eq. (3. 3) yields the hyper-
bolic heat conduction equation

1 %7 aT
+ ————— T —— . — — .
5 TPy =V (kVT) - ¢ -V - (pF)

+ 45, P)V « (ov). (3.9

One last simplification occurs if one uses the formula
of Truesdell and Toupin'’ for heat conductivity, with s
a constant,

k=sT/p (3.10)
in Eq. (3.9), one finds that
18T oT S, s
+pe, S = (VT = (VT (V- T) = ¢
2 TP = (VD = (VD) (V- T) - g
+g,(PV) = V- (pF). (3.11)

In Eq. (3. 11) the temperature T is completely decoupled
from the properties of the particular bulk medium under
consideration.

Let us emphasize that Eq. (2.10) for & was the crucial
ingredient in Eq. (3.3) which give the finite speed u in
Eq. (3.9). Furthermore, since the physical validity of
this model requires that both z and o be small the heat
pulse must propagate at a relatively high speed com-
pared to any local motions of the medium. The reader
can easily verify that use of the ordinary Fourier heat
law implies the ordinary heat conduction equation.

4. RELATION OF HYPERBOLIC HEAT EQUATION
TO THE PARABOLIC HEAT EQUATION

In this section we will study the details of how our hy-
perbolic equation approaches the parabolic heat equa-
tion. A “physical treatment” would be to set € =0 in Eq.
(1. 3) which implies Eq. (1.4) directly. Boillat and
Ruggeri11 have given a discussion of relativistic heat
equations in which they simply add the €2(3%/2%) term,
but they gave no physical model beyond their mathemati-
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cal observation that the more general equation cannot

be obtained from the less general equation continu-
ously. Also, Borghese, Denti, and Ruggeri12 have treat-
ed the hyperbolic Klein—Gordon equation and Schroding-
er equation by similar methods. They obtained the limit-
ing equations by a “physical treatment” in both cases.!!'?
We shall show that Hadamard’s study of the Cauchy
problem together with the asymptotic expansions of the
Bessel functions of the second kind of order #, I, imply
this in a more mathematical manner.

For convenience let us specialize the 3-vector x to
the one space dimension variable x, and rewrite Eq.
(3.11) as

2 3Ty _,__8_7_‘;_32711 +

T T TR (4.1)

with the initial conditions

Ty(x, 0, €) = gy (x) (4.2)
and
aTl(X" 07 €) _ -
o = &), (4.3)
Similarly, Eq. (1.4) reduces to
aT, T
alt +
57 ——}ax G, (4.4

in this case. Physically, it seems quite reasonable that
as the inertia of the wave in Eq. (4.1) is smoothly de-
creased to zero, i.e., €+¥0, it must reduce to Eq.
(4.4). Using a method due to Hadamard, !* this can be
proven in the linear case. Gurtin and Pipkin® have treat-
ed the nonlinear case.

Let /,(x) denote the modified Bessel function of the
first kind of order n, with argument x, These functions
are given by

1,(x) = exp(~ imn)J [x exp(in/2) ] = mi:o (%x)z’""‘m—(;;lm.
(4.5)
and let
v=p(x, ) =(1- x?/AN/2, (4.86)

The formal solution to the initial value problem in Eq.
(4.1)—(4.3) is

T(x, 1, €) :a%(%fngz(r) exp(—t/2e) [ty(x - 7 t)/2€z]dr)
12 J,,

+§ /xz g1 (") exp(~ t/2e3),[ty(x — 7, 1) /2€%] dr
1

¢ x4
‘zlzf dt'[ G(r, ") expl~ (1 - 2)/2€%)),
0 %]

X[t = t)v(x =7, t = t") /2% dr, 4.7
where integration limits are

Xy =x-1/e,

X,=x+t/e,

=yt (=t /e,
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and
xh=x-(t-1t"/e. (4.8)
Consider ¢ > 0 and define the three kernals K, K;, K, as
K(x, t) = (4nt) /2 exp[ct - x2/4t], 4.9

fle- exp(— /2R [tylx - 7, 1) /2€?] (2 <$?),
Kl(xa t) =
0 (e22= 1),
(4.10)
and
1
——— exp(~— /2631 [ty (x, 1) /2€®] (x% <),
Ky(x, 1) = 2ey(x, 1) '
0 (€22 > 12,
(4.11)

Using Eqs. (4.9)—(4.11) the Riemann function for Eq.
(4.7) from Hadamard, !* implies that

T(x,t, &) =zlg1(x +t/€) + g1 (x ~ t/€)] exp(~ t/2€?)
+3 f_:[Kl(x—x’, b €) FK(x=x,t, )]lg(x)dx’
+¢? f_:Kl(x—x’, ¢, €)g,dx’

- j('j dt' [ 2K (x = x", i =", €)G(x’, t") dx’. (4.12)
Setting € =0 in Eq. (4.1) gives Eq. (4.4) whose solution
only allows initial data of the form of Eq. (4.2). This
solution is
Tolx, t) = f_:K(x—x', gy (x) dx’

- Jiat [ TR i DG, ) ax (4.13)

Since for 7 real, small, and positive the Bessel func-
tions I, in Eqs. (4.9)—(4.11) satisfy

(B AR (4.14)
and for » real, large, and positive they satisfy

0<yn <& /N, (4. 15)
we can bound K, and K, by

0<K,(x,t, € <D, exp(|c|t,)K(x, t) (4.16)
and

0<Ky(x,t,€) < Dyexp(|c|t)K(x, D), (4.17)

for real #;, such that 0<¢<#, and for D, and D, real
constants. Hence, the solution in Eq. (4.12) is bounded
by the solution in Eq. (4.13), and must approach, as
pointed out by Hadamard,!® This is one more example
of a singular perturbation in which the vanishing terms
is one of the highest derivatives with respect to one of
the variables so that a change of equation type occurs.
This is reminiscent of Klauder’s phenomenon'* in which
solutions are irretrivably lost due to an interaction
which is too singular. However, this case differs from
Klauder’s case in that he has a function which is singu-
lar in a variable whereas we have a vanishing param-
eter which kills one initial condition function. Both ef-
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fects, of course, share the feature that domain changes
occur for the operators involved.

5. CONCLUSIONS

A specific model has been derived which gives a hy-
perbolic heat conduction equation by modifying the
Fourier heat law, entirely without the draconian mea-
sures involving changes in continuum mechanics or
thermodynamics. We emphasize that the generalized
Fourier law used in this regard was suggested on phy-
sical grounds6 and was not especially contrived for our
purpose.

By changing a mere constitutive relation, a hyper-
bolic heat conduction equation was produced. This is a
considerable improvement over present derivations of
finite signal speed®~® for the following reasons:

(i) The modification of continuum mechanics® obscures
an otherwise clear and fundamentally motivated
physical theory. That such measures are unneces-
savy is the central point of the present work.

(ii) The addition of special relativity* produces a
finite signal speed, but it is the speed of light
and not the heat pulse speed. Again, the present
model could be generalized to include special re-
lativity but it is not necessary for heat propa-
gation. Also, ordinary continuum mechanics to-
gether with Maxwell’s electrodynamics are
known'’ to imply the Lorentz transformation,
providing the constitutive relations

D:€()E,
B=iH,

(5.1
(5.2)
retain this form in all inertial frames.

(iii) The addition of a nonlinear memory® also pro-
duces a finite signal speed, but Eq. (2.18) shows
that even in a linear heat conduction theory finite
signal speed occurs. Thus, memory is a suffi-
cient condition but is not necessary for finite heat
conduction speed.

The mapping of our hyperbolic equation back into a
parabolic equation was studied, including the initial con-
ditions. The asymptotic expressions and continuity of the
I, Bessel functions in the parameter € =1/u was found
to imply this result,

In this work we have made some tacit assumptions
about stability, 2 put neither stability nor entrophy pro-
duction!® has been studied. Both of these deserve study,
but beyond Eq. (2.4), neither is required for the two
effects exhibited here, (1) finite signal speed of heat
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conduction, and (2) the reduction of the hyperbolic heat
equation to the usual heat equation as the parameter
et Q.
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Quantum mechanics on homogeneous spaces
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A complete description of quantum kinematics on a homogeneous G -space M is presented using
imprimitivity systems for G based on M. The kinematics on M is considered (if possible and
consistent with this quantization) as kinematics on a G -orbit equivalent to M in some Euclidean
space R ,. This method gives a physically justified and mathematically well-defined method of
connecting the free Hamiltonian of a quantum system in R, with an operator proportional to the
Laplace~Beltrami operator on M (with the Riemannian structure inherited from R ) which is

proposed to be the free Hamiltonian on M.

1. INTRODUCTION

(1) A quantum mechanical description of a nonrela-
tivistic system moving on a C*-manifold is of physical
importance and becomes mathematically feasible if a
Lie group G acts with ¢ transitively on M. Then the
triple (G, M, o) is a differentiable G-transformation
group and Mackey’s theory of imprimitivity systems’
yields all representations of (G, M, o). This and his con-
struction of representations of regular semidirect prod-
ucts with an Abelian invariant subgroup® provide a
mathematical framework suited to formulate in a
Hilbert space # quantum kinematics for a system bound
on a homogeneous space M. The kinematical observ-
ables obtained in /4 are physically well justified and are
connected with momentum, position, and generalized
spin.

Dynamics has to be introduced on M consistently with
its quantum kinematics via Hamiltonians being functions
of the kinematical observables. The identification of
such Hamiltonians with certain physical systems is
difficult. Especially for the Hamiltonian H° of a “free
system on M various procedures are known with differ-
ent physical and mathematical background and with
different results for HC.

(2) It is the purpose of this paper to present a com-
plete description of quantum kinematics on M through
representations of (G, M, ¢) and to consider, if possible
and consistent with this quantization, the kinematics on
M as kinematics on a submanifold (G orbit) equivalent
to M in some Euclidean space R,. This method gives a
physically justified and in many cases mathematically
well-defined method to characterize and to connect ob-
servables on M C R, with corresponding observables on
R, e.g., the free Hamiltonian on R, and on M.

(3) Quantum systems on M correspond physically to
systems with constraints. We quote two significant
mechanisms which yields constraints: the bound state
mechanism, e.g., the two-atom bound state {or mole-
cule) which moves like a rigid body on a sphere, and
the collective state mechanism present in certain many-
body systems and interacting (quantum) fields, which
produces substructures (collective states). They move,
if the noncollective coordinates are frozen or decoupled,
on a manifold, like string models, or on a homogeneous
G space, as is the case for a meson field bound strongly
to a fixed baryon source® with internal symmetry group
G. Here a set of collective variables Q, = [u{»)p (r)d®r
is constructed from the real meson fields ¢, (A
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=1,...,n; nis the dimension of the meson multiplet)
such that for large values of the coupling constant their
eigenvalues are bound to a certain G orbit M in R,,.

Quantization in space—time manifolds as used in
gravitation theory* or in rotator models for particles®
will not be discussed here. Our approach is not applica-
ble to manifolds which are not homogeneous spaces.

(4) The material is organized as follows: Differen-
tiable G-transformation groups are defined in Sec. 2A,
There also their representation theory via imprimitivity
systems and their physical interpretation are given.
(G, M, 0) is embedded in a differentiable G-transforma-
tion group (G,R,,7) on R, in Sec. 2B, We derive neces-
sary and sufficient conditions such that the representa-
tions of (G, M, o) can be constructed from (G,R,, 7) in
Lemma 2. Extrinsic methods, as the embedding in R,,,
and intrinsic ones, as G-invariance, to characterize
H°, are described in Sec. 3A. The most promising
approach is a submersion of free Hamiltonian in R, to
MCR, consistent with quantum kinematics (Sec. 3B,
Lemma 3). G-invariant operators on M are treated in
3C. The summary for the kinematical part is in Sec. 2D
and for the part dealing with free systems in Sec. 3D,
Section 4 gives a discussion of related results. Proofs
and more technical definitions are collected in Appendix
A and Appendix B,

2. QUANTUM KINEMATICS

We introduce differentiable G-transformation groups
(G, M, 0) as geometrical structures for the kinematics
of a system moving on M and develop along the lines of
Mackey''? and Varadarajan® a representation or quanti-
zation ¢(G, M, 0) of (G, M, o) in some Hilbert space,
which gives the quantum kinematics together with
momentum operators and position projections. To
utilize extrinsic properties of (G, M, o) we define an
equivariant embedding of (G,M,0) in (G, R,, T) and derive
necessary and sufficient conditions to derive ¢{(G, M, o)
from ¢(G,R,,7). The representation theory is given in
Secs. 2A and 2B. Some examples can be found in Sec.
2C and a summary in 2D,

A. Representation theory for (G,M,o)

(1) Let M be a (connected) C*-manifold”® of dimension
m, let G be a (connected) Lie group acting transitively
on M, i.e., M is a homogeneous space of G; denote by
0, the nonsingular differentiable action of a € G on M and
assume in addition that the mapping 0: G 2a — 0, € diffM
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be a homomorphism [such that 5, : G XM 2 (a,p) — 0,(p)
€ M is continuous]. Hence the triple (G,M,0) is a
diffeventiable G-tvansformation group.®

Take now the homogeneous G space M as classical
configuration space of a quantum system. Let # be its
separable complex Hilbert space’® such that the states
of the system are in one-to-one correspondence with
rays™ {f}C /4, given by the set of all vectors of the form
Af with f€ // fixed and A complex, Al =1,

(2) To define momentum opervators the group structure
in (G, M, o) is utilized: An infinitesimal transformation
o, shifts a representative point p € M of the system in-
finitesimally to p’ € M and the elements X of the Lie
algebra G of G acting on M should correspond to G-
momenta on M, We assume that there exists for each
X< G an (in general unbounded) observable D(X) in #,
the (G-) momentum operators ID{X) having the property
that each D(X) is essentially self-adjoint on a common
dense invariant domain /) €4 and can be integrated to
a unitary representation U(s) of the corresponding one-
parameter subgroup exp(sX) of G. Bounded momentum
observables can be constructed via the spectral mea-
sures of D(X).

From the physical point of view it is desirable that
this set of unitary representations U(s) of one-parame-
ter subgroups builds a representation U(G) of G which
is unitary (faithful, continuous) and, because U(G) acts
on rays {j} in 4/, furthermore projective. But even if
all unitary projective representations of G are unitarily
equivalent to vector representations, the one-parameter
subgroups will in general not yield? a representation of
G. So we strengthen the assumption and demand that
there exists a unitary projective representation U(G) of
G in // with generators being the G-momentum operators
of the system. Under very mild restrictions'! projective
representations of G are unitarily equivalent to vector
representations of the central extension G of G. '

(3) To construct posilion projectors we require, as in
Refs. 1, 6, 14, the localizability of the states of the
system in M: A suitably chosen field A= A(M) of Borel
sets S in M is represented in # by projection-~valued
measures’® IE(S). Then an observable E(S) corresponds
to each S and its identification as a position projector
to be applied to states {f} is obvious.'* Operators
corresponding to local coordinates on M will not be in-
troduced, except for M =R, (see Sec. 2C).

In (G, M, o) the action of G on £ is given by 0. So we
have to connect U(G) and E(A) correspondingly and de-
mand U(g) and JE(S) to be such that

E(0,(S) Ula) =U(a) E(S) (2.1)

holds for each S& /8 and each a € G, Hence in our physi-
cal interpretation (G, M, o) contains the covariance of
the system with respect to G: if {f}C# is a state local-
ized in S, then {U(a) f} is localized in 0,(S).

(4) Mackey"''? considered the representation U(G) of G
and the set of position projectors IE(4) on A fulfilling
(2.1) as a pair (U, IE) called system of imprimitivity
(SI) for G based on M. The notation (U, IE) is shorthand
for the triple (U, IE,0). If G acts transitively on M, SI
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is called transitive. Each SI gives a natural realization
of / as a linear space of equivalence classes of complex
vector-valued functions f over M under the inner
product

where p is a G~quasi-invariant measure on M,

There is a connection between the differentiable G-
transformation group (G, M, o) and the SI for G based on
M in /4 : Using A given above, we define from (G, M, o)
the triple (G, ,0). Then (U(a), IE(S),0) is a represen-
tation of (G,f3,0) in /4, as there exists an isomorphism
¢ mapping the pair (a, S) € (G, B) into a pair (U(a), E(S))
of bounded operators in 4,

9:(G, B)3(a,S) ~(Ula), E(S)) e (U(G), E(B)),
such that
(i) ¢:G—VY(G) is a G-isomorphism and U unitary,
(ii) ¢:AB~1E(A) is a Borel isomorphism, and
(iii) G acts on A as U(G) on E(B) [Eq. (2.1)].

We call the geometrical object (G, A(M), 0) the kine-
matical structuve of the quantum system and its repre-
sentation ¢ in #, denoted by (G, M, o), a quantization.

(5) The question is (1) to construct all inequivalent
representations of kinematical structures (G, £, 0), and
(2) to select the physical ones and to introduce Hamil-
tonians, i.e., quantum dynamics.

The answer to the first question was given by
Mackey.' He constructed all {inequivalent) canonical SI
(see Appendix A) and proved that each SI is unitarily
equivalent to one canonical SI. However, Mackey's
construction is not suited for all physical applications
and for an attempt to answer the second question. This
is mainly because a quantization of (G, £, 0) relies on
some of its not apparent geometrical properties which
should have some impact on the physics of the system.
For applications it is therefore useful to formulate
(G, B,0) and ¢(G,M, o) closer to geometrical concepts.
A group structure is quite promising for this and is
discussed in the next section.

B. Construction of quantum kinematics via embedding

(1) Let T, be an n-dimensional real vector space and
f‘n its dual, respectively; consider 7, as an Abelian
group and T, as its character group, and let G"= T, %, G
be a semidirect product where 7:a — 7,is a homomor-
phism from G into the /inear group of automorphisms
of T,. The action of a€ G on ’f’" induced by 7, is denoted
by ToiX— Tox), X T.,.

(2) Consider a representation §(G, T, 7)
=(U(G), IE(A,),T), B(T,)=4,, with linear action 7 in T,
and a unitary representation (UR) U(G™) of G". Both
representations are intimately related. To indicate this,
suppose U(G") is given. Then one can obtain U(G) from
U(G™) + G and IE(A,) from harmonic analysis of U(G")
+ T,. The semidirect product ensures that U(G) acts via
7 covariantly on IE(A,). Hence U(G) and IE(4,)} build a
representation of (G, 8,,%). The reverse construction
is also possible. The exact formulation is'’
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Lemma 1 (Mackey):

(a) Let (U, IE) be a system of imprimitivity for G in
# based on T,. Then there exists a unique unitary
representation U(G") of G"=T,&, G in # such that

1. WGHiG=1,

2. IE is a projection-valued measure on Zf‘" corre-
sponding'” to U(G)+ T,.

(b) Let U(G") be a unitary representation of G'. Then
it determines uniquely a system of imprimitivity
(U, E) for G based on 7T, with

1. U=U(G")+G,

2. IE being a projection-valued measure on f‘"
carresponding'” to U(G") + T,.

(c) (U, E) is irreducible if and only if U(G") is; two
systems of imprimitivity (U, IE)), i=1, 2, are
unitarily equivalent, if and only if the correspond-
ing U,(G’) are.

(3) Consider the sets

$(G,M)={SI{U, IE, 0) of G based on M},
{/(G"y={UR of G™};
then':®
$(G,T,)> $(G, M°)
holds with M° being any G orbit in 7, and Mackey’s
lemma implies a one-to-one mapping p of § onto {/
p: S(G,T,)2 (U, E,0)— U(G") € [/(G7),
with restrictions

0 S(G, M) . L/(G7), p™: S§¥(G, T,)— /" (G7).

Hence all (irreducible) representations of the kinemati-
cal structure (G, A, o) together with a realization of 4
can be derived from (irreducible) UR of an inhomogeAni-
zation of G, if M can be identified with a G orbitin T,

However, this identification is not possible in general.

Consider an embedding® « : M — . MC T,; then the action
o of G on M and the action T of GC G” on ¢ M can be
different. For an identification they must be compatible,
i.e., tis equivariant 10,=T,(; the diagram

MG M
T
M Ta M

is commutative.

To formulate and to prove this, assume G' to be
regular® and recall®:® that

(i) the irreducible UR (IUR) of G" in // are uniquely
classified and each given by a G orbit M°=G/K° in
T, and an [UR L(K°) of K° in a Hilbert space /.
(K° is the corresponding isotropy subgroup); in
short, irreducible W(G") are labelled by (M°, L);

(ii) irreducible SI for G based on M = G/K are unique-
ly classified and each given by an IUR L(K) of K
in / ; in short, irreducible (U, IE, o) are labelled
by (L);
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(iii) the SI for G based on f‘" determined from U(G")
with (M°, L) is unitarily equivalent to an SI based
{(only) on the G orbit M° and is labelled by (L).

Lemma 2: Consider U%G") with (M°, L°) and the SI
(U%G), E%( 3°), 7) determined from U%G"). Let
(U(G),IE(8), 0) be an SI based on M = G/K with (L).
Suppose K to be isomorphic to K° and L unitarily equi-
valent (¥) to L°. Then

(U, E,0)¥ (U, E°T)
if and only if there exists an embedding t: M — f‘" with
(i) M =M°,
(ii) ¢ is equivariant with respect to o and 7.
The proof is given in Appendix A.
(4) A mapping
LG, M,0)—~(G,M’,0"), (G,M,q)=(G, M,0’)

for equivariant ¢ is called an embedding of (G,M,¢) in
(G,M’,0').? We define accordingly an embedding ¢4 for
kinematical structures

tB:(G,B,0)~(G,8',0), 15(G,8,0)=(G,18,0")
with equivariant (.

With ¥ connecting unitarily equivalent SI and the
mappings ¢, 9°, p® defined before, we have the following
quantization diagram (M=G/K, M°=(M):

L

(G, R(M), 0) (G,B8(T), ?)} geometrical level
9| Pl

(U(G), E(B(M)), 0) —

(U(G), E(R(M®)), ?)} quantum level
o°

U(G)

system moving on M system moving in R,

bound on M°CR,

Lemmas 1 and 2 imply that for given ¢ and ¢ A there
exist ¢° p°, and Y if and only if ¢ is equivariant. In this
case the diagram is commutative. We formulate this
as

Corollary: The representations of a kinematical
structure (G, £, 0) can be determined uniquely (up to
unitary equivalence) from YU(G"), if and only if there
exist an integer » >0 and 7 such that (G, 3,0) can be
embedded in (G, 5, 7).

1t is known®™ that for compact G for each (G, M, o) an
embedding ¢ in a Euclidean G space (G, R,, 7) exists,?
A construction of + for homogeneous M can be found in
Ref. 20. For a useful necessary and sufficient condition,
if a G orbit is contained in a linear representation of
G in some Euclidean space, see Ref, 23,

C. Examples?*

(1) Consider the kinematical structure (T, A(R,), 0)
—R,, is the group space of T,—with

0:7,2b—0y, 0,Q)=q+b, qcR,.
Its quantization is given by (U(7,),IE(#),0) and is uni-
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que (if irreducible). The position projections IE(S) can
be used to define self-adjoint operators Q,, x=1,...,n,
on /) dense in /4 by the spectral decomposition

R, = f: dIE(S,) where S, ={a|q,<x}.

Because of the covariance condition (2,1) the @, trans-
form as

U(b)Q, V(D)™ =@, +b,1 on ),

and give infinitesimally an integrable representation of
the Lie algebra H,=(C® @,)4 T, of the Heisenberg
group H ; @, is Abelian and C is a central element.

(2) A slightly more general kinematical structure on
R, is (G, B(R,),0) with G=T, «SO,n), i.e., R,
=G/S0,(n) and with ¢ as standard linear action of the
Euclidean group in R,. Its quantization is characterized
by L(SO,(n)). Operators ®, can be defined as before and
the covariance condition gives infinitesimally an inte-
grable representation of the Lie algebra G;=(C® @,)
4{T, 4 so(n)) of the geometrical Galilei group G,. The
interpretation of L(S@O(n)) as physical spin group is
obvious.

(3) 9(G,R,,0) has interesting properties:

(a) The spin of the system in R, appears affer quanti-
zation; it is part of the quantized kinematical structure,
not present on the geometrical level, and its possible
existence depends on the choice of the group G in
{G,R,,0).

{(b) G acts linearly on M =R,,. Hence (G,R,,0) can be
considered as a Lie group: (T,,R,,0) as H, and
(T,= SO,(n),R,,0) as G,, and quantization yields repre-
sentations of these Lie groups. Therefore, the con-
struction of ®, is possible. For general (G, M, o) global
position operators defined intrinsically on M need not
exist.

(c) The noncommutativity of IP, and ®, is the result
of the covariance condition and of the linear action of
T, or T, ¢ SOy(r) in R,. It is independent® of the fact
that the states of the system have to be identified with
rays in 4.

D. Summary
(1) A quantum system

(i) having a homogeneous space M = G/K as configura-

tion manifold,

(ii) being covariant with respect to G,

(iii) being localizable in M,
has on the geometrical level a kinematical structure
(G, A, 0) constructed from a differentiable G-transform-
ation group (G, M, o) with /3 being a suitably chosen
field of Borel sets S in M, The quantization of the kine-
matical structure is a representation in #: (G, #,0)
= (U(G), E(A), o) with U(G) being a UR of G and IE(3)
being a set of projection-valued measures on M, both
satisfying (2.1); they are systems of imprimitivity,
completely classified by Mackey. The quantum kine-
matics®® is independent of any coordinatization of the
configuration space M.

(2) If (G, M, 0) can be embedded into a Euclidean G
space (G, T,,7), the kinematical structure can be quan-
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tized using a UR of the group G"'=T,Q,G, i.e., U(G)
and E(A) are uniquely determined from U(G™) and vice
versa.

(3) The quantization of (G, A3, 0) yielding an SI based
on M can also be formulated in a more abstract (alge~
braic) way®": From (G, M, o) one can construct a
Banach *-algebra L(G,M, o) called the (G, M, ¢)-trans -
Sformalion group algebra. Its nondegenerate x-repre-
sentations can be constructed via a generalized inducing
process, and are in natural one-to-one correspondence
with (U(G),IE, (B8),0). L(G, M,0) is the completion of the
convolution x-algebra of all continuous complex func-
tions on G XM with compact support. Hence it contains
(a) the group algebra L(G), (b) the C*-algebra C,(M)
of all (continuous) complex functions on M with com-
pact support, and the representations of L(G) and C (M)
obtained from a representation of L{G, M, ¢) uniquely
correspond to U(G) and IE(B), respectively. So there is
a formulation in which M is determined by CO(M) which
is more reasonable than Borel sets. However, the
quantization on M with L(G, M, 0) is more complicated
than the approach used here and will lead to the same
results.

3. FREE QUANTUM SYSTEMS

A Hamiltonian for a system with ¢(G,M, o) is an
essentially self-adjoint (e.s.a.) operator and a function
of the momentum operators and position projections of
9(G,M,0). To define a free Hamiltonian H° on M con-
sistently with ¢(G, M, o) we discuss different methods
on the geometrical and on the quantum level: Ex{vinsic
ones which try to project properties of systems in R,
to an embedding (M of M in R, and inlvinsic ones
which rely only on properties of ¢(G,M, o).

A general outline of the different methods is given in
Sec. 3A, for an extrinsic and an intrinsic method see
Secs. 3B and 3C, respectively. Examples are treated
in Sec. 3D and a summary is given in 3E.

A. The Hamiltonian

(1) We propose first an ex/vinsic method on the quan-
tum level to define the free Hamiltonian H° on M. Con-
sider a quantum system moving on R, with 9(G,R,,T),
G=T,% SO,(n). Its free Hamiltonian is HJ =¢ &, with
A, being the Laplacian and ¢ ={(2m,)™ being a factor of
dimension [m™]; m, is the mass of the system in R_.
Following Sec. 2B, (G.A,0) can be quantized in two
steps: An embedding ¢ : M — R, in (G, A(R,), T) and
a restriction of ¢(G,R,,T) to tM. An application of
this result (Lemma 2) to a calculation of H° is reason-
able: Take H? defined in J(G,R,, T) and restrict H; to
M with a submersion 7: R, —~ M. The unique result is
an operator on M which, if e.s.a. may be identified
with H°.

(2) An intrinsic method on the quantum level uses
an invariance argument. For a given ¢(G,M,o) a dif-
ferential operator ID e, s.a. on /) may be identified with
H® if

(i) D is G-invariant: U(G)DU(G)™ =D on /),

(ii) D is a differential operator of minimal order.

If momentum and energy conservation for “free system
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on M” is enforced, assumption (i) is necessary, As-
sumption (ii) is motivated only by the poor analogy to
the free system in R,. If there is no G-invariant dif-
ferential operator on M, the conservation laws fail for
free systems on M.

(3) In both methods discussed so far the Hamiltonian
was introduced on the quantum level (see the quantiza-
tion diagram), so an additional quantization of the
Hamiltonian was not necessary. However, it is possible
also to introduce dynamics on the geometrical level
and to quantize it in a second step, using, e.g., a pro-
cedure similar to the correspondence principle. The
difficulty is that one has to justify both the classical
Hamiltonian and its quantization. It is well known that
the quantization of a classical observable is in general
not unique and need not be compatible with the quantized
kinematical structure. However, there are also unique
and compatible quantizations.

To indicate this we sketch shortly a method starting
on the kinematical level. Consider M, (R,, g,) and ¢ :
M —R,. Then the Riemannian structure g on M [and its
associated (2, 0)-tensor field g’'] are uniquely given by

g=1*g,, Ly TM)—T(R),
g (X, V) =g,(1,X,,Y), X,YeTM).

The classical free Hamiltonian on R, is given by ¢g,, so
as a first step we define ¢-(t*g,)’ as classical free
Hamiltonian.

To reach the quantum level in a second step, we give
two quantization procedures:

(a) 9(G,M,0) contains a natural mapping d¢ of vector
fields X, on M at p into dU(G) considered as an r-
dimensional vector space

dg: T,(M)2X,—~ K, =dU(X,)=dU(G), i=1,..,,7.

Hence d¢ applied to T,(M}xT,(M) sends 3, , g(X;, X,), to
an operator g, in #, and gives a “Riemann operator” g
which is a second-order polynomial in the generators
of U(G) with p-dependent coefficients. gg can be used
as quantized free Hamiltonian. However, ¢ is not
symmetric in general; it has to be symmetrized, and
this can be done in various ways with quite different
results.

(b) The Laplace-—Beltrami operator A, on (M, g) is
unique, H? is proportional to A, on(R,,g,), i.e., the
quantization of g is A . The corresponding procedure
applied to (t*g,)’ gives uniquely

H°=ga, on(M,t*g,) in C°(M)C L¥M, p,),
du, =V det(g,,)d™.

A, is a second-order differential operator. For (M, g)
being a complete Riemannian manifold, e.g., a
Riemannian homogeneous space, A, is e.s.a. in

LM, p,) of vector-valued functions. *® Note that 4, is
not necessarily G-invariant. The justification of the
procedure is weak [see Sec. 3B(6)]; however, the result
is reasonable.

B. Hamiltonians via submersion

(1) R, is a Euclidean Riemannian space (R,, g,) if the
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Euclidean Riemannian structure g, is imposed on R,,.
Because the Laplacian A, on (R,,g,) and hence H? are
directly related with properties of (R,, g,), we introduce
a Riemannian structure g on M. If g is G-invariant,

(M, g) is a Riemannian homogeneous space. Note that a
G-invariant g determines a G-invariant Riemannian
measure g, on M which can be used as quasi-invariant
measure on M = G/K for the inner product in # (see
Appendix A).

(2) We explain the submersion in a simple example.
Consider (R,, g,) and the circle §'. Map S* with ¢ onto
the unit circle in (R,,g,). Take the manifold W=R,\{0}
with 0 as origin of R,. Define a mapping 7;: W— S' such
that all points » of a fixed ray N, in W starting from 0
are mapped into its intersection p with §°, i.e.,
m(v)=p. It is easily checked that 7 is a submersion
(see beiow) of W onto S! along totally geodesic fibers
77'(p). The tangent spaces T,(W) can be decomposed
in (here one-dimensional) orthogonal subspaces 7! and
T} such that 7 induces a mapping 7, on T (W) sending
T, onto T, (S") and T; to the null vector G,,, of
T,(S"); 7is even a Riemannian submersion (see
below).

Take now the Laplacian 4, on R,, i.e., in Cartesian
coordinates, A,f=(32/3¢%)f+(2%/8¢%) f with f(q)
€ C”(R,) and g€ R,. Then A,{fom)q)=(3%/2¢%)(fo7)(q)
+(3%/24° fow){Q) is a “restriction” of A, in R, to S* and
because of 7 (Riemannian submersion along totally
geodesic fibers) the second term vanishes., With ¢(f) an
R,-geodesic perpendicular to N, and parametrized by ¢,
the first term is (&,1) () =(d*/di*)(fo 1)(c() 1 ,., and the
introduction of the polar angle ¢ leads to the known
result.

(3) In a general setting, let W and M be C*-manifolds.
A mapping 7. WM is called a submersion at point
r € W, if there exist charts (V, t) at  and (U, x) at =(»)
such that £ determines an isomorphism of the set V on
a product V, XV, where V,, V, are open subsets of some
model Euclidean spaces and the mapping

Ty y=Xemot™ VXV, xU

is a projection, ** A submersion 7 at ¥ can also be
characterized by its differential Ty, being surjective
and its kernel decomposing T,(W).

If 7: W— M is a submersion, and if (W, g )is a
Riemannian manifold, then 7,(W) has a canonical
decomposition

TT(W) = (W*,.)—l (Orr('r))(B Mr,

where M, is the subspace of 7,(W) which is orthogonal
to the kernel of 7, , O, is the null vector in T,,,(M),
and T, induces an isomorphism of M, onto TW,(M).

A submersion 7 is called Riemannian submersion, if
Ty, induces an isomorphism of Euclidean spaces from
M, on T, ,(M).

A connected submanifold S of a Riemannian manifold
W is geodesic at p € S, if each W geodesic tangent to S
at p is a curve in S; S is fotally geodesic if it is geodesic
at each of its points.
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(4) The following theorem is essential for a restriction
of the Laplace operator A to MCR,.

Theorem 13°3132; Let M be a homogeneous space and
W a submanifold of dimension » in R; A and A, the
Laplace—Beltrami operators on (R,, g,) and on (M, g),
resp.; m: (W, g,) — (M, g) a Riemannian submersion;
773 p) totally geodesic in W for each p € M; f(p) e C*(M)
CLAM, u,).

Then
A(fem)=(aAf)om. 3.1)

(5) To apply this to a quantized kinematical structure
9(G, M, o) note that the above Riemannian submersion
7 (along totally geodesic fibers) determines an asso-
ciated isometric embedding ¢: (M, g) — (W, g,) defining
the same submanifold M in R, as 7. However, the
quantization of (G, A(M), o) via an embedding in
(G, B(R,), 7) already determines an (equivariant) map-
ping of M onto a given G orbit (or an orbit of the same
type) and one must ensure that 7 yields an associated
embedding which maps M onto an orbit of a given type.
Insofar as the existence of 7 is known, this is the case.
Consider the set of G orbits of one type. Suppose that
they build a submanifold, (called “orbit manifold”) W in
R, with dimW=mn. Then 7: (W, g,) —~ (M, g) exists®® with
77(p) totally geodesic in W for each p € M and the asso-
ciated embedding ¢ is equivariant. G orbits with orbit
manifold of dimension # exist, e.g., for G=S0(2) and
R,, where the circles centered at 0 are SO(2) orbits of
one type and dense in R,. More generally, for compact
G the principal G orbits build an orbit manifold with
dimension n dense in R,, and all nonprincipal G orbits
build a topological submanifold in R,.?°*" There are no
results for noncompact groups.

For the application of Theorem 1 we formulate:

Lemma 3: Let ¢ be an equivariant embedding of
(G,M,0) in (G,R,, 7). Consider ¢(G,R,, ) labelled by a
trivial L{X) and by a G orbit +M with an orbit manifold
of dimension »; ¢(G, R,, 7) is unitarily equivalent to
some §(G,M,o0).

Then a Riemannian submersion along totally geodesic
fibers restricts HY on C*(R,) to a free Hamiltonian H°
on C°(M) with ¢(G, M, o) as quantized kinematical struc-
ture. H° is up to a constant multiple the Laplace—
Beltrami operator A, on (44, t*g,) and ¢ is associated
with 7.

(6) The submersion 7 is (up to now) applicable to
(G, M, 0) with compact G, with quantization on principal
G orbits and with a Hilbert space spanned by scalar
functions, For the self-adjointness of /A, see Sec. 3A(3).
Generalizations to vector-valued functions and hence to
9(G,M, o) with nontrivial L(K) are possible.

(7) We add a remark concerning quantizalion by em-
bedding and submevsion. The calculation of H® is a
special case of a more general (extrinsic) procedure*
to describe quantum mechanics on M: Embed M in R,.
Then the physical observables on tM are restrictions of
the corresponding observables in R, which are known
from ¢(T ,R,, 7). There are examples in which this
procedure fails.
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We give the momentum and the position operators
P!, Qf, k=1,...,n, on tMCR, which refer to Carte-
sian coordinates g, of the ambient space R,, not to local
coordinates on M, as, e.g., x”"in UC M. The Q! are
easily calculated from ¢: M>p— ((p)cR,,

Qs FL(LN =g (PN f((p)) on C(LM),

and can be constructed also from U(G") + T,=U(T,) if
9(G,M,0) is determined from U(G") with (:M,L), L
being trivial. One can check that dU(T,) acts as Q! on
C=(LM).

To derive P}, express 7and ¢ in local coordinates®
(x9, a=1,...,m, at pe M and (£*), «k=1,...,n, at
re Was

tay? ToM)—T,(W):3,~By3,, v=1(p),

Tyt TW)—~T,(M):0,~Bi2,, p=ulr),

* Kk “Yas
where Bf =2, x°, Bi=2a,8", 8,=2/2x° 0,=3/3E*. As-
suming that ¢ and 7 determine the same submanifold M
of W, we can define the product mapping

L*n(r) ° W*r : Tr(“/) - TLorr(r)(W) : ax g B:a),

where B} =B’ B is a perpendicular projection of rank
m <n.

With this projection we have (in symmetrized form)

~

P—_
99,

P! =3(B} P, +P,B;) on C*(LM), P,=

The free Hamiltonian was given above for special cases
only. The result is generalized to

H°=q &l on (1M, t*g,) on C*(LM).

A}, can be expressed in Cartesian coordinates ¢, as
(for a proof see Appendix B)

AL=08%3, B3, on C*((M). {3.2)

Because PP,, ®, and HJ are related for the free particle
as P, = = imy[®,, H®] on C*(R,), our ansatz for H° should
be consistent with P! =~ imy[Qtl, H°| on C*(tM) and this
is in fact the case as can easily be checked using (3. 2).

C. G-invariant operators

(1) We discuss systems with ¢(G,M, o) with trivial
L{(K) and with Hilbert space L% M, u1,). The application
of the mapping d to U(G) in 9(G, M, o) gives (first-order
differential) operators X;, i=1,...,% on C*(M) repre-
senting the generators of G. In our case there are no
invariant linear differential operators of first order on
C*(M).%® So we start with second-order ones denoted by
Jl.

(2) For some classes of homogeneous spaces we give
now a list for I on C™(M).

(A) M being a group manifold of a connected semi-
simple Lie group G,

I=¢"X,;X; on C*(M), (3.3)

where ¢ is any Ad(G)-invariant symmetric tensor on
G. If G is simple, q¥ is proportional to the Cartan—
Killing metric tensor and

J =q &, on C(M); (3.4)
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/A, is the Laplace—Beltrami operator on M =G for the
canonical Riemannian structure. For G semisimple
with G=G,®-+-® G, and G, simple, I can be written
as a real linear combination of the Laplace—Beltrami
operators on M, =G,. %

(B) M veing a reductive homogeneous space® G/K
[i., e., in the Lie algebra G there exists a Subspace M
such that G=K &M and Ad;(k)M CM for all ke K],
J has the form (3.3) where ¢ is an Ad,(K)-invariant
tensor on T,(M)=M. The simpler form (3.4) is obtained
if the Riemannian homogeneous space (M =G/K, g) is
isotropy ivveducible,® i.e., if G=1,(M)=component of
identity in the group of isometries of M, and the con-
nected component of Ad,(K) acts irreducibly on M. For
a classification of such manifolds see Ref. 40.

{C) M being a Riemannian globally symmetric space,®
J has the same properties as in (B); there exist /
algebraically independent (7 is the rank of M) invariant
symmetric differential operators which commute.

(D) M being of rank 1 (or Euclidean space), Is it
uniquely given by (3.4).

(3) The list shows that J is unigue and proportional to
the Laplace—Beltrami operator on (M, g) for M =G and
G simple and for M being an isotropy irreducible
Riemannian homogeneous space. For the self-adjoint~
ness see Sec. 3A(3).

D. Summary

(1) The problem was the following: Consider a quan-
tized kinematical structure ¢(G,M,0), M=G/K. It is
possible to define a Hamiltonian H° of a free system on
M, i.e., of a free particle, moving on M, consistently
with the (G, M,0)?

The answer is not affirmative. The best one can say
is: For a larger class of M and G, depending on the
method used to select H® and for (G, M, 0) obtained from
U(T,& . G) with trivial L(K) and a labelling G-orbit
tMCR,, e.g., for a spinless particle moving on M, H°
is uniquely given as the real multiple of the Laplace—
Beltrami operator on (M, t*g,), e.s.a. on C*(M)

[ LZ(M, IJg)-

Because different methods, if applicable and if the
solution is unique, give the same result, the ansatz

H°=ga, on (M,.*g,) in C*(M) (3.5)

is well justified.

(2) We discussed three methods:

(I) An intrinsic method on the quantum level was based
on transformation properties of 9(G, M, ). We assumed
H° to be G-invariant and of minimal order. Result: For
M =G and for M being an isotropy irreducible Rieman-
nian homogeneous space, H° is uniquely given by (3.5).

(I1) An extrinsic method on the quantum level is based
on a submersion 7: R, — M. The idea was to restrict
consistently with ¢(G, M, o) the free Hamiltonian H° in
R, via a submersion to an operator H° on M. Result:
For compact G and J(G, M, o) induced from principal
orbits H° is uniquely given by (3.5).
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(I1II) An extrinsic method on the geometrical level is
based on an embedding ¢ : M— R,. The Riemannian
structure t*g, is imposed on M. The classical Hamil-
tonian on M is ¢+ (¢*g,)’ and for its quantization the
same procedure is applied as for the classical Hamil-
tonian on R,. Result: For all Riemannian homogeneous
spaces and for all G, H° is uniquely given by (3.5).

4. DISCUSSION

(1). We give a short (and not complete) account of
previous attempts to quantize systems on manifolds,

(A) One of the first was formal quantization of classi-
cal generalized coordinates x° and canonical momenta
p. done in close analogy with the canonical quantization
in R,.* For given (M, g) the result is

QR=xt, P,=-ifid,-1i7d,(lng), g=detlg,,),
and the operators are symmetric in L¥M, ).

In nonrelativistic quantum mechanics this “quantiza-
tion in curvilinear coordinates” has been applied to
special systems with constraints like the rigid body, the
rigid rotator and the symmetric top,** and further, in
the strong coupling theory® and the rotator models of
elementary particles, ®

Another, more recent, generalization of canonical
quantization when the system satisfies supplementary
conditions has been proposed by Dirac*® and applied to
the quantization of gauge fields.** A more rigorous
approach to the quantization on a Riemannian manifold
(M, g) was indicated in Ref. 45,

The main difficulty of formal quantization of general-
ized coordinates and momenta is connected with the fact
(mentioned in Sec. 2A) that on M the coordinates can, in
most of the cases, be defined only locally. In the usual
curvilinear coordinates the operators corresponding to
them may not be well defined as can be exhibited in the
simplest case of the unit circle M =S', where the
multiplication by the angle ¥=¢ is not an operator in
the Hilbert space L*S!, d¢) of periodic functions*® f(p)
=f(g +27).

(B) A second and promising approach generalizes
Feynman’s path inlegral method®™ to manifolds*® and was
applied to define the free Hamiltonian on M. The results
obtained are different from ours: The Hamiltonian H° on
M has an additional term depending on the (intrinsic)
scalar curvature R of (M, ¢),

s (A&, —1R).

However, the path integral method has mathematical
problems; it was originally formulated as a set of rules
which define the measure on the space of classical
paths by means of a special procedure.*® The connection
to the proposed method is not yet clarified.

(C) Two further methods are to be mentioned:

The dynamical group approach,® in which the kine-
matics and, if possible, also the dynamics are given by
a unitary representation of a Lie group such that mo-
mentum, position operators, and the Hamiltonian are
among its generators, If (G, M, o) can be replaced by a
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Lie group, it is the kinematical subgroup of a dynamical
group,

The “Kostantification,”" i.e., the construction of
certain representations of Lie groups using a method
developed by Kostant and Souriau based on properties
of the phase space considered as symplectic manifold.

(2) The results of our attempt to tie up the group-
theoretical approach to quantum kinematics with the
differential-geometrical approach® to free particle
dynamics are collected in Secs. 2D and 3D.

A generalization to locally compact separable group
G is possible! because the SI exist in this case but the
mapping o : G/K -~ M is only a homeomorphism. So this
is excluded by physics where we need a differential
structure on M. According to Arens’ theorem,® in
order that « be a diffeomorphism we have to assume
that G is a transitive differentiable transformation group
of M, i.e., G is a Lie group.
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APPENDIX A

(1) With the definitions of Sec. 2 the canonical SI':?
(U(G), IE(A), 0) based on M =G/K and given by L(K) in
[ with inner product {.,.) is defined in #/ spanned by
vector-valued functions f: M — / with finite norm given
by the inner product

(9= [{he(Pdup)  (peh),
where i denotes a G-quasi-invariant measure on M, as
as follows: V(G) is given by [p,=dp,/di, waS)
= ulo(SH]
1 (ac G, adK)

[Ua) 1 p) =Vp,-1 (P) .f(oa-l(p)){ _
Lia) (a€kK)

E(A) is given by
(E(S)F1(p)=(xs ) (p),
where the characteristic function

1 (pe9)

An SI (U, E) is called irveducible, if there are no non-
trivial subspaces in /#/ which are invariant with respect
to both Ula) and IE(S) for all ¢ € G and all S¢ 4. Two SI
(U,,E,), i=1,2, are unitarily equivalent, if there exists
a unitary operator ¥ on 4 such that

U,(a)=Y U a)¥" and IE,(S)=FE,(S)¥!
for all a€ G and all Se 4.
(2) The IUR U(G") induced by X e M°=G/K° and L%K°)
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in /° with inner product (., .), is defined in #° spanned
by vector-valued function 7: M°—/° with finite norm
given' % ® by the inner product

(f:g):fuo<f:g>o(p)dlio(ﬁ) (p M),

where u° denotes a G-quasi-invariant measure on M°,
as follows [a"=(t,a)c G |:

X 1 (@¢T,8,K)
[0(a") /A 2) =V3-(0) f (7 (P S _ .
L(@)X(?) (@€ T,®,K)

(3) Proof of Lemmma 2: Define an isometric mapping
I of A/ onto #° [see (1) and (2)] I : 7(p) — F(wp) = £%(p°)
[=7(p)]. The projections IE® constructed from V°(G")
are unitarily equivalent to [IE°(S°) /°](p°) =(Xs0/ ) (2",
PP e M, f°c /° and coincide with the canonical E in
(U, E, o) if the same Borel field is used for M° and M,
which is possible.

For representations of G we find

UAG)+G: [U%a)FONp%)
Sl (acG, ad K
=Vpl-1(pY) T (1)0))2

et ?

L°(a) (acK?)

v(G): [U(a)rl(p)

1 (ec G,a ¢ K)

=Vp,1(P) flo,1(p)) )
»L(a) (ag K)

where p2 and p, denote the appropriate Radon—Nikodym
derivatives.

Suppose now ¢ to be equivariant, then (7,1 t(p))
=110, (p)) = flo,-1(p)), and the G-quasi-invariant
measures u°, u on A° A are equivalent, which, be-
cause of ¥ and L°Y L, implies unitary equivalence of
4° and #, and of U%(G) with U(G). If to,# T, for at
least one a € G, then there are f(p) < # such that
[U%a) f°K p°) # [U(a) F|( p) and the representations cannot
be unitarily equivalent.

APPENDIX B
Proof of A, [ =6"3,B* 3,7, fe C(tM): The
Laplace—Beltrami operator on (M, g) is
(841 Np)= gV, Vo f (p)= g"(2y0. = {5a}3.) 7 (D),

where V, is the covariant derivative on (M, g}, f€ C*(M).
Using relations (van der Waerden—Bortolotti formal-
ism?®*) as, e.g.,

%a=B} B g)n {5at=B, BiBi{L}, - Bio, By,
we get (F=fo)
ALF=g B [3, B 3, =B {1}, B 2,17
- g“BY(0Y — B2)(3, B}) B2,/
The last term is zero because of the idempotence of the

projection B}, hence
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Abf:g"“B';a,,B,‘: auf"B:{su}nt 9,15
and in Cartesian coordinates ¢* in R,

ALf =60, B53, S
because g =0 and 3, By = m, is perpendicular to
B%[n,=+H,, is the mean curvature normal of (M, g)
in (R, g,) expressed in terms of the second fundamental
tensor H,%, =V, By, m =dimM].
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A general Hermitian scalar field, assumed to be an operator-valued tempered distribution, is
considered. A theorem which relates certain complex Lorentz transformations to the TCP
transformation is stated and proved. With reference to this theorem, duality conditions are
considered, and it is shown that such conditions hold under various physically reasonable
assumptions about the field. A theorem analogous to Borchers’ theorem on relatively local fields is
stated and proved. Local internal symmetries are discussed, and it is shown that any such symmetry
commutes with the Poincaré group and with the TC P transformation.

. INTRODUCTION AND OUTLINE

The so-called duality condition in quantum field theory
and in the theory of algebras of local observables has
been discussed by many authors. =% From these studies
it appears that it would be a desirable, if not essential,
feature of a local theory that such a condition holds.
Very roughly stated the duality condition for a region R
in spacetime says that the set of all operators which
commute with all operators locally associated with R is
equal to the set of all operators locally associated with
the causal complement of R. It was first shown by
Araki® that conditions of this nature do hold for a class
of suitably restricted regions R in the case of a free
Hermitian scalar field. It is the purpose of this paper
to discuss the duality condition in quantum field theory
in the general case, i.e., without making the assump-
tion that the field is free.

Our considerations are within the framework of con-
ventional quantum field theory, as formulated by
Wightman and others, *~!! We shall restrict our discus-
sion to the case of a single local Hermitian scalar field,
assumed to be an operator-valued tempered distribu-
tion. We will state the assumptions in some detail in
Sec. II, in which we also explain the notation to be fol-
lowed. Our discussion can readily be extended to more
general cases, but, in order to avoid complications
which might obscure the main line of argument, we pre-
sent our ideas in what appears to us to be the simplest
possible setting.

In Sec. II we consider some implications of the
“spectral condition”, i.e., the assumption that the
spectrum of the 4-momentum operator P associated
with the translation subgroup of the Poincaré group is
contained in the closed forward light cone, We here re-
view some facts, by and large well known, which will
be of interest in the subsequent discussion, and we con-
sider a slightly modified version of a well-known theo-
rem of Reeh and Schlieder. !

In Sec. IV we consider complex Lorentz transforma-
tions, and a connection between these and the antiunitary
inversion transformation (TCP-operation). Since the
Hilbert space of physical states carries a strongly con-
tinuous unitary representation of the Poincaré group, it
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follows that there exist dense sets of analytic vectors of
the associated Lie algebra and of sub-Lie algebras of
this Lie algebra. It is a characteristic feature of quan-
tum field theory that such sets of analytic vectors can
be constructed “naturally” in terms of suitable multi-
linear expressions in the fields and the vacuum state
vector . We shall in particular consider the following
issue. Let Wj be the wedge-shaped region W, ={x|x?

> |x*1} in Minkowski space, and let 2,(W) be the poly-
nomial algebra generated by field operators averaged
with test functions with support in W;. Let V(e;, t), ¢
real, denote the velocity transformation in the Poincaré
group whose action on Minkowski space is described by
the four Xfour matrix

10 0 0
01 0 0
0 0 cosh(f) sinh(¢?)
0 0 sinh(f) cosh(f)

V(eB’ )=

The set of all V(es, {) is thus a one-parameter
Abelian group of velocity transformations in the 3-
direction which maps the wedge region W, onto itself.
To the element V(e,, f) corresponds the unitary operator
U(V(ey, t), 0) = exp(~ itK;) on the Hilbert space, where
K, is an (unbounded) self-adjoint operator. We shall
show that every vector XQ, with X e P((Wg), is in the
domain of the normal operators exp(—izKs) for the com-
plex variable z in the closed strip 7= Im(z)= 0. The
vector-valued function exp(—izK;) XQ is a strongly con-
tinuous function of z on the above closed strip, and an
analytic function of z on the (open) interior of the strip.
We shall furthermore show that for any such vector

exp(rK;) XQ =JX*Q (2)

where J is the antiunitary involution defined by
J=U(R(es, 1), 0)8, 3)

where R(es, 7) is the rotation by angle 7 about the 3-axis
[and U(R(e;, m), 0) the corresponding unitary operator on
the Hilbert space], and where O, is the TCP-operator,

The relation (2) is the main result of Sec, IV. It
holds, in fact, for a somewhat larger class of field
operators, as stated precisely in Theorem 1.
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Section V is devoted to a discussion of some mathema-
tical questions relating to (2). We consider families of
operators which satisfy the relation (2), and, in particu-
lar, we discuss the properties of any von Neumann alge-
bra /4y of bounded operators X which satisfy (2), and
such that furthermore J4zJ =4}, where 4% denotes the
commutant of 4. The main results, relative to the sub-
sequent discussion in Secs. VI and VII, are stated in
Theorem 2 and Lemma 15. Our discussion is closely
related to a theory of Tomita!® on the structure of von
Neumann algebras (and of modular Hilbert algebras),
and we discuss the connection,

In Sec. VI we discuss a particular duality condition,
for the wedge region W5 Let W, be the causal comple-
ment of Wg, i.e., the wedge region Wy ={x|x* <- |x*},
and let 2,(W,) be the polynomial algebra generated by
field operators averaged with test functions with support
in W;. We consider four particular conditions on the
quantum field under which the polynomial algebras
Po(Wg), respectively 2,(W.), of urnbounded operators
define von Neumann algebras 4 (W), respectively 4(W,),
of bounded operators which can be regarded as locally
associated with the wedge regions Wy and W;, and we
prove that these von Neumann algebras satisfy the dual-
ity condition 4(Wg)' =4 (W.). We also show that the TCP-
symmetry of the field carries over to the system of
bounded local operators in the sense that JA4 (W) J
=4(W;.). These results are formulated in Theorems 3
and 4.

Theorem 3 includes in particular the following re-
sult, which holds generally, i.e., without any addi-
tional assumption about the quantum field beyond the
minimum assumptions discussed in Sec. I. If X is a
bounded operator which commutes with all (linear) field
operators averaged with test functions with support in
W, and if ¥ is a bounded operator which commutes with
all field operators averaged with test functions with sup-
port in Wg, then X commutes with Y, This statement is
analogous to a well-known theorem of Borchers on the
local nature of fields which are local relative to a local
irreducible field. !4

We have not solved the problem of whether the von
Neumann algebras (of bounded operators) associated
with wedge regions, or other regions, always exist, and
we are thus forced to make additional assumptions,
which, however, are not unreasonable physically. This
question appears to be intimately related to the hitherto
unsolved problem of whether a sufficiently large set of
quantum field operators have local self-adjoint exten-
sions (within the framework of the customary minimal
assumptions of quantum field theory). We discuss the
notion of a local self-adjoint extension of the field, and
we show that it implies the existence of a system of
local von Neumann algebras which satisfies the duality
condition. We also show that the existence of such a
system follows from other conditions which appear to
be less restrictive than the condition that the field has
a local self-adjoint extension.

In Sec. VII we discuss the duality condition for a
particular set of bounded regions, namely the set of
all so-called double cones. The von Neumann algebras
associated with the bounded regions are constructed
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from the von Neumann algebras associated with the
wedge regions. We describe the properties of these
algebras in Theorems 5 and 6, and we show that the
duality condition for the algebras associated with the
wedge regions implies an appropriate duality condition
for the algebras associated with double cones.

Finally, we consider the notion of a local internal
symmetry, and we prove (Theorem 7) that if the duality
condition holds for the wedge algebras, then every local
internal symmetry commutes with the Poincaré group,
and with the TCP-transformation.

Il. BASIC ASSUMPTIONS; DISCUSSION OF
NOTATION

Minkowski space /) is parametrized by the customary
Cartesian coordinates x = (x!, x%, x°, x*). The Lorentz
“metric” is so defined that x - y =x%* = xlyl = x2y% — x3y3,
The elements A =A (M, v) of the proper Poincaré group
L, are parametrized by a four-by-four Lorentz matrix
M, and a real 4-vector y, such that the image Ax of a
point x € /) under any A € L, is given by Ax =A (M, v)x
=Mx +v.

The Hilbert space // of physical states is assumed to
be separable, It is assumed to carry a strongly contin-
uous unitary representation A — U(A) of the Poincaré
group L,. We write U(A(M, x))=U{(M,x), and we employ
the special notation T'(x) =U(/, x) for the representatives
of the translation subgroup. The translations have the
common spectral resolution

T(x)=UU,x) = [ exp(ix°p) ud*p) 4)

and it is assumed that the support of the spectral mea-
sure U is contained in the closed forward light cone A
(in momentum space). This assumption about the sup-
port of u will be referred to as the “spectral condition”
in what follows.

We assume the existence of a vacuum state, repre-
sented by the unit vector 2, uniquely characterized by
its invariance under all Poincaré translations: thus
UA)Q=Q.

We denote by /)(R") the set of all complex-valued in-
finitely differentiable function of compact support on n-
dimensional Euclidean space R", and we denote by §(R")
the space of test functions on R” in terms of which tem-
pered distributions are defined. The space §(R") is re-
garded as endowed with the particular topology appropri-

ate to the definition of tempered distributions, !° and we
employ the notation
§-lim f, =0 (5)
o= o

to state that a sequence of test functions f, converges
to zero relative to this topology. We shall be concerned
with test functions on R*", where R*" is regarded as the
direct sum of an ordered n-tuplet of replicas of
Minkowski space, and the points of RY are accordingly
parametrized by an ordered n-tuplet (x;,x,,...,x,) of
4-vectors x,. A specific interpretation of R*" in this
manner is always understood, as reflected in the above
parametrization of the space, In accordance with the
above we define an action of L, on §(R*") by

f(xia e ,xn) - f(xi, s e ’xn) :f(A-1x1, e ,A-ixn)u <6)
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This mapping is continuous relative to the test
function space topology, and

S-lm Af=f. @

Throughout this paper it will be important to keep
track of the domains of unbounded operators. To deal
effectively with such issues we shall frequently employ
the unorthodox notation (X, D) for an operator X defined
on a domain D, The adjoint of (X, D) is denoted (X, D)*
and if D(X*) is the domain of the adjoint we can write
(X, D)* = (X*, D(X*)), If (X, D) is closable we write
(X, D)** = (X**, D(X**)) for the closure. This notation is
never employed for manifestly bounded operators, which
are regarded as defined on the entire Hilbert space.

We shall consider a theory of a single local Hermitian
scalar field ¢(x), assumed to be an operator-valued
tempered distribution, ®-*!+1® Such a theory is charac-
terized by the following features:

(a) There exists a linear manifold Dy, dense in the
Hilbert space //, and an algebra 2(/]) of operators
(X, D) defined on D;, The domain D; contains the vacu-
um state vector Q. For each n=1 there exists a linear
mapping of §(R*) into (). The image of any f& § (R
under this mapping is denoted ¢{f}. We note here that
@lf} is the operator which is customarily defined sym-
bolically by the integral at right in

(p{f}=f(,,)d4(x1) e od(x,) flxy, .

The domain D; is precisely equal to P(#) €, and the
algebra P(/)) is precisely equal to the linear span of
the identity operator I and the set of all operators (p{f}
I fe S(R*™ and ge S(R*™), and if ke §(R*™*™) is given
by

~yxn) (p(xl)oac(p(xn)v (8)

R4y oo s Xny Xnags e oo s Xnam)

=f01, e s %) 8 Knets - o v s Xnam), 9)
then

olrt olet=oln} on Dy (10)

We note that this is consistent with the symbolic
definition in (8).

(b) Let (X, D) — (X7, D,) denote the antilineay involu-
tory mapping of (/) onto itself uniquely determined by

I'=1, off}'=o{r, (1)
where
ff(xlyxh“-’xn) :f*(xm-v°,x2’x1) (12)

for any fe ((R™),

The domain Dy is contained in the domain of the ad-
joint (X, Dy)* of every (X, D;) € P(/), and

(Xf)Dl):(X*’Di)C(X’DI)*G (133)
In particular,
(01"}, Dy < (@{r}, D*. (13b)

Every operator (X, D;) e (/) is thus closable, and
(X', Dy) is the Hermitian conjugate of (X, D;).

(c) The domain Dy is invariant under the Poincaré
group: U(A)D; =D, for all A€ L,. The action of Z, by
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conjugation on O(#) (and hence the action of L, of the
Hilbert space //) is uniquely determined by the condition

U (@if}, D) U1 = (@fAf}, DY) (14)

(d) The mapping f— ¢{f} is such that if {f,| f, € §(R*™),
a=1,...,«}is any sequence of test functions which
tends to zero in the sense of the test function space
topology, i.e., such that (5) holds, then

s-lim Xo{fo}#=0 (15)

for any (X, Dy) € (M) and any y € D,

(e) Let R be any open subset of Minkowski space., Let
P(R) denote the linear span of the identity operator I
and all operators (¢{f}, D;), where fe §(R*) for some
n=1 and such that supp(f) <{(x,..., %) %, € R,
k=1,...,nhL

Then, if R; and R, are any two open subsets of
Minkowski space which are spacelike separated [i. e.
(x=9y)° (x=9v) <0 for any x € R;, y € R,], we have

[X, Y]lp:O’ all d)EDly
for all Xe P(R() and all Y € P(R,).

Our purpose with the preceding account was to state
precisely what we assume, and not to formulate a mini-
mal set of postulates for field theory. It will be noted
that the conditions which we have stated are in fact not
all logically independent of each other. It should also be
noted that we do not assume anything beyond what is im-
plied by the usual minimal assumptions for quantum
field theory.

(16)

Since operators linear in the field will be of particu-
lar interest, we employ a special notation for the case
fe §(RY, namely,

olf1=olrt=J ., 4@ 1) o). )
For any open subset R of Minkowski space we denote
by /,(R) the polynomial algebra generated by the identity
I, and all operators (¢[f], Dy) such that supp(f)CR.
With reference to the definition of the algebra P(R) in
(e) above, we then have P (R)C P(R)C P(/)). We state
some well-known properties of these algebras as
follows.

Lemma 1: () (Theorem of Reeh and Schlieder?) Let
R be any open, nonempty subset of Minkowski space /.
Then 2y(R)  is dense in the Hilbert space /.

(b) Let (X, D;) < P(R). Then there exists a sequence
of operators {(X,, D)1 (X, D;) € Po(R), a=1,..., %}
such that

s-lim YX 0 = YX

o= o

(18)

for every Y e P(/})) and every y < Dy,

(c) The linear manifold Dy C Dy defined as Dy = 5, (/}) &
is dense in the Hilbert space, and

(X, DO)* = (X’ Dl)*, (X, DO)** = (X’ Dl)**
for every (X, D) e P(/).

The above is of interest with reference to other ap-
proaches to field theory, in which the initial object of

(19)
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interest is ¢{f], defined on D,, and where the commu-
tation relation (16) is at first assumed only for opera-
tors X and Y of this special form. After the appropri-
ate extensions and constructions one arrives at the
equivalent of our formulation. We preferred to intro-
duce the domain D; immediately, and to regard all field
operators as defined on precisely D;,, The symbols

X*, X** and X', for (X, D;)< P(#), thus refer to the
adjoint, closure and Hermitian conjugate defined rela-
tive to this domain,

Whereas the domains D, and Dy are Poincaré invari-
ant, this is, of course, in general not the case for the
domain D(X*) of (X, D;)* and the domain D(X**) of
(X, Dy)**., We have the relations

(UM XU, D)* = (UWN) X*UL)™, UA)D(X*))
(UA)XUQA)T, DY** = (UN)X**UN), UN)DX**)),

(20a)
(20b)

We finally note that it trivially follows from (13a)
that

(X7, Dyyr* = (XT**, DX™**)) C (X, Dy)* = (X*, DX*)).
(21)

For a particular operator (X, D;) equality obtains in
(21) above if and only if Dy is a core for (X, D;)*. [For
a Hermitian operator this means that (X, D,) is essen-
tially self-adjoint. ] In general discussions of field the-
ory no assumption is made about the possible existence
of a set of field operators for which (21) might hold as
an equality.

11l. ABOUT SOME CONSEQUENCES OF THE
SPECTRAL CONDITION

It is well-known that the unitary representation x
- T(x) of the translation group can be extended to a
representation of the semigroup of all complex transla-
tions z =x +iy, with x and y real, ye V,, by

T(z)= [ expliz - p)u(d*p) =exp(iz - P) (22)

where the operator-valued function 7T(z) satisfies ||T'(2)I|
=1 and is a strongly continuous function of z on the
closed forward imaginary tube V,; ={z|Im(z) € V,}.
Furthermore, the function T(z) is analytic in the sense
of the uniform topology on the open forward imaginary
tube V,;, which implies in particular that the vector-
valued function 7(z)¢ of z is strongly analytic on V,;

for any pe/.

Let f< §(R*). We define a Fourier transform f of f
by
f(ply""pn) .
:f(m)d4(x1) e d4(xn)f(x17 .. 7xn) eXp<Z Z_l:xy'pr). (23)

We consider the following:

Lemma 2. Let z ¢ T_/H., i, e., z is any complex 4-vec-
tor in the closed forward imaginary tube. Then

T(2)D, C D;. (24)
If f< §(R™ there exists an f,< §(RY) such that
.72(1)1;--0 9pn) exp(iz- éf;pr)

Pn) = (Py, ... (25a)
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for (py,...,Pn) € V,, where V, is the subset of R*" de-
fined by
V,,={(z>1,...,zbn)l Ekp,e?c, kln} (25b)
s
and for every such f, we have
T(2) ol f19 = olf.10. (25¢)

The above facts are well known, and we refer to the
monograph by Jost!” for a discussion of these and
related issues. Here we only note the following. It is a
consequence of the spectral condition that any vector
@{f}2 only depends on the restriction of f to the set
Vv, defined in (25b), i.e., if =0 on V,, then the vector
vanishes. It is of interest to exhibit a particular func-
tion f, which satisfies (25a), and hence (25c¢). Let u(¢)
be an infinitely differentiable function of ¢ on R! such
that #,(¢) =1 for £> 0 and %,(!) =0 for < —1. We define
a function E(p;z) of the real 4-vector p and the com-
plex 4-vector z by

E(p;zy=uy(p - pug(p*) expliz - p). (286)

This function satisfies E(p;z)=exp(iz-p) for pe V..
It is easily seen that for any z € V,; the function E(p;z),
as a function of p, is included in 5(R4). Furthermore,

if fe §(R*™, then the function f, with the Fourier
transform

FAC T

D) =ED;2)F (Pry .oy D), p:rEﬂpr, 27)

is, as a function of (x{,...,%,), included in §(R*"") for
any z € V,;. Now (25a) holds trivially, and it follows
that (25c¢) holds.

The next lemma can be regarded as a generalization
of the preceding lemma.

Lemma 3: Let T, be the open tube region in 4n-
dimensional complex space C*", regarded as the direct
sum of n replicas of complex Minkowski space, which
is defined by

Tn:{(zly-»"zn”‘zkevﬂ'y kzly'-a!n}' (28)

Let {f,1f,€ S(RY), k=1,...,n} be any n-tuplet of test
functions. Then we have the following:

(a) The vector

}3(21, PP 7Zn)
=T(z)o[ ATz [ fo] -+ Tz o fu]2 (29)

is well defined (through successive left multiplications)
for all (z4,...,2,)€T,, and

B(Zi;- . yZn)ZQD{fJLQy

where f=f(x{,...,%p; 24, ...,%, i8 the function whose
Fourier transform with respect to the variables
(*{,...,x,) is given by

(30a)

f(piy ver ;pn;zly LR 7Zn) :klfllﬁ(pk)E(rZ:;kl)r;Zk> (30b)

and where E(p;z) is the function defined in (26).

(b) The vector-valued function B(z¢, ..., 2,) of
(z1,...,2,) is strongly continuous on the closed tube
T,, and analytic on the open tube T,
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Proof: (1) The assertions in part (a) follow trivially
from Lemma 2, by induction on #.

(2) The proof that 8 is strongly continuous on T, re-
quires an examination of the function f given by (30b).
We regard this function as a vector-valued function on
T, i.e., as a function of (z4,...,%,) with range in
S(R'™. In view of the simple nature of the function
E(p;z), as given by (26), it is now easily shown that 7
is continuous on 7, in the sense of the test function
space topology; since this topology is invariant under
the Fourier transform, the same holds for f, regarded
as an §(R*")-valued function on T,. It follows, in view
of the assumption expressed in (15), that 8 is strongly
continuous as asserted.

(3) Since B is strongly continuous on 7, it follows that
B is bounded on any closed polydisc contained in T,. To
show that 8 is analytic on T, it therefore suffices to
show that the function (5! 8(zy,. .., 2,)) is analytic in
each complex 4-vector z, separately for each nin a
dense set of vectors in the Hilbert space. We select D,
as the dense set and we then have, for k=1,...,#n,
Bty ..., 2a)) =(& I T(2,)L,), With &, &, independent of
z,. This scalar product is trivially analytic for z,c V,;,
which establishes the second assertion in part (b).

We are specifically interested in vectors of the form
shown in (29), but it is worth noting that the lemma has
an obvious generalization, in which the operators ¢[f,]
in (29) are replaced by arbitrary operators X, € 2(/).

We next consider an almost trivial extension of the
theorem of Reeh and Schlieder, ! which will be needed
later.

Lemma 4: Let {R,In=1,..., =} be any set of open,
nonempty subsets of Minkowski space. For such a set,
and for any n= 1, let S, denote the linear span of all
vectors of the form

¢=olflel Al - ol f]2
with f, € $(RY), supp(f,) CR,, for k=1,...,n.

(31)

Then the linear span of the vacuum vector © and the
union of all the linear manifolds S, is dense in the Hil-
bert space /.

This version differs from the original formulation
only in the circumstance that the regions R, need not
all be the same. We feel justified in omitting the proof
since it requires only a very minor modification of the
proof in the case of equal regions, as presented in the
monograph of Streater and Wightman, 18 The lemma can
also easily be proved on the basis of Lemma 3.

We next consider an interesting family of vector-
valued functions on 7, discussed by Jost. **

Lemma 5: (a) For each n= 1, let E, be the set of all
tunctions f(xy,...,%,;2¢,...,2,) defined for (x(,...,x,)
eR"and (zq,...,2,) €T, and such that fe §(R*) and
such that the Fourier transformf of f relative to the
variables (x,,...,x,) satisfies the condition

f(m,...,p,,;zi,...,z,,):exp(iEE zk-p,> (32a)

k=1 r=k

for all (py,...,P.) € V,, with V, defined as in (25b). The
set E, is nonempty, and it contains in particular the
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function f, defined in terms of its Fourier transform by

Fo(Biy e sDri 2y e e ,z,,)zkzl1 E(,Z__,;p,;zk) (32b)

where the function E(p;z) is defined as in (26).

To the set E, corresponds a unique vector-valued
function ¢(z¢,...,2,) on T,, defined by

¢(z17---9zn):¢{f}g

where f is any element of E,.

(32¢)

(b) The vector-valued function ¢(zy,...,2,) is strong-

ly continuous on T,
(c) Let {flfcH(RY, k=1,...,n} be any n~tuplet of
test functions of compact support. Then, for any
(245 e .. ,20)€ Ty,
f(w)dli(xi) -t 'd4(xn)fi(x1)f2(x2) ne 'frx(xn)
X P21 +X1, 89 +Xg—= X1, B3 +X3= Xy, ..
=T fITRIelfe] -+ T ful2 (33)

where the integral at left exists as a vector-valued
Riemann integral relative to the strong topology for /4.

Bt Xy— Xpq)

Proof: (1) The function f, trivially satisfies (32a).
That it is included in §(R*), as a function of (x;,...,%,),
for any (zy,...,2,) € T,, follows readily from the fact
that E(p;z) € S(RY), for any z € V,;. That the vector at
right in (32c¢) is the same for all f< E,, follows from the
fact that this vector depends only on the restriction of
f to V.

(2) That the function ¢ is strongly continuous on 7, is
easily established through an examination of the prop-
erties of the function f;, as defined in (32b). The con-
siderations are the same as in the proof of the strong
continuity of the vector 8 in Lemma 3, and in fact some-
what simpler since (z4,...,2,) is now restricted to the
open tube T,.

(3) The assertion about the integral in (33) is now
trivial, and the identity follows from a well-known con-
volution theorem for tempered distributions. ** We note
that the restriction that the functions f, be of compact
support is in fact unnecessary, but since we shall only
require the lemma as stated, we selected this version
in order to make the matter completely trivial.

We conclude this section by a statement of some
well-known facts about the vector-valued functions ¢,
which will be of crucial importance in our subsequent
discussion,

Lemma 6: (a) The vector-valued function ¢(zy,..
defined as in Lemma 5, is an analytic function of
(21y...,2,) on T,,

vy 2q),

_ (b) For any element A =A (M, x) of the Poincaré group
L,

UMD (24, ... ,2,)=d(Mzy+x, Mz, Mz,,...,Mz,). (34)

(c) For any (24,...,2,) € T, the vector ¢(z;,...,z2,) is
an analytic vector for the Lie algebra of the group
U(Ly).

About the proof: A detailed proof of the assertion (a)
based on an examination of the properties of the func-
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tion f; defined in {32b) is straightforward but somewhat
cumbersome, For this reason it might be worthwhile to
note that there is a simple proof based on Lemmas 3
and 5, as follows. Let g(x)</)(R*) be such that g(0)=1.
Let A>1, We construct the vector 8(z(,...,2,; ) as in
(29), with f,(x) =2%(x), for k=1,...,n. This vector-
valued function of (z4,...,2,) is an analytic function of
these variables on 7, by Lemma 3. It is easily seen,
in view of (33), and in view of the strong continuity of
¢ on T,, that B(zq,...,2z,; ) tends to ¢lzq,...,2,) as 1
tends to infinity, uniformly on any closed polydisc con-
tained in T,, and hence ¢ is analytic on T,.

The assertion {b) of the lemma is trivial, and the
assertion (c¢) follows trivially from (a) and (b).

We finally note that the vector ¢ might be written as
O(2yy. .., 2) =02 Q21 +29) - @2+ 2 +- + +2,)8 (35)

This formula has a proper interpretation within dis-
tribution theory, but it is here offered for heuristic
purposes only.

IV. COMPLEX LORENTZ TRANSFORMATIONS AND
THE INVERSION TRANSFORMATION

We define a “right wedge” Wz, and a “left wedge”
W, as the following open subsets of Minkowski space:

We={x|x*> (36)

x4l}’ WL:{x

%8 <= |}

These two regions are bounded by two characteristic
planes whose intersection is the 2-plane {x |x® =x*=0}.

For any subset R of Minkowski space /] we define the
causal complement R® of R by

Re={x|(x-9)- (x-9) <0, all y € R}

‘We note that with this definition Wg= I/_VL and W;°
=W, where the bar denotes the closure. We shall say
that Wy and W, form a complementary pair of wedges,
despite the fact that Wj is not precisely the causal
complement of W, within our definition of this notion, 2

(37)

i

To the pair of wedges Wj and W corresponds a
four-dimensional subgroup L,(Wg) =L (W) of the group
L,, namely, the group of all Poincaré transformations
which map Wz onto Wy, and W, onfo Wy, It is easily
seen that this subgroup contains, and is generated by,
all translations in the 1- and 2-directions, all rotations
about the 3-axis, and all velocity transformations
V(es, t) in the 3-direction. We consider the one-param-
eter Abelian subgroup {V(e;, )|¢ <€ R!} of these velocity
transformations, where V(ey, {) is the four-by-four
Lorentz matrix given in (1) in Sec. 1. To V(e,, f) cor-
responds the unitary operator U(V(es, ¢), 0), which we
shall also denote by the shorter symbol V(#), since it
will play an important role in our discussion. By
Stone’s theorem there exists a unique self-adjoint opera-
tor (K,, Dg) such that

V{¢) = U(V{e,, 1), 0)=exp{— itK3), all real f.

We shall consider the analytic continuation of the
function V() to the complex plane. It is well known that
to any self-adjoint operator (K3, Dy) corresponds a
representation 7— exp(-7i7K3) = V(7) of the additive
group of all complex numbers 7 by (in general unbound-

(38)
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ed) operators. These operators have the common spec-
tral resolution

V(1) =exp(—iTK3) = | exp(~iTs)u,(ds) (39)

where Ly is the spectral measure in the spectral
resolution of the operator (X3, Dy). The domain of the
closed operators V() depends only on Im({7). Hence,
for any 7=p+iA, with p, A real, let D,(X) be the linear
manifold such that the operator (V(7), Dy ())) is closed
and normal, The domain D,()) is given by

Dy(N) =1+ VENY Y

for any real A.

(40)

Let A#0 be real. Then D,()) is a core for all opera-
tors (V(7), D,(Im(7))) such that 0 <Im(r)/rx<1. I
e Dy(r), then the vector-valued function V(7)¢ of 7 is
well defined, strongly continuous and bounded on the
closed strip 0 <Im(7)/x<1, and an analytic function of
7 on the interior of this strip.

Common cores exist for the operators V(7). For
later reference we state as a lemma some well-known
facts about a particular family of such cores.

Lemma T: (a) Let c(s)e/)(RY), and let the bounded
operator c¢(K;) be defined by

c(Ky) = | c(s)uxlds). (41)

Then ¢(K3) CDy(2) for all real x. The function
exp(—i7s)c(s) is also in /) (R!) for any complex 7, and
V{7 (K3) :f exp(—i7s)c(s)lds). (42)

The operator-valued function V{(7)c(K3) is a bounded
operator for every complex 7, and it is an entire analy-
tic function of 7 in the sense of the uniform topology.

(b) Let D be any dense linear manifold, and let the
linear manifold D, be defined by

D, =span{c(K;)D |c(s) € (RH} (432a)
Then D, is dense, and a core for every operator
(V(7), D,{(Im(7)), i.e., D,C Dy (Im(7)) and
(V(7), D)** = (V(7), Dy(Im(7))). (43b)
(c) If c(s) €/)(R!), then c(K,) is also given by
c(Kqg) = " dtet)v() (442)

where &(¢) is the Fourier transform of c(s) defined by

=L f ds explits)c(s). (44b)

27 Jow

We shall next consider the action of the complex vel-
ocity transformation V(7) on the vectors ¢(zy, ..., Z,)
introduced in Lemma 5. We first note that the matrix-
valued function V(e;, f), defined in (1) in Sec. 1, is an
entire analytic function of . Let z=x+#y, x and y real,
be any complex 4-vector, and let 7 be any complex
number. We shall write

z2(1)=V(e;, Tz (45a)
and we then have, for 7=1A,
2lEny =xt +ivl, 2%6x) =2% +4y?,
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2362 = (¥ cos(V) — i sin(n)) +i(y® cos(n) + ¥ sin(x)),
(45b)
21@2) = (xt cos(A) — y® sin(V)) +7(y* cos(n) + x® sin(V)).

We have written the explicit transformation formulas
in the above form because we are particularly interest-
ed in the case of a real A, i.e., the case of a pure
imaginary velocity transformation., We can now state
the following:

Lemma 8: Let (z4,...,2,) be an n-tuplet of complex
4-vectors 2z, =x, +iv,, Where x,,7,, Treal, y,'=,7=0,
v.r1> 19,00, for k=1,,.. n

@) If x,€ Wi (l.e., x,°>1x4), for k=1,...,n, then
(2,61, . .., 2,6N)) € T, for all x& [0, 7/2). The vector
®(24,...,2,) is in the domain Dy(/2), and

VEN G2y, . .., 20) = 0(21R), . .., 2,(EN) (46)
for all re [0, 7/2].

(b) If x, e W, (i.e., x,°<—Ixt]), for k=1,...,n,
then (z;(iN), ..., 2,6N) € T, for all x€ [-7/2,0]. The
vector ¢(zy,...,2,) is in the domain Dy (- 7/2), and the
relation (46) holds for all e [~ 7/2, 0].

Proof: (1) We consider the assertions in part (a). By
inspection of the explicit formulas (45b), it is easily
seen that if z =x +7y is a complex four-vector such that
yl=92=0, y*> 19%|, and x*> |x*|, then Im(z(i})) € V, for
all »< [0, 7/2]. Hence, in view of the stated conditions
on (z4,...,2,), we have (z;GN),...,2,6N)) € T, for all
A on the closed interval, with T, defined as in Lemma 3.
Since T, is open there exists a connected open neighbor-
hood N (in the complex A-plane) of the closed segment
[0, 7/2] such that (z;(i)), . ..,2,(EN)€ T, for AEN, and
hence the vector ¢(z,()N),...,2,EN) is well defined for
A€ N, By Lemma 6 this vector, regarded as a function
of A, is an analytic function on N,

(2) Let D, be defined as in (43a), with D=//, For any
n € D, the function f;(A) =(V(@EA)*n|d(zy,...,2,) is an
entire analytic function of A, by Lemma 7. We define
the function f,(A) on N by fo(A) ={(n1d(z,GN),. .., z,GN)).
By Lemma 6 we have f;(A) =f,(A) for ix in some 7eal
neighborhood of A=0, and it follows that f;(A) =f;(x) on
N. Since this holds for any n€ D, and since D, is a
core for every (V(7), D,(Im(7))), it follows that
éz4,...,2,) €Dy(ImEN)) for A€ N, and that (46) holds
for all x€ N, This proves the assertions in part {a).

(3) The assertions in part (b) are proved in an entire-
ly analogous fashion,

We next consider an involufory mapping x — gx of
Minkowski space onto itself, defined by

gx =—R(es, m)x or y (x!, 22,28, 1Y) = (6!, %, — &%, = x?)
(47)

where R(es, m) denotes the rotation by angle 7 about the
3-axis, We see that § maps Wy onto W, and the map-
ping can be described as a reflection in the common
“edge” {x1x®=x*=0} of the pair of wedges Wy and W,.

By inspection of (45b) we see that
g = V(es, i) 48)
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and this circumstance suggests the heuristic idea that
something akin to V(im) o) Vin) ™! = ¢f gx) might hold.
This formula is, of course, pure nonsense as it stands,
but in the following we shall establish some facts which
in a sense reflect the above heuristic idea.

Lemma 9: Let (x4,...,x,) be such that x, € Wy for
k=1,...,n. Let v be the real forward timelike 4-vector
with components v =(0,0,0,1), and let / be a real
variable. Then

s-1im V(iﬂ/2)¢(x1 +itv, xg +itv, ..., x, + i)
t -0+
=s-lim V(- i1r/2)¢)(gx1 +itv,gx2 +itu, ... ,gx,,ﬂ'tv)
t =0+
= (2yy.n.,2,) (49)
where z, = (x,}, %%, ix,%, ix,%), for k=1,...,n.

Proof. By Lemma 8, part (a), we have, for £>0,

ViEn/2)(x +ity,. .., x,+it0) = (2], ..., 2}) (50a)
where
zp=2}(t)=2,-(0,0,1,0), fork=1,.. ,n (50b)

Since §x,c W, if x, € W5, we similarly have, by part
(b) of Lemma 8, for any {> 0,

V(- z‘n/2)¢(0(,ix1 +il0, o O+ it0) = 021, 27)

(50c¢)
with
zp =2} (t)=2,+(0,0,£0), fork=1,...,n. (50d)
We note that (z21,...,2))e T, and (g{,...,2,)e T,

for all real {, and it follows from Lemma 5 that the vec-
tors at right in (50a) and (50c¢) have well-defined strong
limits as # tends to zero. The equalities in (49) then
follow from (50b) and (50d).

Lemma 10: Let Ry be a bounded, open, nonempty sub-
set of Wp, and let x,& Wj be such that (x - x)) € W for
all x € Ry, For any integer n>1 we define the set R, by

R,,={x+(n—1)x0’x€R1}. (51)

(a) Then R, Wy for all n, and if »>k, then (x' - x")
€ Wi for all x’ € R,, x" € R,. In particular, R, is space-
like separated from R, (i.e., R,CR,°) if n#k,

(b) Let {f,|k=1,...,n} be an n-tuplet of test functions
such that f, € S(R") and supp(f,) CR,, for k=1,...,x.
Let f,’ denote the test function defined by f,/(x) =f,( gx).
Let c(s) € H(R!). Then
vime K)o filolf]- - - o192

=cE)olfi’ 1ol 171 - - o £.719. (52)

Pyoof: (1) The assertions in part (a) are trivial, and
need not be proved here.

(2) Let v=(0,0,0,1). We consider the string of
equalities:

Vien/2)e (K)ol filolf]- - - ol £]2
=s-1im V{in/2)c (K,) TGtv)o[ ;1 TGtv) o[ ] - - Tlitv)

t =0+

x gl falQ
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:S;}gn Viin/2)c(K,) f(,o)d4(x1) e d ) () () - - ¢ fulx)

X @t +xy, it + x5 — x4, itV + X3— Xy, .
= iy @y - - - Ay () () - -+ fl)
Xs;}(i)m V(in/Z)c(Ks)

ces iU X, =%, )

X v +x1, T80 + X9 — Xy, (0 + X3 = X9, « o ., 1V + 2, = %, 4)

:./.(“’) dd(x1) tet d4(xn)f1j(x1)f2j(x2) s 'fnj(xn)
Xs-lim V(=in/2)c(K,)

XP@Etv + 21, 100 + x9 = %1, 100 + X5 = X, . .

=s-1lim V(- in/2)c (iK;) T(itv)

=0+
x o[ 1TGtv) o[ /7] - - TGt) o[ £,1 102
=V(-in/2c K)ol £’ o] - - o[£, (53)

U X, — Xy y)

That the first member in (53) is equal to the second
member, and that the last member is equal to the next
to the last member, follows from Lemma 3 (i.e., from
the strong continuity of the function there denoted f),
and from the fact that the operators Viin/2)c {K3) and
V(- in/Z)c(K3) are bounded. That the second member is
equal to the third member follows from the formula
(33) in Lemma 5. In view of the properties of the inte-
grand in the third member which follow from the facts
stated in Lemma 9, and from the nature of the functions
fi, it is permissible to let the bounded operator
V(in/2)c(K,) act on the integrand, and to take the strong
limit before integration. We note that the relationships
between the supports of the function f,, as expressed in
the assertions (a) of the present lemma, are essential
at this step. Because of these relationships the argu-
ments of the function ¢ appearing in the integrand
satisfy the premises of Lemma 9, which is thus applica-
ble. The third and the fourth members are thus equal.
In a similar fashion we conclude that the fifth and the
sixth members are equal. The equality of the fourth
and the fifth members follows from Lemma 9. (Note the
trivial change in integration variables).

(3) We finally note that the vector in (53) is in the do-~
main of (V(in/2), D,(r/2)), and if we multiply the first
and the last members in the string by this operator we
obtain (52).

It should be noted that the condition that the field be
local has played no role in our discussion so far, and in
particular the formula (52) does not depend on the as-
sumption of locality. We shall now consider some addi~
tional conclusions which can be drawn if we take into
account the locality condition (16).

From the work of Jost?? it is well known that in a

local field theory based on our general assumptions
there exists an antiunitary involution ©,, which can be
interpreted physically as an inversion transformation,
or TCP-transformation (with respect to the origin in
Minkowski space). This operator satisfies the conditions

9t =1, ©,=8, QUM,x)0,=UM,~-x), (54a)

and
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0, 0{x)0 = (- x), (54b)

where the last relation refers specifically to the case of
a Hermitian scalar field.

We shall introduce another antiunitary involution J,
defined by

J=U(R(ey, 1), 0)0, =0, U(R(es, 1), 0) (55)

where, as before, R(e;, 7) denotes the rotation by angle

7 about the 3-axis, 1t is easily seen that
S, JQ=Q, JUM,x)d =U( gMg,gx) (56a)

where g is defined in (47). Furthermore, JD;=D;, and
Jo[f17=o[f'* on D, (56b)
for any f< (R, and where f/(x) =f(x).

We consider the third relation in (56a) for the case of
a (real) velocity transformation in the 3-direction. We
have

JV(t)J = V{t), all real ¢. (57a)

From this relation, and from the fact that J is an
antiunitary involution, we readily conclude that

JDg =Dy, J(K;, Dyl =~ (K3, Dg), (57b)
JDy () =Dy(= 1), J(V(7), Dy(M) = (V(T*), Dy(= 1))
(57¢)
for any complex T=p+iA, p and X real,

As the formula (52) suggests, the complex velocity
transformations V{i7) and V(- iw) will be of particular
interest. We shall employ the special notation

D,=Dy(n), D_.=Dy(-m) (58)

for the domains of these operators, and (V(in), D,) and
(V(=im), D)) are thus self-adjoint. We then have

D,=JD_=V{(-imD_, D_.=JD,=V(@m)D,, (59a)
and

J(V@m), D) =(V(~im), D)),

J(V(~im), D) =(V{in), D,). (59b)

The antiunitary involution J can be regarded as asso-
ciated with the pair of wedges W, and W, or, if we
like, with their common “edge,” whereas the involution
©, is associated with a point, the origin of Minkowski
space. J is the Hilbert space object corresponding to
the involution ¢ on Minkowski space, as revealed by
(56b). We note that if supp(f) < Wy, then supp(f)c Wy,
and vice versa, Conjugation with J thus maps operators
locally associated with the right wedge W, into opera-
tors locally associated with the left wedge W,., We also
note that

JUN)T =U(A), all A Ly(Wp), (60)

where Ly(Wg) is the group of all Poincaré transforma-
tions which map Wy onfo Wg,

We shall next consider an extension of Lemma 10
which incorporates the condition that the field be local.

Lemma 11: Let {R,|n=1,...,} be a fixed set of
bounded, open, nonempty subsets of Wy, constructed as
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in Lemma 10. Let Q) be the linear span of the identity
operator I and all operators (@, D;) of the form

Q =gl filolf]l- - - o[ fal 61)

where {f,|k=1,...,n} is any n-tuplet of test functions
such that f, € §(R*) and supp(f,) CR,, for k=1,...,n.

Then:
(a) The linear manifold D, =QQ is dense in the Hilbert
space 4/, and D,, =span{c(K3)D,c(s) € )(R!)} is a core
for every operator (V(7), Dy(Im(7))).
(b) (@*,Dy)eQ if (Q,Dy) €.
() If (Q, D) €@ and c(s) €D (R"), then
Viin)c (K3)QR = c(Ky)JR* Q.

Proof: (1) The assertions (a) follow directly from
Lemmas 4 and 7.

(62)

(2) The assertion (b) is trivial if @ is a multiple of L
If Q is of the special form (61) we have

Q' =0[f1]--- ol Aol A"
= o[/l ") - - ol f],

where the second member is equal to the third in view of
the locality condition (16), and in view of the relation-
ships between the supports of the functions f,, as stated
in part (a) of Lemma 10, Since (Q*, D,) = (@', D,), we see
that (@*, D)< ().

(3) The relation (62) is trivial if @ is a multiple of L
For @ of the special form (61) we have, in view of (63),

JQI = o[ fi'lol fo']- - - o[ '] (64)

Since @*Q =Q'Q the relation (62) then follows from
(64) and from (52) in Lemma 10. This, in effect, proves
the assertion (c).

(63)

To an n-tuplet (xy,...,%;) such that x, € R, for &
=1,...,n, corresponds the n-tuplet (x;, x, - xy,
Xy=Xg,...,%p—Xnq), which is a so-called Jost point, *
We note here that there is a very close connection be-
tween our considerations and Jost’s beautiful proof of
the TCP-theorem. % In a sense the key point is the fact
that the complex Lorentz transformations V(es, 7)), for
A€ (0, ), map the wedge region Wy into the forward
imaginary tube V,;. This fact, and the associated con-
nection between complex Lorentz transformations and
the inversion transformation, were discovered by Jost,
and form the basis of his proof.

We are now in a position to state and prove the key
theorem. For the definition of the algebras /2(Wpg) and
P{W,.) we refer to our general definition [in Sec. II,
immediately following Eq. (15)] of the algebra P(R), for
any open RC /. The algebra (W), respectively the
algebra 2(W.), can be regarded as consisting of field
operators locally associated with the wedge region Wy,
respectively the region W; .

Theovem 1: (a) The algebras 2(Wg) and P(W,) are *-
algebras with the antilinear involution (X, D;) — (X*, D).
They commute on Dy, i.e,,

[Xy Y]ZP:O
for all < Dy and for all X e P(Wg), Ye P(W.).

(65)
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(b) The vacuum vector Q is cyclic and separating for
both P(Wz) and P(Wy).

(c) With V() =U(V(e,, t), 0} (a velocity transformation
in the 3-direction),

VOPWRVE)L=p(Wg), VEOPWLHVE)T=p(W,) (66)
for all real {, and with J defined by (55),

JP(W R = P(Wy). 67)
(d) With D, and D_ defined as in (58),

PwRRc D, pPW)ecD.. (68a)
For any X € P(Wg)

ViEmXQ=JX*Q (68Db)

and for any Y e P(W,)

V(- im)YQ=JY*Q. (68¢)
(e) The condition

CpXQ=X*Q, all X< P(Wg), (69a)

defines an antilinear operator (Cg, P(W)R), and the
condition

C,YQ=Y*Q, all Ye (W), (69b)
defines an anfilinear operator (C,, P(W,)R).
These two operators satisfy the relations

(Cr, P(WR)** =(Cy, P(WL)Q)* = (JVGn),D,),  (69c)

(CL, P(WL)Q** =(Cp, P(WR)Q)* = (JV(~in),D). (69d)

Proof: (1) The assertions (a) and (c) are trivial. That
Q is a cyclic vector for the algebras follows from the
Reeh—~Schlieder theorem. That Q is separating for
P(Wy) follows readily from the commutation relation
(65), and from the fact that Q is cyclic for P(W,). Ina
similar manner we conclude that Q is separating for
Pw). %

(2) We now consider the assertions (d) and (e). We
note that our formulation is tautological in the sense
that the assertions (d) are trivially implied by the as-
sertions (e), We presented the matter in this manner
because we wanted the relations (68b) and (68c) to stand
out as clearly as possible,

For didactic reasons we shall first prove the asser-
tions (d), independently of the considerations in (e). Let
a set ¢ of operators, and a domain D,,, be constructed
exactly as in Lemma 11. We note that Q C D(W ).

Let Q€ 0, X P(Wg), and c(s) c/)(R!). We introduce
the integral representation (44} of the operator c(Kjy),
and we note that

c*(=Ky) = [ T dtex (t)yv(t) (70a)
where C(f) is given by (44b).
We consider the following string of equalities:
(xQ| Viime K,)Q)
=(XQc(K)JQ*Q) =(XQ|Jc* (- K5)Q*Q)
=(c* (- K3)Q*Q| JXQ)
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- [ A XV OR* V(t)1e| (X))
= [Late X @XD*Q | VOQV(E)D)

=(IX*Q|c(K)Q). (70b)
The first two members are equal in view of (62) in
Lemma 11, The equality of the second and the third
members follows from (57b), and since J is an anti-
unitary involution these expressions are equal to the
fourth member, The equality of the fourth and fifth
members follows from (70a). The integrands in the
fifth and sixth members are equal because the opera-
tor V)Q'V()1 e P(Wg) commutes with the operator
JXJ e P(W;) on D;. The equality of the last two members
follows from (44a).

In view of the construction of the domain D,, we con-
clude from (70b) that if 5 is any vector in D, , then
(XQ|ViEmm =(Jx*Q|n. (70¢)

Since D, is a core for (V{iw),D,) (by Lemma 11), it
follows from (70c) that XQ € D,, and that (68b) holds.

The relation (68c) and the second relation in (68a)
then follows trivially from (67) and (59b).

(3) The assertions (e) involve antilinear operators,
and since the theory of such operators might appear
less familiar than the theory of linear operators we
shall make a few remarks about the subject. Let (4, D,)
be an antilinear operator, defined on a dense domain
D,. The adjoint (4, D,)* =(A*, D,*) of (4, D,) is defined as
follows. A vector 7 is in the domain D, * of the adjoint
if and only if there exists a vector &(n) such that (niAg)
=(t1¢(n) for every £ e D,. The operator A* on D,* is
then defined by A*n=¢(n), and it is also antilinear. The
operator (A, D,) is closable if and only if its adjoint is
densely defined, and if it is closable its closure
(4, D,)** is the adjoint of the adjoint (A*, D,*), The
properties of an antilinear operator (4, D,) can be con-
veniently studied in terms of the linear operator
(L, D,)=(J,A,D,)=J(A4,D,), where J, is an arbitrary
antiunitary operator. We then have (A, D,)* = (L*J,
JsID(L*)). The operator (4, D,) is closable if and only
if (L, D,) is closable, and if it is closable, then (4, D,)**
=L, D,)**. The well-known polar decomposition
theorem for linear operators has a counterpart for anti-
linear operators, as we easily see in view of the above,
We note that the formulas (69¢) and (69d) explicitly de-
scribe the polar decompositions of the adjoints and
closures of the “adjointing operators” Cg and C, de-
fined by (69a) and (69b).

(4) After this digression we consider the assertions
(e). It follows at once from the definition (69a), and
from (68b) that

(JV(iTI), D+) - (CR7 p(WR)Q)’

and if we take the closures of both members in (71a) we
obtain

JV@m), D,) 2 (Cg, P(We)Q)** (71b)

since (V(iw), D,) is self-adjoint and (JV(ir), D,) therefore
is closed.

(71a)
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We shall now show that

(Cr, P(WR)Q** D (JV(in), D,.). (71c¢)

Let 5 be any vector in the domain of (Cg, P(Wy) Q)*.
Let Q €0, and c(s) € )(R'). We again introduce the in-
tegral representation (44) for the operator ¢(K;), and
we consider the string of equalities:

<CR*TI |C(K3) QY
= [ 2 dtEB)(Ce*n| V() @ V(1))

= [Zaté (v @* vyt eln

=(c*(= K3) Q*Q |y =(IV(im) ¢ (K3) Q@ [m). (71d)

The equality of the second and third members follows
from the fact that V() @ V($)"!Q is in the domain of the
antilinear operator (Cg, P(Wg)R). The reasoning behind
the other steps is similar to the reasoning in (2) above,
In view of the construction of the domain D . the equali-
ties (71d) imply (71c).

Since D, is a core for (V(iw),D,), we have

@V(in), D) = (JV(im), Dy )** (le)
and it follows from (71b) and (71e) that

(Cr, P(WR)Q** = (JV (i), D,). (711)
The analogous relation

(Cp, P(WL)Q** = (JV(~im), D) (T1g)

is most easily proved by considering the conjugation of
both members in (71f) by J, The remaining relations in
(69c) and (69d) follow trivially from (71f) and (71g), and
from the relation

JVGr), D,)* = (JV(~im), D). (71h)

This completes the proof of the theorem. We conclude
this section with some remarks which we hope will
further clarify the situation.

Concerning the relations (69c) and (69d) we note the
following. If we are given two algebras, denoted Bwyg)
and P(W,.), which satisfy the conditions (a) and (b), and
the relation (67), of Theorem 1 (for some antiunitary
involution J), and if we define the “adjointing operators”
Cr and €, by (69a) and (69b), then it can be shown that
these antilinear operators are closable, and that

(€., /B(WL)Q)* S (Ch, ﬁ(WR)Q)**-

However, it cannot be concluded that the inclusion in
(72) can be replaced by equality. We can see this as
follows (within the framework of quantum field theory).
Suppose that the two algebras had been defined
“wrongly” in such a way that they were actually equal to
two algebras which in our notation are written as P(W%),
respectively P2(W;), where Wi =g W¢, and where W% is
a wedge properly included in Wy, and obtained from
W through a translation. The conditions (a) and (b),
and the relation (67), of Theorem 1 would then be
satisfied, and the relation (72) would hold. The two
members in (72) are, however, not equal, because the
“wrong” algebras are “too small.” It is significant that
the “wrong” algebras, constructed as above, also do not

(72)
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satisfy the relations (66), which say that the algebras
are invariant under all velocity transformations V{¢).

As the above considerations indicate, it is easy to
construct a large set of distinct closed extensions of
(Cr, P(W)Q)., Let W} be any wedge obtained by a trans-
lation of Wy, and such that Wi D Wy, We define the
operator (C%, P(W5)Q) in analogy with (69a), and we then
have (C%, P(We) 2 (Cp, P(W)RQ), with a corresponding
inclusion relation for the closures. It is easily seen that
the closures are distinct if Wg# W,

Lemma 11 states facts about the field operators which
are of crucial importance in the proof of Theorem 1.
However, if we consider the role played by this lemma
in the proof, it might seem miraculous that one can
draw general conclusions about all the operators in
P(Wg) from the properties of operators in a particular
set Q which are locally associated with a family of
regions {R,In=1,..., =} which does not cover Wy Now
it should be noted that the construction of the domain
D, involves operators in V(t)QV(t)"‘, for any real ¢, but
it is still the case that the set of regions { V(e;, #)R,!
n=1,...,%,tc R} does not cover Wy either. A closer
examination of this issue reveals that the “potency” of
the set Q ultimately depends on the geometrical fact
that if x is any point of Wy, then {V(ey, t)x|£ & R} = Wg,
where the superscript cc denotes the causal complement
of the causal complement,

Finally, we note that since Q C P(Wp) it follows, in
view of (68b) in Theorem 1, that the factor c(Kj) in both
members of (62) in Lemma 11 is in fact “unnecessary”:
The relation also makes sense if ¢(K;) is replaced by 1,
We introduced this factor in order to have simple proofs
of Lemmas 10 and 11,

V. ON SOME ALGEBRAIC QUESTIONS CONNECTED
WITH THEOREM 1.

This section is a mathematical preliminary to our
discussion of physical duality conditions in the next sec-
tion. The questions which we shall discuss are related
to the issues of Theorem 1, although one might say that
we are here more concerned with the properties of the
triplet (R, J, K3) than with the quantum fields.

We shall first be concerned with the characterization
of operators in general (bounded or unbounded) which
satisfy relations such as (68b) and (68c) in Theorem 1,

Lemma 12: Let [{{Wy) be the set of all closable opera-
tors (X, D(X)) such that Q € D(X) N D(X*), and such that
XQe D, and

VEMXQ =JX*Q, (73a)
Let /(W) be the set of all closable operators
(Y, D(Y)), such that @ € D(Y)N D(Y*), and such that
YQe D_and
V(-im¥YQ=JY*Q, (73b)

Then:

(@) (X, DOY* = (X*, DX*)) € [/ (Wg) if (X, D(X)) € (/(W5)
and (¥, D(Y))* = (Y*, D(Y*)) € {/(W,) if (¥, D(¥)) € {/(W).
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(b)
JU(WR)J=U(WL), JY(WL)T =/ (Wg),
i.e., (X, D(X)) € [/{(Wp) if and only if (JXJ, JD(X))
e (W),
(©)
VOUWRVEY =/ (We), VOUW)IVE™ =(/(W,)
(75)

(74)

for all real Z.

(d) Let //,(W5) denote the set of all bounded operators
in ({(Wg), and let //,(W.) denote the set of all bounded
operators in {/(W.). Then

Ub(WR)Q=U(WR)Q=D+, Ub(WL)Q:U(WL)9=D-- (76)
(e) The relation
(X*Q|ve) =(v*Q|XQ) (7

holds for all operators (X, D(X)) € /{(Wg), (Y, D(Y))
e /(W)

If a closable operator (X, D{X)) is such that € D(X)
N D(X*), then (X, D(X)) € /(W) if and only if (77) holds
for all (Y, D(Y)) € (/(W,).

If a closable operator (Y, D(Y)) is such that Qe D(Y)
N D(Y*), then (Y, D(Y)) € (/(W,) if and only if (77) holds
for all (X, D(X)) < (/(Wg).
)
PWr)CU(Wg), P(Wp) (W) (78)

Proof: (1) The assertions (a) and (b) are trivial if we
take into account the relations (59a) and (59b). The as-
sertion (c) is completely trivial,

(2) We prove the assertions (d) by exhibiting explicit
mappings of D, into {/,(W3z) and of D_ into //,(W.). For
any £< D,, let the bounded operator Z,(¢) be defined by

Z(8) = [ (9] + [QIVimE| -<| & (e, (79a)

If we note that (@& =(JV(in)£1Q), we easily see that
the mapping & — Z,(£) is a linear mapping of D, into
U»(Wg) such that

Z,(8)Q=¢, Z,(5)*Q=JV(En)E. (79D)

This proves the equalities at left in (76), The equali-
ties at right in (76) are proved in a similar manner,
through a consideration of the mapping n~ Z.(n), where
neD_and

Z.(m)=| Q| + |IV(=imn| —(Q|p|axXQ|.  (79¢)

(3) We next consider the assertions (e) in the lemma.
Let (X, D(X)) € {/{(Wg) and (Y, D(Y)) € //(W.). It follows
from the relations (73) that

(X*Q|YQ) =(JVENXQ| YQ) =(V(= in)JXQ| Y2
=(JXQ| V(= in) YD) =(JXQ|IY*Q)
=(Y*Q|XQ) (80)
which proves the formula (77).

(4) Now let (X, D(X)) be a closable operator such that
Qe D(X)N D(X*). The condition that (77) hold for all
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(Y,D(Y)) €{/(Wy) is, in view of part (d) of the lemma,
equivalent to the condition that

X*Q[m) =(JV(=im)n| XQ) (81)

for every ne D_. It is easily seen that Eq. (81) is
equivalent to the equation

(JIn|IX*Q) =(Viim)n| X, (82)

Since JD_=D,, and since (V(7), D,) is self-adjoint,
we conclude that if (81), and hence (82), holds for every
neD,, then XQ e D,, and (73a) holds, i.e., (X, D(X)) is
in the set //(Wpg).

In the same manner we prove the last assertion in
part (e).

(5) The assertion (f) in the lemma is a paraphrase of
the assertions (d) in Theorem 1. This completes the
proof,

It should be noted that the sets {/(Wg) and (/(W.) are
not algebras, and in fact not even linear manifolds. The
sets [/,(Wg) and {/,(W,) of bounded operators are not
algebras either, but linear manifolds which are easily
seen to be weakly closed. That an operator X is in-
cluded in one of the sets {/(Wy) or {/(W;) is, in a sense,
not a very restrictive condition: It is only a condition on
the vectors XQ and X*Q, We found it convenient to in-
troduce these sets since we will be dealing with opera~
tors which have properties such as those considered in
the lemma,

We next consider some criteria for operators to be in
these sets,

Lemma 13: (a) Let (X, D(X)) be closable, and such
that € D(X) N D(X*). Then (X, D(X)) €(/(Wg) if and only
if there exists a set (", < (/(W.) such that span{( 9} is
a core for {V(-in), D)), and such that the relation

(X*Q| Yy =(r*Q | X0 (83)
holds for all (¥, D(Y))e( ;.

(b) Let (Y, D(Y)) be closable, and such that Q< D(Y)
N D(Y*), Then (Y, D(Y)) < (/(W,) if and only if there
exists a set (pC(/(Wg) such that span {9} is a core
for (V(im), D,), and such that the relation (83) holds for
all (X,D(X)e( g

(c) Let (X, D(X)) be closable, and such that @ € D(X)
N D(X*). Then (X, D(X)) & (/(Wp) if and only if there
exists a set Oy C{/(W.) such that span {QLQ} is dense
in the Hilbert space //, and

V(O V() =0y, all realt, (84a)

and such that the relation (83) holds for all (Y, D(Y))
S QL'

In particular, (X, D(X))<=//(Wg) if and only if (83)
holds for every (Y, D) Py(W.).

(d) Let (Y, D(Y)) be closable, and such that Q < D(Y)
N D(Y*), Then (Y, D(Y)) € (/(W;) if and only if there
exists a set Qp C{/(Wg) such that span{QRQ} is dense in
the Hilbert space //, and

VYD RV(E)™ =g, all realt, (84b)
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and such that the relation (83) holds for all (X, D(X))
S QR.

In particular, (Y,D(Y))</(/(W,) if and only if (83)
holds for every (X, D) 2 (Wg).

Proof: (1) We consider the assertion (a). In view of
the discussion in step (4) of the proof of the preceding
lemma, we can restate the condition on X as follows:
The relation (82) holds for all  in a core of (V(-in), D).
Now, if D’ is a core for (V(~in),D_.), then JD' is a core
for (V(in), D,), and we thus conclude, with reference to
(82), that XQ< D,, and that (73a) holds. In an analogous
manner we prove the assertion (b) in the lemma.

(2) The premises in part (c) of the lemma can be

restated as follows: The relation
TV (| JX*Q) =(VEm)IV(t)n | XD (85a)

holds for all real #, and all n in the dense set D”
=span{0, Q}. Let c(s)€/(R!). In view of (85a) and the
relations (44a) and (44b) we then have

(Je (K5)n| JX*Q)
= [ ZarXIv (| Ix*)
= [ DAt X v eIVt X9 =(Vn)e EKyn

X (85b)

for all e D”. In view of Lemma 7 the set D/

= span{c(K,)nlc(s) €/ (RY), n€ D"} is a core for (V(- i),
D)), and the equality of the first and fourth members
in (85b) then implies, and in step (1) above, that

(X, D)) € {{(Wp).

In particular, these considerations hold for the case
when O = Po(Wy).

The assertions (d) are proved in an analogous manner,

We shall next consider the situation which arises
when a subset of one of the sets //(Wj) or (/(W;) is an
algebra. The following lemma is a preliminary for this
study.

Lemma 14: Let X{, X, €//(Wg) be two bounded opera-
tors with the property that

X VIOX,* V(B e {/(Wg), all real [, (86)
Then
X (TX )2 = (TX5T) X, 2. (87)

Pyoof: (1) Let Y& //,(W,). The condition (86) then im-

plies that
(YQ X, VOX,*Q) = (VX V)X *Q | Y*Q) (88a)

for all real . After a simple transformation of the right
member, on the basis of the relations (73a) and (73b),
we obtain from (88a) the relation

(YQUX V()X*D) =(V(= t = im) YR JXpT VT - DX, .
(88b)

(2) In view of the properties of the exponential func-
tion V(7) = exp(—i7K,) discussed in Sec. III (immediately

preceding Lemma 7), we note that the three vector-
valued functions of 7 given by

X V(DXFQ, JXJV(in - NX,Q, (892)
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and

V(- T~ in)YQ (89b)

are all well defined and strongly continuous on the
closed strip 0 <Im(7) <7 in the complex T-plane. The
functions in (89a) are strongly analytic functions of 7 on
the corresponding open strip, and the function in (89b)
is a strongly analytic function of 7 on the open strip
0> Im(7*)> - 7. It follows that the function f(7) defined
by

A1) =(YQ| X, V(1) X+ 2)

—(V(= T =im)YQ|IX VT~ )X, (89¢)

is continuous on the closed strip 0 < Im(7) <7 and an
analytic function of 7 on the open strip 0 <Im(7) <w. By
(88b) we have f{(f) =0 for all real £, and it follows that
f(7) =0 throughout the closed strip. In particular, we
have f(ir) =0, which, in view of (89c) and the relation
(73a), implies that

(YR XX, Q) XY |IX X, ) (89d)

for all Y € (/,{W,). Since {/,(W.)Q is dense in the Hilbert
space // by Lemma 12 the relation (87) follows.

We shall now consider von Neumann algebras of
bounded operators. If 4 is any set of bounded operators
we denote the commutant of 4 by A, and we write 8"
for (B'Y.

Theorem 2: Let A pC(/(Wg) be a von Neumann algebra
such that 4 R is dense in the Hilbert space //, and such
that

VARV =4, allrealt. (90)
Let the von Neumann algebra 4 ; be defined by 4,
=J4 ¢J. Then:
@)
A=A gl =A L CH (W),
Ar=JdALI =ArCl(Wg). (91)

(b) The vector  is cyclic and separating for 4 5 and

AL

(c) For any real ¢,
V) ALVE™ =4 .. (92)

(d) The linear manifold 4 zQ is a core for (V(im), D)),
and hence also for the antilinear operator (JV(in), D,).

The linear manifold 4 ;Q is a core for (V(-ir), D),
and hence also for the antilinear operator (JV(-ir), D).

The linear manifold {4 52} {4 .9} is dense in the
Hilbert space //, and a core for the operators (V({ir), D,)
and (V(-iw), D).

(e) The von Neumann algebra A4  is “maximal” in the
sense that if 4 is any von Neumann algebra with Q as a
sepavating vector, and such that 4,4, and such that
VIt)AV(#)" =4 for all real ¢, then 4 =4, The algebra
A & 18 “minimal” in the sense that if 4 is a von Neumann
algebra with Q as a cyclic vector, and such that 4 C 4,
and such that V(£) 4 V()™ =4 for all real ¢, then 4 =4,

The algebra 4, is “maximal” and “minimal” in the
same sense,
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{f) The von Neumann algebra /4 5 is also “maximal
within //(Wz)” in the sense that if 4 is any von Neumann
algebra such that /4,4 C{/(Wy), then 4 =4 .

The algebra 4 is “maximal within //(W,)” in the
analogous sense.

Proof: (1) We note that the premises of Lemma 14 are
satisfied by any two operators in 4 . Let X, X,, X564 p.
In view of the lemma we have the following string of
equalities:

TX T X1 X390 = X, X oI Xp Q2

= (XWX TXy @ = X, TX QI X, (93a)

Since, by the premises of the theorem, the set
{%;Q1X, €4z} is dense in //, we conclude that [(JX,J),
X;]1=0, for any two X{,X, <A, and hence we have
JA rd CA k-

(2) The premises of part (d) of Lemma 13 are satis-
fied for any Y €A% with ) p=A 5, and it follows that 4%
C{{(W). In view of the conclusion in step (1) above we
thus have

Ar=dAd CARCUYW,). (93D)

(3) Since A ;9 is dense, the set J4%JS is also dense,
in view of (93b). The condition (90) implies that
VARV =4%, and hence that V(t)({J4 ) V()™
=JA4 %, for all real £. Since it follows from (93b) that
JA4 %I C({(Wg), we conclude, by the same reasoning as
in step (1) above, that

Ar=JUARNW CUAR) =JArd =JA & (93¢)

The relations (91) then follow trivially from (93b) and
(93c). From what has been said we also conclude that
(92) holds.

(4) We prove the assertions (d) on the basis of (92)
and (90). Let c(s)€/)(RY), and let X< 4. We define the
operator X, by

X,= [ agvexvis (942)

where ¢(¢) is given in (44b). We obviously have X, €Ar
and furthermore

X Q=c(Ky)XQ. (94b)

We then conclude, in view of Lemma 7, that the
linear manifold D, ={X QX €44, c(s) ) (R} is a core
for every operator (V(z), D,(Im(z))).

For every Y4, and any c(s) €/)(R!), we define Y,
by the integral at right in (34a), with X replaced by Y.
We then have Y, €4, and

Y Q=cE)YQ=(Vim)c(K;))(Y*NR (94c)
where the second member is equal to the third in view
of (73b). Since JY*J €4 g, and since exp(sm)c(s) /) (RY),
we conclude that D, ={Y_ Q1Y cA4,,c(s) €/)(R)}. Since

ARRCD, and 4,QCD_, the assertions (d) now follow
trivially from the properties of the manifold D,.

(5) The vector Q is a cyelic vector for 4 by the
premises, and also, trivially, a cyclic vector for 4;.
In view of (91) it follows that Q is a separating vector
for both 4, and 4 ;.
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(6) We next consider the assertion in part (e) of the
theorem. If 4 is any von Neumann algebra with  as a
separating vector, and such that 4,4, and such that
V()A V()™ =4 for all real ¢, then 4’ CA%C{/(W,), and
@ is a cyclic vector for 4’, and hence for J4'J C [/(Wg).
Furthermore, V()4 'J)V{t)™! =J4'J, The von Neumann
algebra JA4'J thus satisfies the premises of the present
theorem, and it follows from the already established
relations (91) that J4J=4’, and from this relation it
readily follows that 4 =4 r, as asserted.

Suppose now that A is a von Neumann algebra with Q
as a cyclic vector, and such that 4 C4z, and such that
V() A V()™ =4 for all real £. Then 4 satisfies the
premises of the present theorem. In particular, 4 is
“maximal,” which implies that 4 =4 s.

In a similar fashion we show that 4, is “maximal”
and “minimal, ”

(7) To prove the assertion (f) we consider the string
of equalities (93a). Suppose that X;,X;€4 5, and suppose
that X, is an element of a von Neumann algebra 4 such
that 4 ,CA <{/(Wg). It is easily seen that the premises
of Lemma 14 are satisfied by the pair of operators
(X, X;) and X,, and also by the pair of operators X; and
X,. It follows that the equalities in (93a) also hold in the
present case, and we conclude, as in step (1) of the
proof, that JX,JcA%, i.e., J4JCA% It follows that
A CJIA I =4 r, and hence we have 4 =4, as asserted.
This completes the proof of the theorem.

It should be noted that this theorem as such has little
to do with the quantum field. It is of physical interest
only if the algebra 45 is in some sense “generated” by
field operators in 2(Wg). We are not here asserting
that such an algebra 4 ; actually exists, This issue will
be discussed in the next section,

At this point we wish to discuss the relationship be-
tween our considerations and the Tomita— Takesaki
theory of modular Hilbert algebras. 1325 Within the
framework of this theory one is able to draw some
highly interesting conclusions about the structure of
von Neumann algebras, The main theorem (from our
point of view) is due to Tomita, and we shall state the
facts in the following form.

Let /4 be a von Neumann algebra (of operators on a
separable Hilbert space) which has a cyclic and separat-
ing vector @, and let /4’ denote its commutant, Then
there exists a unique antiunitary involution J, and a
unique self-adjoint operator (K, D,), which satisfy the
following conditions:

(a) JR=Q, QeDyg, KQ=0; (95a)
(b) JAT=A"; (95b)
(¢) JDx=Dy, J(K,Dy)J=(=K,Dg); (95¢)
(d) exp(-itK)A exp(itK) =A,

exp(— itK) A’ exp(itK) =4", (95d)

for all real /, and the one-parameter group of unitary
operators exp(—i{K) is thus, acting by conjugation, a
group of automorphisms of 4 and of 4’.

(e) If (C,AR) is the antilinear operator defined by
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CXQ=X*Q, all Xc4, (95e)
then
(Jexp(nK), D,) = (C, A Q)** (95f)

where D, is the linear manifold such that (exp(nK), D,)
is self-adjoint,

We note here that the operator exp(27K) is traditional-
ly denoted by A in papers on the subject: Our notation in
terms of the operator K is specific for this paper, and
motivated by our physical considerations.

The existing proofs of Tomita’s theorem can hardly
be regarded as trivial. Given the von Neumann algebra
A and the cyclic and separating vector R, the operators
J and A [and also the operator K by 27K =1n(A)] are in
fact determined through (95f), which describes the polar
decomposition of the closure of the antilinear operator
(C,A Q). With this construction it is easily shown that
the relations (95a) and (95¢) hold, but the relations
(95b) and (95d) are entirely nontrivial, In this paper we
do not depend on Tomita’s theorem, but we wanted to
point out its relevance to our discussion. In particular
our Theorem 2 is within the purview of the Tomita—
Takesaki theory. In a sense this theorem contains
nothing new, but we wanted to state the facts in this
form for later reference, and also to prove these facts
in an elementary way directly from the particular set of
premises which arises naturally from our physical con-
siderations. In our case the existence of J and K is not
the issue since we are given the triplet (R, J, K3) to
start with, If we now compare the situation described in
Theorem 2 with the situation described in Tomita’s
theorem we see that our operators J and K =K, are
precisely the operators which in Tomita’s theorem are
determined by the algebra 4 =4 p.

Let us also note here that there are similarities be-
tween our discussion of Lemma 14 and Theorem 2, and
the work of Haag, Hugenholtz, and Winnink, % and the
work of Kastler, Pool, and Thue Poulsen, ¥

If we consider Theorem 1 we note some further
analogies with the Tomita— Takesaki theory, although it
should be noted that Theorem 1 concerns unbounded
operators, rather than bounded operators as in Tomita’s
theorem. The definition (69a) is thus analogous to the
definition (95e) above, and the relation (69¢) is analo-
gous to (95f). The relation (67) has a tenuous connection
with (95b), but it should be noted that it is not proper
to regard the algebra 2(W.) as the “commutant” of
P(Wg): These algebras are rather analogous to some
pair of algebras which generate the algebras 4 and 4’.

The connection between the duality condition in
quantum field theory and Tomita’s theorem has been
discussed previously by Eckmann and Osterwalder, in
their discussion of the duality condition for a free
field. ” We shall comment further on this in Sec. VIL

We conclude this section with an addendum to The-
orem 2,

Lemma 15: Let / g be a von Neumann algebra which
satisfies the premises of Theorem 2. Then 4 z and 4,
=J4 gJ =A% are factors,
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Proof: That the algebras 4 and 4 are factors means
that their centers are equal to the set {cI} of all com-
plex multiples of the identity. In the case at hand this
condition is equivalent to the statement 4 A ={cI}.

Let Z€A4xNA. Since Z is then an element of the set
YW N (W), it follows from (73a) and (73b) that

V) ZQ=JZ*Q = V(- in)ZQ. (962)
This implies that V(im)ZQ < D,, and that
V(2mi)Z9 = exp(27K ) ZR = ZQ, (96b)

which implies that ZQ is an eigenvector of K,, with
eigenvalue 0. It is easily seen {and well known) that
under our general assumptions about the nature of the
representation of L, carried by the Hilbert space /4,
the only eigenvector of Kj; is the vacuum vector Q. It
follows from the above that ZQ =cQ, for some complex

number ¢, and hence that Z =cl. This proves the lemma.

V1. THE DUALITY CONDITION FOR THE WEDGE
REGIONS W AND W,

In this section we shall consider conditions under
which the operators in 2(Wj) “generate” a von Neumann
algebra A ; which satisfies the premises of Theorem 2,
The basic idea is very simple. We try to construct 45
as the “commutant” of a suitable subset of operators in
P(W,). The execution of this idea is, however, beset
with “technical” difficulties which derive from the fact
that the operator in 2(W.) are in general unbounded,
Furthermore, we are faced with the unfortunate situa-
tion that practically nothing is known about the nature
of these operators as mathematical objects. It is, for
instance, not known at present whether the field opera-
tors @[f], with f real, have any local self-adjoint ex-
tensions in a sense which will be discussed later. In
our discussion we wish to avoid making assumptions
which might later turn out to be too restrictive. For
this reason we do not try to define the algebra 4 in
terms of the commutant of aZl the operators in the set
P(W.), but instead in terms of the commutant of the
field operators @[f], with supp(f)cC W,.

We begin with some general considerations about the
commutant of a subset of P(/)).

Lemma 16: Let 7 be a subset of P(/#), such that
(X*,Dy)e 7 for all (X, D;) 7. Let K, be the set of all
bounded operators @ such that

[Q,x**Jy=0
for all y € Dy, and all {X, D) 7. Then:
@)
RDX**) c D(X**), [Q,X**]p=0 for all Pc D(X**),
(97b)
Q*D(X*)CD(X*), [@* X*l¢p=0 for all ¢ € D(X*),
(97¢)

QD; C D(XC**), (97a)

for all (X, D;) e 7.

(b) The set X, is a weakly closed algebra, The set
Ar=K:NK¥=1Q!Q, @* € K;} is a von Neumann algebra.
This algebra is precisely equal to the set of all bounded
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operators @ such that
(X’ Dl)**Q > Q(X, Dl)**7
for all (X, Dy)€ 7.

(c) If G is any unitary operator such that GD; =D, and
GJG1'c7, then G'L4,GCA,.

(d) Let 72, be the polynomial algebra (on D;) gen~
erated by 7. Then

(X*¢ | QY =(Q*¢ | XY (99)
for any X € 24, any Q €4, and any ¢, pe D,.

X,D)*Q>QX,Dy)*  (98)

We omit the proofs since the above lemma is merely
a summary of trivial and well~-known facts. That 4, is
a von Neumann algebra if all operators @ in this set
satisfies (98) was shown by von Neumann, 2% and the
conditions (98) correspond to his conditions that the
bounded operators @ and @* commute with the closable
operator (X, D;). We note here that X; need not be a
von Neumann algebra, i.e,, @* is not necessarily in-
cluded in K, for every @ €K;. This circumstance
derives from the fact that the adjoints of the operators
in 7 are not necessarily included in the set of all clo-
sures of the operators in 7. If it happens to be the case
that (X', D,)* = (X, D()** for all (X,D;) €7, then K;=K}*
=As.

We shall define the commutants of sets of field opera-
tors in terms of the conditions (98), and we are now
prepared to state a somewhat lengthy theorem concern-
ing the commutants of field operators associated with
either one of the wedge regions Wy and W;.

Theovem 3: Let 4 ,(Wg) be the von Neumann algebra
of all bounded operators @ such that

Q(¢[f];Di)** - ((p[f]’Di)**Qy
Q(elf], Dy)* < (ol f], D)*Q

for all fe §(R?Y) such that supp(f) C W,.

(100)

Similarly, let 4 .(W;) be the von Neumann algebra of
all bounded operators @ such that (100) holds for all
f€ S(RY such that supp(f) C Wg.

Then:
(a)

Ac(WR) quc(WL)" Ac(WL) C74 c(WR),- (101)
(b)
Ac(WR) = U(R(eh ”); OMC(WL)U(R(eD 77)7 0)-1 (1023-)

where R(e, 7) denotes the rotation by angle 7 about the
1-axis.

Let (W5} be the semigroup of all elements in the
Poincaré group L, which map Wy info Wy, Similarly,
let o(W.) ={A™ |A € 0(Wz)} be the semigroup of all ele-
ments in the group L, which map W, info W,. Then

UMAWRUNY T A (Wg), all Aco(Wg), (102b)
and

UMALWITA) CA(W,), all Aco(W;).  (102c)

The set ZO(WR) =0(Wg) No(W;) is the group of all ele-
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ments of ZO which map Wy onto Wy and W, onto W,
and we have

UMA(WRUB) ™ =A4,(We), UB)AW)UNY =4 (W)
_ (102d)
for all A € Ly(Wg). In particular,

VIVALWRVE™ =4 (Wr), VIOAWLIVE" =4 (W,)

(102e)
for all real ¢£.
(c)
A(Wg)=dA (W), (102f)
(d) The relations
(x*¢ | Y9 =(Y*¢|Xy), all ¢,peDy, (103)

hold for all X &4 ,(Wg) and all Y& p(Wy).

The relations (103) also hold for all X € P(W3) and all
YeAq.(W).

{e) With the notation in Lemma 12 we have 4 (Wg)
Cls(Wg) and 4 (W) C{/,(W;), and hence 4 . (Wg)QCD,,
AlWLIQC D, and

VEMXQ=JX*Q, all X4 (Wg), (104a)
V(- in)YQ=JY*Q, all Y4, (W,). (104b)

(f) I it is the case, in addition, that 4,(Wg)Q2 is dense
in the Hilbert space /#/, then the algebra 4=/ .(Wz)
satisfies all the premises of Theorem 2 and Lemma 15,
and, with reference to the notation in Theorem 2, 4,
=A.(W;). In particular, the algebras 4 (Wp) and 4,.(W;)
are factors, and they satisfy the duality condition

A(We)=A (W) (105)

Proof: (1) That 4 .(Wg) and A .(W,) are indeed von
Neumann algebras follows from Lemma 16. We tem-
porarily postpone the proof of the relations (101) (of
which either one implies the other). The assertions (b)
and (c) of the theorem are all trivial. We consider the
assertions in part (d). From Lemma 16 it follows that
(103) holds for all X €4 (Wg) and all Y e 2 (W,). In view
of Lemma 1 these relations also hold for all Y e P(W,)
and all X< 4 (Wg), as asserted. Analogous considera-
tions apply to the second assertion (d).

(2) The assertions (e) now follow trivially from Lem-
ma 13 and part (d) of the theorem [setting ¢ =¢=8 in
(103)].

(3) Having established part (e) we conclude from
(102e) and (102f), on the basis of Lemma 14, that

[x,¥]e=0
for all X€ 4, (Wg) and all Y €4 (W,).
Let x € Wy, and let X(x) = T(x)XT(x)!. We then have
A x)e0(Wg), i.e., A(l,x)WrC Wg, and hence X(x)
€A4.(Wg) whenever X €4 .(Wg). For any such X(x) the

relation (106a) thus holds for any Y €4 (W), with X(x)
substituted for X,

(106a)

Let R=W,zNA(I, x)W,. This region is open and non-
empty for any x € Wy, It is easily seen that if @ =[X(x),
Y], with X(x) and Y as above, then the conditions (100)
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hold for any f& §(R*) such that supp(f) C R, By Lemma
16 we then conclude that

(2,9 [X(x), V12,9 =(Z2#2:Q|[X(x), Y] =0 (106b)

for any Z,,Z, € °y(R). Since 2,(R)S is dense it follows
that [X(x), ¥]=0, for all x< Wy, Since the point x =0 is
on the boundary of W5, and since X(x) is a strongly con-
tinuous function of x [in view of the strong continuity of
the function 7'(x)] we conclude that [X, ¥]=0. This
proves the assertions (a) of the Theorem,

(4) The assertions (f) follow trivially from Theorem
2 and Lemma 15, This completes the proof of the
theorem,

We note that the assertions (b) in the theorem cor-
respond to geometrical conditions which obviously have
to be satisfied if we wish to regard 4 (Wy) as locally as-
sociated with Wy and 4 (W) as locally associated with
W.. In a theory in which a physical TCP-operator
exists, as is the case here, the condition (102f) must
also hold. The commutation relations implied by (101)
correspond to a minimal condition of “physical inde-
pendence” of the operators in 4 (Wg) from the opera-
tors in 4 ,(W.). We note that the result (101) is analo-
gous to a well-known theorem of Borchers concerning
the local nature of a field which is local relative to a
local irreducible field. ! The relations (103) in part (d)
are “commutation relations” between the bounded opera-
tors in the von Neumann algebras and the unbounded
operators in 2(/)) in a sense which is weaker than the
sense in which @ commutes with ¢[f] in (100). The

assertions (d) can be restated as follows??;

X(Y*,D;)C (Y, D))*X (107a)
for all X4 (Wg) and all Y € P(W,), and

Y(X*, D)) C (X, Dy}*Y (107b)

for all YeA (W) and all X € P(Wg).

In the following we shall call a pair of von Neumann
algebras 4 (W) and 4 (W,) a pair of local wedge-algebras
if and only if they satisfy all the relations (101)—(103)
which the algebras 4 (Wpg) and 4 (W) satisfy. It follows
that a pair of local wedge-algebras also satisfies the
relations (104), by the same reasoning as in the proof
of Theorem 3. Note that neither the duality condition
(105), nor the commutation relations (100), are implied
in the notion of a pair of local wedge-algebras,

With respect to the duality condition (105) the situation
is as follows, The algebras 4 (W) and A4 (W) are uni-
quely determined by the field ¢(x), and it is then a
matter of “checking” whether these algebras are suffi-
ciently large in the sense that 4 (Wg)Q is dense in the
Hilbert space //. We do not know at this time whether
A(Wg) is dense in general, i.e., with no additional
assumptions about the field. It seems to us that in a
physical theory described in terms of local observables
and a local quantum field @(x) it must be the case that
there exists a von Neumann algebra 4 (Wy), generated
by the observables associated with the region Wy, and
similarly an algebra 4 (W,), and such that these alge-
bras satisfy the conditions (a)—(d) in Theorem 3. In
addition, we might require that the family of observables
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associated with Wy is sufficiently large so that 4(Wge)Q
is dense in /. As an example of the kind of considera-
tions which are relevant here we refer to the work of
Licht on “strict localization. 3 If the algebra 4 (Wg)
satisfies the above conditions, then 4(Wg)C(/(Wg) and
the relation (104a) holds because 4(Wpg) is a local wedge-
algebra, and since 4(Wg)§ is dense, it follows that the
duality condition A(Wg)' =4 (W,) holds.

If it is the case that 4,.(W3)Q is dense we would define
the “algebra of observables” 4 (Wg) by A(Wg) =4 .(W5),
with reference to the construction in Theorem 3. If
ALWRQ is not dense, the algebra A4{(Wy), if it exists,
would have to be defined differently. One possibility is
the following. It might be the case that 4 (W) could be
defined in a satisfactory manner as the commutant of
some other subset of 2{W;) which is “better behaved”
than the set of operators ¢[f] in P(W,). Since we feel
that we have no basis for a rational choice we shall not
discuss this possibility. Another possibility is that
there might exist, within the framework of the particu-
lar theory, natural extensions of the field operators
o[ f]. We could then try to define 4(W,) as the com-
mutant of the extensions of the operators ¢[f] in P(W;),
if it so happens that 4{(Wg)Q is dense for this choice,
We shall consider a particular case of this situation
below. The general problem of how to define algebras
of bounded operators in terms of the unbounded field
operators has been discussed by many authors, and
what we say below is not particularly novel, 1, 16,2951

We shall now consider four particular conditions on
the quantum field which seem to us to be interesting to
contemplate, Each one of these conditions guarantees
the existence of local von Neumann algebras which
satisfy the duality condition (105) (for the wedge re-
gions Wy and W),

Condition I: The linear manifold 4 (W) is dense in
the Hilbert space //, where 4,(Wp) is the von Neumann
algebra constructed from the field as in Theorem 3.

Condition H: For any open nonempty subset R of
Minkowski space the linear manifold ( (R} is dense in
the Hilbert space //, where (C(R) is the von Neumann
algebra of all bounded operators @ such that

Qelf], D** (o[ f], D))**Q.

Q[ F1, Dy* < (o[ £], Dy)*@ (108)

for all fe §(R*) such that supp(f)C (E)c, where (R)® de-
notes the causal complement of the closure of R.

Condition III: The quantum field ¢(x) has a local self-
adjoint extention in the following sense. To each f
€ S{R*) corresponds a closed operator (@[ f], D(f))
such that:

(a)
@[ 71, D) = (B[ F*], D(F*), {109a)
@[], DN >(elf], Dy (109b)

for all fe §(RY). The operator (@[f], D(F)) is thus seli-
adjoint if f is real,

(b) ¥ »(x) € S(RY) is 7eal, and if f(x)< §(R?) such that
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supp(7) C (supp(f))°, then
F(@lf, DN (@f), DIFNF

for any spectral projection F of the self-adjoint opera-
tor (@[r], D).

(c) For any fe §(RY, AeL,,

(110)

U@ f1, DUNUMY ! = (9[Af], DAS)). (111)
Condition 1V: Condition III holds, with
(el /1, DN = (o f], D))** (112)

for all fe §(RY).

The Condition II trivially implies the Condition I,
and we have C (Wg) =4 .(Wg), C(W;}=4.(W;). Both con-
ditions thus imply the duality condition (105) for the
wedge regions. We shall consider further implications
of Condition IT in the next section.

Condition I is (as far as we know) much stronger
than the condition that every operator (¢[f}, D;), with
F€ S(RY and f real, has a self-adjoint extension. The
conditions (110) and (111) can be interpreted as the con-
ditions that the extension of the field is also a local
scalar field, Condition IV is the most restrictive of the
conditions. I, in effect, states that the quantum field
@(x) has a unique local, covariant, self-adjoint exten-~
sion, given by (112).

Theorem 4: Condition III is assumed. Let 4 (W) be
the set of all bounded operators @ such that

Qelf1, (N c(@lf], DN (113)

for all fe §(R?Y) such that supp(f)c W,. Let 4 (W,) be the
set of all bounded operators @ such that (113) holds for
all f& §(R" such that supp(f)C Wy Then:

(a) A(Wg) and 4 (W) are von Neumann algebras with
the vacuum vector @ as a cyclic and separating vector.
Both algebras are factors, and they satisfy the duality
condition

AWg) =A(W,). (114)

() If 4 (Wg) and A, (W,) are defined as in Theorem 3,
then

AW CA(WR), AAWL)CAW,), (115)
and equality obtains if and only if 4 (W) is dense in 4.

(c) The algebras A(Wg) and 4(W,) form a pair of local
wedge-algebras, i, e., they satisfy all the conditions
(a)—(e) in Theorem 3 which the algebras 4 (W) and
AW, satisfy.

(d) Let g(WR) be the set of all spectral projections
of all operators (@[], D{f)}, with f real, fe §(R*), and
supp(f)C Wz, Similarly, let G (W) be the set of all
spectral projections of all operators (g{f], D(f)), with
freal, fe S(RY), and supp(f)c W;. Then

AWR) =G (Wg)", A(W)=G(W.)". {116)

Proof: (1) We first note that in view of (109a) the set
A(Wg), as defined in terms of (113), is the commutant
of a set of operators which is closed under the forma-
tion of the adjoint. Hence /4 (Wg), and similarly 4(W;),
are von Neumann algebras,
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From the relation (111), which describes the action
of the Poincaré group (by conjugation) on the extended
field, it trivially follows that the algebras 4 (W5} and
A(W,) satisfy all the relations (102a)—(102e) in The-
orem 3, and, in particular,

VIOA(WR V) =A(Wg), VIAWVE)L=4(W,)

for all real £, Note, however, that the relation (102f) in
part (c) of Theorem 3 does not follow trivially from
(111).

(2) Let ¥, ¢ €Dy, and let fe §(R?Y), supp(f)c W,. For
any X c4{(Wg) we have

b X1y =(w| BLF1 XY =(d| BLF*]*X )
=(olf 1| Xe) =( e F*]0| X4 (1182)

From the equality of the first and last members of
(118a) it readily follows that the relations

(117)

(X*p| Yoy =(Y*9| Xy, all ¢,deDy, (118b)

hold for all X €4(Wpg) and all Y 2(W,). In a similar
manner, we conclude that (118b) also hold for all

Xe P(Wg) and all Y€4(W,). As in the proof of Theorem
3 we conclude that

AW SU(Wr), AWL)Up(Wy).

(3) Trivially we have g(WR)" CA(Wg) and g(WL)”
CcA(W;). We shall show that © is a cyclic vector of the
von Neumann algebra ¢ (Wg)".

Let {R,In=1,,..,=} be a set of subsets of W5, con-
structed as in Lemma 10. Let {f,lk=1,...,n} be an n-
tuplet of veal test functions such that £, € §(R?) and
supp(f,) CR,, for k=1,...,n. In view of the nature of
the regions R, it follows that the self-adjoint operators
@ f], D(f)), k=1,...,n, all commute with each other,
in the sense that their spectral projections commute,
Let F,(A) be the spectral projection of (¢[f,], D(f,)) cor-
responding to the interval (- A, 1), where A> 0, and let
the bounded operator @,(}) be given by @,(}) = @[ f,]F,(2),
for each 2=1,...,n. We then have

(118c)

Fi)Fy(0) -+ - F,(Nelfilelf)- - ol f2

=Q1(MQ (A} - - - (N8 (119a)
and hence
s-lim QM@ N - - - NN =gl filolfo] - - - 0l fa)2.  (119D)

The operators @,(2) are all included in ¢ (Wg)”, and
since (119b) holds for any »> 0, and any choice of real
test functions, we conclude that g(WR) "8y = OQ where O
is defined as in Lemma 11, By Lemma 11 it then fol-
lows that g(W )" is dense in /4, and hence 4 (Wg)Q is
also dense.

(4) 1t is trivially the case that V(t)g (W,i,)”V(t)‘1
:g(WR) ” for all real £. We now note that both 4 (Wy)
and ¢ (Wg)” satisfy the premises of Theorem 2, with
Ar=A(Wg), or with 4= (Wg)". It follows from this
theorem, in view of G (Wg)” C/(Wg), that

G(Wr)” =A(Wg) =JA (Wg)'J =JG (Wg)'J.

Similar considerations apply to 4 (W,) and ( (W;), and
we thus establish the relations (116).

(120a)
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We trivially have g(WR) Cg(WL)', and hence g(W )
Cg(WL)' Similarly, G(W;)" CG(Wg)', and it follows,
in view of (120a), that G (Wg)” =Jg(WR)’J=g(WL)’, ie.,

AWg)=d4 (W), (120b)

which shows that J acts as asserted (and as expected) on
the algebras 4 (Wy) and 4(W;}, which have now been
shown to form a pair of local wedge-algebras. The
duality condition (114) follows trivially from (120a) and
(120Db).

(5) It remains to prove the relations (115), Let X
EA(WR)) Xc eAc(WR)y and 1eth S(R4)5 supp(f) - WL°
For any vectors ¢, y € D; we have

XX o[ F16) =0 | XL F1*X ) = (0| X[ 71X, )
=(¥| PLf1XX,0) =(¥| DL f*]* XX, 0)
=@ *19| XX, ¢) =(p[f *¥| XX,4). (121a)

From the equality of the first and the last members
of (121a) it readily follows that

(T*Q| XX 0 =(Q XX, YD) (121b)

for any Y € 2,(W,). By Lemma 13 we conclude that
XX, < (/(Wg).

Since X and X, are arbitrary elements of 4(Wy) and
A Wg), and since V(£)4 ,(We)V(£) ™t =4 ,(Wg), we conclude
that XV()XF V()  ({(Wg). The operators X and X, then
satisfy the premises of Lemma 14, and it follows that

XWX )0 = (JX XK, (121c)

for any X €4 (W) and any X, < 4,(Wy). Since 4{Wp)Q

is dense in the Hilbert space it follows, by the same
kind of reasoning as in step (1) of the proof of Theorem
2, that [(JX_J), X]=0, which means that J4 (Wg)J
CA(Wg)'. In view of (120a) this implies the first rela-
tion {115). The second relation is obtained by conjugat-
ing the first by J.

This completes the proof of the theorem. We add a
corollary which describes the situation under Condition
IV. It is almost completely trivial in content.

Covollary to Theorvem 4: Condition IV is assumed,
and hence Condition III obtains, The quantum field has
one and only one local self-adjoint extensijon @(x),
namely, (B(f],D(f)) = (@[], D)** for all f< S(R'). The
domains D, and D, are cores for all operators
((o[f]’Dl)*’ and

(@[ £, DY* = (o[ F*], DY** = (o[ £*), D(f*)). (122)
With the notation in Theorems 3 and 4,
AWr)=AWr), AWr)=A(Wy.), (123)

and all the conclusions in these theorems hold for the
above algebras.

If we are allowed to speculate about the results in this
section, we wish to say that we are inclined fo believe
that in a satisfactory local theory there ought to exist at
least one field which satisfies Condition oI, although
this does not seem to be necessary for the duality con-
dition to hold, It is well known that the general condi-
tions on the field which we stated in Sec. II have to be
amended with some conditions which guarantee that the
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theory really describes physical particles. In particular,
some kind of “dynamical principle” is sorely needed.

It might, of course, be the case that Condition III is
already implied by the minimal assumptions in Sec. II,
but if this is not so we would like to believe that the
condition at least holds in a properly amended theory.
We can imagine a situation in which the local self-ad-
joint extension of the field is unique, without D; being

a core for the extensions of the individual field opera-
tors ¢[f]. Condition IV might thus be unduly restrictive.
An even more restrictive condition, according to which
Q is an analytic vector for all Hermitian field operators
¢[f], has been discussed by Borchers and Zimmer-
mann, ! Such a condition cannot hold generally since it
is violated by Wick polynomials of free fields, but it is
conceivable that it could hold for one particular field in
a particular theory. (It is well known that it does hold
for a free field.)

Let us finally remark that most of our considerations
up to this point also apply to a field theory in two-
dimensional spacetime, in view of the special geometric
properties of the wedge regions Wrand W;.

VII. THE DUALITY CONDITION FOR A FAMILY OF
BOUNDED REGIONS; LOCAL INTERNAL SYMMETRIES

The discussion in this section will be based on the
assumption that there exists a pair of local wedge-
algebras 4 (Wz) and 4(W.), which satisfy the duality
condition 4 (Wg) =4 (W.).

These algebras thus in particular satisfy all the
conditions (a)—(e) in Theorem 3, which the algebras
AlWg) and 4 (W) satisfy.

The operators in the von Neumann algebra 4 (Wg) can
be regarded as “locally associated” with the region Wg.
The existence of the wedge-algebras does not, however,
guarantee (as far as we can see) that there exist non-
trivial von Neumann algebras which can reasonably be
regarded as associated with bounded regions in space-
time. In a satisfactory theory of local observables we
would certainly require that there exists a sufficiently
large set of bounded (self-adjoint) operators which cor-
respond to measurements within some bounded regions
in spacetime, Condition I on the field, discussed in the
preceding section, would thus by itself appear too weak
for a satisfactory theory, although it does guarantee the
existence of the local wedge-algebras. As we shall
see, either one of our Conditions II-IV does imply the
existence of a set of truly “local” operators with rea-
sonable properties. We note here that our particular
conditions, although not physically unreasonable, are
nevertheless quite arbitrary. We are not here asserting
that anyone of these conditions 2as to hold, nor are we
asserting that they guarantee that the theory has a physi-
cal interpretation which is satisfactory in every
respect.

Let us now consider the definition of von Neumann
algebras for other regions than the wedges Wy and W,

For any subset R of Minkowski space //j we denote by
AR the image of R under any element A of the Poincaré
group L,. We define [/ as the set of all (open) wedge
regions bounded by two int ersecting characteristic
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planes, i.e.,
W={Awg|A e Ly} (124a)
For every We/|/ we define the von Neumann algebra
A(W) by
AMWR) =UMAWHUN)!, all AcL,.

We note that this definition is consistent since we
assumed that 4 (W) and 4 (W,) satisfy the relations
(102a)—(102e) in Theorem 3.

(124b)

It is natural to define von Neumann algebras for a
suitable family of bounded regions in terms of intersec-
tions of the von Neumann algebras 4 (W). Since we hope
to discuss these issues elsewhere in greater detail,
and within a more general framework, we shall here
restrict our considerations to a set of particularly sim-
ple bounded regions, namely, the so-called double
cones. For any two points x; and x, in Minkowski space
such that x, € V,{(x;) {[where V {(x,) is the forward light
cone with x; as apex|, we define the double cone C
=C(xy,%,) by

c(xly x2) = V+(x1) N V-(xZ)’ (1253)
where V_(x,) is the backward light cone with x, as apex.
The double cones so defined are thus open and non-
empty. We denote by /), the set of all double cones.

For any double cone C we define a von Neumann alge-
bra A4(C) by
B =n{AW|wey, woCL.

Here C denotes the closure of C, We prefer to regard
A(C) as associated with the closed set C, and hence the
above notation.

(125b)

We shall next extend the domain of the mapping W
— A (W) to include all open regions C° which are the
causal complements of closed double cones C. For any
C e /), we define the von Neumann algebra 4 (C°) by

A ={4m | wey, wc e,

We shall now state two theorems about the properties
of the algebras which we have introduced above. The
conclusions in the first of these do not depend on the
duality condition, but follow fairly trivially from the
relative locality of the wedge-algebras, and from the
“geometrical” conditions in parts (b) and (c) of
Theorem 3.

(126

Theovem 5: Let 4(Wg) and 4 (W) be a pair of von
Neumann algebras such that

AWg) A (W)’ (127)
and

AWg) =dA (WL, (128a)

A(Wg) =UR(e;, m), 0) A4 (W) U(R(ey, m), 0)1, (128b)

UM AW UA)TCA(Wg), all Aco(Wy), (128¢)

where ¢(Wpg) is the semigroup of all Poincaré trans-
formations which map Wy info Wy,

Let 4 (W) be defined by (124b), for any We(f/. Let
A(C) be defined by (125b), and let 4(C°) be defined by
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(126), for any double cone C. Then:
(a)

ANW) =UN) A (W)U(A)! (1292)
for all We(//, all A € Ly;
BAC)=UM) BECYU(AYY, (129b)
AC®) =UM)A(CHTA), (129¢)
for all Ce/),, all A L,.
(o)
A(GW)=JA (W), (130a)
R(GCY=JR(CM. A(JC)=JA(CW (130b)

for all Wey/, Ce/),, and where y is given by (47).
(c)
AW AW, W, Well/, Wow, {131a)
BC)DB(C,), AC) A (131b)

for all C, C, /), such that C D C; (and hence C°c C9),
and

BIC) AW CA(CS) (131c)
for all We/f/, Cy,Cy&/),, such that C; c Wc Cs.
(d) The algebras 3(5) are local, in the sense that
BCHCREC) (132a)
for any Cy,C,€/),, such that C;C Eg, Furthermore,
BCY > A(C) (132b)
for any Ce /).

(e) The mapping W—4 (W) is continuous from the
outside in the sense that

AW =0 {4w) | Wy e, wy> W}
and it is continuous from the inside in the sense that
AW =44 (W) | W, &, Wy < WY, (133b)

The mapping C — 4(C) is continuous from the outside
in the sense that

/,))(5) = 0{8(50) I Co€fes cc co}-

The mapping C°~,4(C¢) is continuous from the inside
in the sense that

ALY ={A(CD|C; €D, C; 2T

Proof: (1) The assertions (a) and (b) are trivial, The
relation (131a) follows trivially from (128¢) and the def-
inition (124b), The relations (131b) follow directly from
the definitions (125b) and (1286).

(133a)

(133¢)

(133d)

(2) We next consider the assertions in part (e) of the
theorem. To prove (133a) it clearly suffices to prove
this relation for the special case of W= Wy, For this
case, let 4 denote the von Neumann algebra defined by
the right member in (133a). We obviously have 4(Wg)
4. Let x € W We then have T'(x) 4 T(x) c4(Wg).
Since the function 7'(x) is strongly continuous, and since
the point x =0 is included in W5, we conclude that 4
=4(Wg). Hence (133a) holds,
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The relation (133b) follows readily from (133a). The
relation (133¢) follows from the definition (125b), and
the relation (133d) follows from (133b) and the defini-
tion (126).

(3) The relation (131¢) in part (b) of the theorem now
follows trivially, in view of (133a).

(4) It remains to prove the assertions (d). Let C be a
double cone, and let W=AWj be any wedge such that
Wc C®, Then CCAW,, and it follows from (127) and
(131c) that B(C)’ D4 (AW,) DA (W). In view of the
definition (126) this implies the relation (132b). The
relation (132a) then follows trivially from (132b) and
(131c). This completes the proof of the theorem.

We note that the relations (131a) and (131b) are in
fact implied by the relations (133b)—(133d), and our
presentation is thus somewhat tautological. In view of
the relation (133a), which says that the wedge-algebras
are “continuous from the outside, ” we might well write
AB(W) =4 (W) for any wedge W, corresponding to the
idea that a wedge W is a limiting case of a double cone.
We note here that the algebra 4(C¢) need nof be continu-
ous from the outside, and that the algebra 4(C) need
not be continuous from the inside, for any double cone
C.

Theovem 6: Let /4 (Wg) and 4 (W) be a pair of von
Neumann algebras which satisfy all the premises of
Theorem 5. It is assumed that these algebras satisfy
the duality condition

AWL) =A(Wg)'. (134)

Furthermore, it is assumed that  is a cyclic and
separating vector for 4(Wg), and that 4(Wg) C//(Wg),
where (/(Wy) is defined as in Lemma 12, and hence

VEmXQ=JX*Q, all Xe/4(Wg). (135)

Let the von Neumann algebras 4 (W), A(C¢), and 4(C)
be constructed as in Theorem 5. Then:

(a) The algebras A(C) and 4 (C°) satisfy the dualily
condition

BCY =A(CO).

(b) If theve exists a double cone C, such that 3(C,)9 is
dense in the Hilbert space 4, then

(136)

AC)=1{8©)|cep,, CcCi}” (137a)
for every C,</),, and

AW ={BAC,)|A € Ly, ACy < W}, (137h)

A€ ={BACy) |A € L, AC, < CF}” (137¢)

for every C; /)., We({/. If, furthermore, EOC Wh,
then

AWz ={VOBC) V() |te R},

(c) If the quantum field satisfies Condition II, and if
AWg)=A (Wg), with 4 (W) defined as in Theorem 3,
then the pair of von Neumann algebras 4 (Wg) and 4 (W)
=4 (Wg) satisfies the premises of the present theorem.
The vector {2 is a cyclic and separating vector for
every algebra 4(C), and for every algebra 4(C¢). The

(1374d)
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relation (137a) holds, and the relations (137b) and
(137¢) hold for every C,&/)..

If C(R) is defined as in the statement of Condition II,
then

B(C)>C(C) (138)

for all C&/),.

(Q) If the quantum field satisfies Condition III, or
Condition IV, then the pair of algebras 4(Wg) and 4 (W.),
defined as in Theorem 4, satisfies the premises of the
present theorem, and & is a cyclic and separating
vectors for every algebraB(C), and for every algebra
A(C°). The relations (137a)—(137d) hold as in (b) above,
for any Cy€/)..

Furthermore, if (;(C) is the set of all spectral pro-
jections of all operators (@[f], D(f)), with freal,
fe S(RY, and supp(f)CC, then,

G(C)"CR(C) (139)
and, for any C, €/,
ACH={g©cep,Cccs. (140)

Proof; (1) All the conclusions of Theorem 5 hold. The
duality condition (136) follows easily from the duality
condition 4{W,) =4 (Wy)’ for the wedge-algebras, if we
note that

A ={4W,)|Ae Ly, AWz C}
=(n{40aw) |Ac Ly, AWxDCH =5(C),
where the equality of the first and the second members
follows from (133d) in Theorem 5.

(141}

(2) We next consider the assertions (b), assuming
now that a C4 in /), exists, such that B(C)Q is dense.
Without loss of generality we can assume that C;CWp.
Let A r be equal to the 7ight member in (137d). Then &
is a cyeclic vector for the von Neumann algebra 45, and
it follows from the definition of this algebra that
V()4 pV()™ =4 & for all real ¢{. Since, obviously, A4
CA(Wg)C({(Wg), we conclude that 4 ; satisfies the
premises of Theorem 2, and it follows from that theo~
rem that 4 p=/(Wg). This proves the relation (137d).
The relations (137a)—(137¢) then follow trivially from
(1374d).

(3) The assertions (c) are completely trivial. We now
consider the assertions (d). The crux of the matter is
that g (C)"Q is dense for any double cone C, That this is
50 is established by the same kind of reasoning as in
step (3) in the proof of Theorem 4, but with the modifi-
cation that for any integer n> 0 the regions R,, %
=1,...,n, are selected as any set of # nonempty open
sets in C such that the closures of any two of these re-
gions are spacelike separated. Having thus shown that
g(C)”Q is dense, we consider the case when the double
cone C satisfies C C Wg, and we define a von Neumann
algebra 4 r by

Ar={V)G (C)V(EY! |t e R} (142)

The relation (139) is trivial, and we can now apply the
reasoning in step (2) above to 4. We conclude that 4,
=4 (Wg), and from this the relation (140) follows readily.
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This completes the proof of the theorem,

We feel that it is entirely proper to call the condition
(136) a “duality condition, ” at least in the case when

‘there exists a double cone C; such that 8(C,)§ is dense

in the Hilbert space 4. In this case we have the follow-
ing situation. There exists a family of truly local opera-
tors, namely, the set of all the operators in all the
algebras 3(6), which is sufficiently large such that the
local operators generate the algebras 4 (W) and 4(C°) in
the sense of (137a) and (137b). The algebra 4(C°) in
(136), which is associated with the unbounded region

Ce, is thus itself generated by “local observables,” and
this circumstance, in our opinion, adds luster to the
duality condition, As we have seen this situation ob-
tains if the field satisfies either one of Conditions II, III,
or IV,

It should be noted, however, that even if the field
satisfies Condition IV it is in general nof the case that

C) =G (C)”, i.e., the local algebra B(C) need not be
generated by the spectral projections of the self~adjoint
operators (@Lf), D(f)), with fveal, fc S(RY), and
supp(f)c C, The duality condition in the case of a gen-
eralized free field has been studied by Landau, 3 and
with reference to our discussion we can express the re-
sults as follows: For certain kinds of generalized free
fields we have £ (5)#g (C)”. For a detailed discussion of
this circumstance we refer to the work of Landau, The
algebra 9 (C)” generated by the generalized field alone
is thus “too small” to satisfy the duality condition. The
situation is, however, entirely different if instead we
consider the algebra generated (locally) by all the local
generalized free fields which are local relative to the
original field,

The duality condition for a free Hermitian scalar field
was first proved by Araki,? by an entirely different
method, The von Neumann algebras generated by a free
field have been studied extensively, & 72%3%3¢ | i5 wel]
known that in this case the field operators (¢]f], D,),
with f real, fe §(R%, are all essentially self-adjoint,
and our Condition IV obtains. Furthermore, it is the
case that B(C) g (C)", for all double cones C. It should
here be noted that Araki’s proof of the duality condition,
as well as the subsequent modified proofs by Oster-
walder,® Eckmann and Osterwalder, ? and by Landau, ®
hold for more general regions than double cones and
wedges., The discussion in the work of Eckmann and
Osterwalder is based on Tomita’s theorem, but also on
the very special properties of a free field, and it is not
clear to us how the discussion could be generalized to
the case of an arbitrary field. We also do not know at
this time whether there is any simple “physical—
geometrical” interpretation of the Tomita operators J
and V(in) for a double cone, or for a more general re-
gion. The remarkably simple interpretation of these
operators for the case of the wedge regions probably re-
flects the very special geometric properties of the pair
Wy and W,,

We shall conclude the present study with a discussion
by local internal symmetries. Such symmetries were
discussed by Landau and Wichmann, % within the frame-
work of quantum field theory, and within the framework
of the theory of local systems of algebras, and it was
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shown that a local internal symmetry, as defined in
that paper, commutes with all translations in the
Poincaré group. It was shown by Landau, * and by
Herbst, *7 that such symmetries also commute with the
homogeneous Lorentz transformations under the addi-
tional assumption that asymptotic Fock spaces exist,
i.e., that the theory has a sensible physical interpreta-
tion in terms of particle states.

The definition of a local internal symmetry G in the
paper of Landau and Wichmann can be stated as follows,
for the case of wedge regions: G is a unitary operator
such that

GR=9, GAWGIcAH(We) (143)
for all We{f/, It should be noted that no duality condi-
tion was assumed in the quoted work, and it seems to
us that the above definition can then be criticized: In
particular, it could happen that the set of all sym-
metries so defined does not form a group. However,
the above definition is satisfactory if the duality condi-
tion 4 (W°)’ =4 (W) holds, because it is then easy to show
that G4 (W)G™! =4 (W) for all We[{/. In particular, it
follows that the set of all local internal symmetries
forms a group.

In view of the above we shall here define a local
internal symmetry by replacing the second condition in
(143) by the condition that G4(W)G™! =,4(W), for all W
elf.

Theovem T: Let 4(Wg) and 4 (W.) be a pair of local
wedge algebras, which satisfy the general premises of
Theorem 6, and let 4 (W), A(C), and 4(C®) be defined as
in Theorems 5 and 6.

Let G be a unitary operator such that
CQR=0, GAWG=4(W), all We.
Then:

(144)

(a) The operator G commutes with the TCP-trans-
formation, and with all Poincaré transformations, i.e.,

9,60,=G, UMGUN)1=G, all AcL,. (145)
(b) For all double cones C,
GR(C)G=4(C), GA(C)G*=4(C). (146)

(c) The set of all unitary operators G which satisfy
the conditions (144) forms a group; the group of all
local intevnal symmelries,

Proof: (1) The second condition (144) holds in particu-
lar for W= Wj. The algebra 4 g=A4 (W) satisfies the
premises of Theorem 2, and in particular 4 (Wg)Q is a
core for the self-adjoint operator (V(iw),D,). The con-
ditions (144) trivially imply that G"L4 (W) =4 (Wg)Q,
and it follows that A(Wg)§? is also a core for the self-
adjoint operator (G*'V(in)G,G™D,). Let X< /4(Wg). We
then have

VEMGXQ =JGX*Q = (JGNV(EMXQ (147a)

where the first two members are equal because GxGt
€4 (Wg). We thus have

(G1V (MG, A(WR)Q) = (GIGINVEm), A (We)Q). (147b)

Since (G™1V(ET)G, 4 (Wg)R) and (V(ir), 4 (Wg)Q) are
essentially self-adjoint, and since G"lJGJ is unitary, it
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follows, by the polar decomposition theorem, that
G'D,=D,, (Vir),D,)=(G'V{in)G,D,), and®®

JG =Gd, (148a)

(2) The same considerations apply to the algebra 4 (W)
associated with any other wedge W=AWy. The Tomita
operator “J” for the algebra 4 (AWp) is U(A)U(A)™, and
thus we have

UA)JUN) G = GUN)JTU(A)! (148b)

for all A e Zo- In view of the third relation (56a) we
then have, after multiplication of both members in
(148b) by J from the left,

U( gAgA-l)G =GU(JAJA™) (148c)

for all A€ L,. It is easily seen that this implies that G
commutes with all U(A), and it then follows from (148a)
that G also commutes with ©,.

(3) The remaining statements in the theorem are com-
pletely trivial.

In conclusion let us state that the considerations in
this section can be generalized to other families of
bounded regions. We chose to discuss these issues for
double cones only, in order to avoid geometrical com-
plications which might obscure the basically very sim-
ple mainline of argument.
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Some restrictions on algebraically general vacuum metrics*

Carl H. Brans'

Joseph Henry Laboratories, Physics Department, Princeton University, Princeton, New Jersey 08540

(Received 18 November 1974)

Vacuum Einstein metrics of Petrov type 1, general, are considered. It is shown that the only solution
of this sort in which one of the Petrov scalars is zero is the trivial flat-space one. Further, it is
shown that the point at which the four Petrov scalars vanish simultaneously (zero curvature tensor)
cannot be included as a regular point of a neighborhood over which the-scalars are functionally
independent. In fact, for type I all derivatives of the Petrov scalars must vanish at a point at which
the curvature tensor does so that this point cannot be a regular point of any nontrivial analytic

solution.

This note discusses some properties of vacuum
Einstein metrics which are algebraically and functional-
ly general in the Petrov sense. The complex 2-form
technique described by Debever! will be used since it is
the most natural extension to differential geometry of
the work of Petrov? in the tangent space at a fixed point.
Using the Cartan real 1-form description we can write
the metric in terms of a Lorentz-orthonormal form
basis, w®, as

ds? =1y %0 (a,8,---=0,1,2,3), (1)

where 71,5 =diag(- 1,1, 1, 1}). The choice of such basis
for a given metric is of course arbitrary up to Lorentz
transformations at each point and an important geom-
etric problem is to determine the extent to which this
arbitrariness can be reduced. The procedure of Petrov
attacks this problem by investigating the canonical form
of the Weyl part of the curvature. In this procedure the
use of the SO(3, C) representation of the Lorentz group
plays a central role, so it is natural to develop a for-
malism making use of it from the beginning. Thus re-
place the real form w* basis by complexified 2-form
basis ¢o°, defined by

A= N +i®/\o®, (a,b, ¢)=cyclic(l,2,3). (2)

Thus, the Lorentz transformations of w* give rise to
complex orthogonal transformation of the ¢”. Converse-
ly, given a set of three complex 2-forms o°, it can be
shown that they correspond to a real 1-form basis w”
according to (2) if and only if they satisfy the conditions

NS =is®1, # /NP =0, (3)

in which / is a real nonzero 4-form. The structure equa-
tions for real 1-forms are

dw® — (,UB/\ wO‘B, Wep T Wea = 0, (4)
dw® g+ w*, N’y = 2%, ®)

where w®, are the connection forms and 2% the curva-
ture forms,

2% = (1/2)R%;,, 0 N\ w”. (6)
These can then be translated into complexified form

do* =X\ - XN\, ("

dxe - XN\ X°=F%, o + @4, P, (8

where
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X0 =P, - iw®,. (9)

The condition of being an Einstein empty space is then
that @% = 0 and that P% be traceless. The Petrov classi-
fication consists of finding canonical forms for the sym-
metric matrix P% under complex orthogonal transfor-
mations of the basis o°,

In this paper we will be concerned with the type I,
general, case in which P9 can be diagonalized with dis-
tinct eigenvalues, thus uniquely determining the basis
o® (up to inversions, of course). Hence assume that P?,
takes the form

a00
P =0 B0) a+Bt+y=0, (10}
00y
so that the Egs. (8) become
axt - x2/\ X3 = qot,
dx? - x3N\X' =g, (11)

dx® - XA\ X%= yoo.

In some cases it is convenient to use a null basis, re-
placing the forms o with p°,

pt=(ct +ic®) V2,

PE= (=t +icd) V2, (12)
pP=1io°,

The algebraic conditions (3) become
PPN pt =p* Ap?=p*N\p®=-il#0, (13)

and other products zero. Equation (13) can then be shown
to be a necessary and sufficient condition that the p® can
be written

V2pt=u/\k,
VZpt=g /),
20% = — (1 /\NE + /AN,

where k, A are real null 1-forms, and 4 is complex. In
terms of the w® basis,

(14)

K=wd— '
A = w3 -+ (;)(J’ (1 5)
= w! +iw?
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and the metric can be written

ds?=kx+ pl. (186)

The tangent vector basis dual to these 1-forms is, of
course, directly related to the basis used in the
Newman— Penrose (NP) formalism.?® Thus, the exterior
form equations used here are equivalent to the NP
equations.

The structure equations can now be written
dot = Y*A\pt - Y'/A\p?,
dp? == Y3/ \p? + v2/\p?,
dpazyl/\pz _ Yz/\pl,

(17)

where
Y= (X' +iX?) V2,
V2= (=~ Xt +iX%) /2,
Y2 =iX?,

(18)

the Equation (11) becomes

dvt - Ya/\le(ﬁ;a)pz-F(B;a)p‘,

dv:+ Y3 A\ 1vi=

(B; @) ot +(B ;‘ @) 0%, (19)

dY® — Y1\ Y2 =9pt,

The complete determination of the basis for the gen-
eral type I case might be expected to correspond to
some fairly strong restrictions on the solutions since
there are no directional symmetries available., We will
now consider some of these limitations.

In the first place, consider the case in which one of
the eigenvalues is the negative of the other, say a=-5,
so that the third is zero, y=0. This might seem to be
a natural alternative to the type D case in which two of
the eigenvalues are equal to each other. This latter case
includes the well known Schwarzschild and Kerr metrics
and has been studied exhaustively by Kinnersley.* We
find, however, that the a=- 8 condition cannot be met
unless @ =B =7y=0 as shown by the following theorem.

Theorem 1: The only solution to the vacuum Einstein
equations for which one of the Petrov eigenvalues van-
ishes over a region is the trivial one (flat space—time
over the region).

Pyoof: Assume that o=~ 3 and ¥=0 so that the null-
form equations become

dy' - Y3\ Y = gp?,

dy2+ Y3\ v?=pp!,
dy’ - Y*/A\v?=0,

(20)

Taking exterior derivatives, and using (17) we get the
Bianchi identities, one of which can be written

ds/N\p? = 2873\ p2 + 82\ p*=0. (21)
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Now consider the 1-form decomposition (14) and take
the /\ product of (21) by [ and X separately to get

2 Ak AN =2 A AR/ A\r=0, (22)
which in turn gives
pY2/\p?=0, (23)

or, if the geometry is nowhere flat in the region, §#0,

Y2\ p2=0. (24)
Taking the exterior derivative of this equation, and
using (20) and (17), we get

N\ p*=0, (25)

which contradicts (13) unless 8 =0, thus completing the
proof.

Next we consider what might be thought of as the
“most general” Petrov type, namely, the situation in
which two complex Petrov scalars are not only alge-
braically independent but also functionally independent.
Specifically, we want to look at the case in which the
real and imaginary parts of @ and 8 constitute a set of
four functionally independent scalar fields. It is clear
that in this case these four fields can be used to deter-
mine a unique coordinate system. Thus, such a metric
uniguely determines not only a preferred frame at each
point, but also a preferred space—time coordinate sys~
tem. In a certain sense it is the most unsymmetric pos-
sibility for Einstein metrics. We will now show that, if
such a solution exists, it cannot contain the origin of
the preferred coordinate system as a regular point.

Theovem 2: Let a and B be the Petrov scalars of a
vacuum Einstein metric as deseribed in (11), and o
=u+iv, B=p +iq, with u, v, p, g four real functions.
These four functions cannot be functionally independent
in any neighborhood of the point for whichu=v=p=¢q
=0.

Proof: Take the exterior derivatives of the Egs. (11)
to produce the Bianchi identities
da/N\o' =(v- )X2N\F - (- X3\,
BN\t =(a - XN\ ~ (v - X N\,
dyN\F =B -NX N\~ (a-9X2/N\,

(26)

When these are evaluated at a point for which a=8=7
=0, they are easily seen to require
da=dB=dy=0, (27

thus contradicting the functional independence of @ and
B at this point.

A slight extension of the above argument results in

Theorvem 3: The only type I solution for which o and
B are analytic functions and which extends over a region
containing a zero of the curvature tensor is the trivial
flat space one.
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For the Schwarzschild and Kerr metrics @ and g do
not vanish anywhere, depending on the usual radial co-
ordinate like 1/7.
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Erratum: Complex potential formulation of the axially symmetric
gravitational field problem [J. Math. Phys. 15, 1409 (1974)]

Frederick J. Ernst

Department of Physics, Hlinois Institute of Technology, Chicago, Hlinois 60616
(Received 20 December 1974)

The second term in the numerator of Eq. (5) should numerator of Eq. (42). “Covariance” is not spelled cor-

be +y*sin’\. The next to last term in Eq. (13b) should rectly in Ref. 9.
be +5S,,;« BX. The exponent 2 should be deleted from the

Erratum: The T operator and an inverse problem for nonlocal
potentials [J. Math. Phys. 15, 1227 (1974)]

Te Hai Yao

Mathematics Department, Bedford College, Regent’s Park, London NWI, England
(Received 2 December 1974)

(1) On p. 1231, line 16 on left side: P(§ = £E; x) should (2) On pp. 1228 and 1230: $(£ = ££; x) should be
be changed to EP(£ = £E; x). changed to (£ = ££; x).
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